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Acoustic-Structure Interaction in
an Adaptive Helmholtz Resonator
by Compliance and Constraint
The acoustic energy attenuation capabilities of traditional Helmholtz resonators are
enhanced by various methods, including by coupled resonators, absorbing materials, or
replacement of rigid walls with flexible structures. Drawing from these concepts to envision
a new platform of adaptive Helmholtz resonator, this research studies an adaptive acoustic
resonator with an internal compliant structural member. The interaction between the struc-
ture and acoustic domain is controlled by compression constraint. By applying uniaxial
compression to the resonator, the flexible member may be buckled, which drastically
tailors the acoustic-structure interaction mechanisms in the overall system. A phenomeno-
logical analytical model is formulated and experimentally validated to scrutinize these
characteristics. It is found that the compression constraint may enhance damping capabil-
ities of the resonator by adapting the acoustic-structure interaction between the resonator
and the enclosure. The area ratio of the flexible member to the resonator opening and the
ratio of the fundamental natural frequency of the flexible member to that of the enclosure
are discovered to have a significant influence on the system behavior. These results
reveal new avenues for acoustic resonator concepts exploiting compliant internal structures
to tailor acoustic energy attenuation properties. [DOI: 10.1115/1.4045456]
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1 Introduction
The traditional Helmholtz resonator is a rigid-walled cavity with

an open neck. At frequencies for which the acoustic wavelength is
much longer than the cavity dimensions, a lumped parameter acous-
tic system is realized via the lumped acoustic spring in the cavity
and the lumped air mass in the neck. Traditional Helmholtz resona-
tors are commonly used for narrowband sound absorption [1,2].
Researchers have studied ways to broaden the effectiveness of
such resonators for greater robustness in acoustic wave absorption
capabilities. Helmholtz resonators with flexible characteristics
have also been investigated [3–9]. Tang and Sirignano [10]
studied resonator dimensions for enhanced damping and absorp-
tion. Selamet et al. [11] found that a lining on the rigid wall
cavity may enhance dissipative influences and lower the resonant
frequency.
Using multiple resonators may also improve the acoustic wave

absorption. For instance, the acoustic coupling between an enclo-
sure and a Helmholtz resonator array has been studied by Li and
Cheng [12] through a model that enlightens optimal design. Zhao
and Morgans [13] investigated suppressing two unstable modes in
a combustion system by individual Helmholtz resonators with
passive control of the neck opening areas. Griffin et al. [14]
studied how two Helmholtz resonators mechanically coupled
together can increase the transmission loss. Tang et al. [15] found
that separating the cavity into compartments may result in addi-
tional resonances to broaden the frequency bandwidth of wave
attenuation.
The use of flexible structures inside Helmholtz resonators may

also introduce opportunities to exploit multi-degrees-of-freedom
system dynamics for enhanced acoustic wave absorption. Kurdi
et al. [16] and Nudehi et al. [3] replaced a wall of a cylindrical

Helmholtz resonator cavity with a flexible end plate so that
greater transmission loss may be achieved. Similarly, the noise
reduction by a rectangular enclosure with a flexible wall is
studied by Lyon [17] in terms of the stiffness influence of the enclo-
sure and the flexible wall. Researchers have also investigated flex-
ible structures utilized inside the cavity of the resonator, such as the
coupled flexible panel and Helmholtz resonator studied by Sanada
and Tanaka [4]. In the work [4], the flexible panel constitutes
another degree-of-freedom that may broaden the working frequency
range and enhance acoustic energy absorption capability via the
coupling between acoustic and elastic physics.
For the flexible structure in the Helmholtz resonator, to more

greatly couple the structural dynamics with the acoustic pressure
changes, the structure must be highly slender [3,4]. Slender struc-
tures are often susceptible to buckling-based phenomena when
utilized in confined dimensions of structural systems. Such suscept-
ibility is of recent interest in the development of adaptive structures
and materials [18,19]. For instance, Wang et al. [20] investigated
utilizing the large elastic buckling of elastomeric beams to control
the response of locally resonant acoustic metamaterials. The buck-
ling of a slender beam can induce nonlinear, geometric deforma-
tions [21], so that the combination of nonlinear deformation, the
criticality of buckling, and material properties may influence the
behavior of the material system. In recent work by Cui and Harne
[22], buckling of slender structures in a soft material system is
found to dramatically tune the force transmission through the
system. These representative results suggest that exploitation of
elastic buckling of flexible, slender structures offers great opportu-
nity to tune structural and material system properties. Many of the
Helmholtz resonators reported in the literature use rigid materials to
fabricate the resonator cavity, although rigid materials may not be
suitable for all applications. In fact, elastomeric structures like
those of growing, recent interest [18–23], are commonly required
in engineering applications for vibration, shock, and noise suppres-
sion purposes. On the other hand, the use of such materials to enable
adaptive control over acoustic-elastic properties of a Helmholtz res-
onator via controlled elastic buckling phenomena has yet to be
explored.
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This study investigates the potential to leverage a flexible, buck-
ling structural member within an adaptive Helmholtz resonator.
The investigation of the flexibility and acoustic-structure interaction
may open up new ways for the resonator design. This report is orga-
nized as follows. First, the composition and fabrication of a
proof-of-concept resonator designed with such a vision are intro-
duced. Then, a lumped parameter phenomenological analytical
model is proposed to characterize the essential acoustic-structure
interactionmechanisms and resulting acoustic energy attention capa-
bility of the resonator when deployed with a host acoustic enclosure.
A finite element (FE) model is developed to characterize the defor-
mation of the resonator under compression constraint so as to
bridge the analytical model to the experiment. Following experimen-
tal validation, themodel is harnessed to gain fundamental knowledge
on the key acoustic-structure interactions between the Helmholtz
resonator with flexible members and the host acoustic enclosure to
explore practical opportunities of leveraging such system for acous-
tic wave control. Finally, conclusions and discussions are provided
to summarize the knowledge gained and practical outlooks.

2 Adaptive Helmholtz Resonator Composition and
Experimental Setup
To investigate leveraging acoustic-structure interaction in an

adaptive Helmholtz resonator with an internal flexible structural
member, a proof-of-concept experimental resonator is fabricated.
The cross-section of the Helmholtz resonator is shown in
Fig. 1(a). The cross-sectional structure consists of an outer shell-
like geometry where the thinnest and the thickest part are
0.005 m and 0.01 m thick, respectively. A slender structural
member with thickness 0.003 m divides the cross-section into two
cavities. When subjected to a uniaxial compression in the vertical
direction, the deformation of the outer shell results in compression
of the slender member which may buckle as shown in Fig. 1(b).
Since a Helmholtz resonator requires a closed volume with an
opening, the cross-section ends are finished with wall-like pieces
seen in Fig. 1(c). When the cross-section ends are sealed with the

end walls, the buckling of the flexible member under compression
is not as dramatic as that shown in Fig. 1(b) so that the primary
and secondary cavity volumes are not as greatly changed. The com-
pleted, proof-of-concept adaptive Helmholtz resonator is shown in
Fig. 1(c). The total width is W= 0.1 m, total height is H= 0.09 m,
and total thickness is T= 0.09 m.
To fabricate the resonator, silicone rubber (Smooth-on, Inc.,

Mold Max 60) is poured into a mold negative and cured at room
temperature for sufficient time. An opening is made by incision
into the silicone rubber material to form the neck of the Helmholtz
resonator, as indicated in Fig. 1(c). Refined tuning of the opening
radius is achieved by inserting dense modeling clay around the
opening perimeter. The bulk silicone rubber used for fabrication
has material properties: Young’s modulus 2.2 MPa, Poisson’s
ratio 0.49, and density 2100 kg/m3. The primary cavity, Fig. 1(a),
which constitutes the resonating volume of the Helmholtz resonator
occupies a volume of 3.07 × 10−6 m3.
To examine the sound attenuation capabilities of the resonator and

influences of the compression of the flexible structural member
within, acoustic experiments are conducted. The experimental
setup schematic is presented in Fig. 1(d ). The resonator is placed
inside an enclosure made of medium density fiberboard of thickness
0.019 m. The enclosure has a cubic cavity of side length 0.254 m,
which results in a total volume of 0.0164 m3. The opening of the
enclosure is a square of side length 0.1524 m. The cavity and
opening of the enclosure result in a Helmholtz resonance of the
enclosure around 164 Hz, which is the target frequency for attenua-
tion when the dimensions of the resonator are considered. The enclo-
sure introduces an acoustic domain with which the adaptive
Helmholtz resonator interacts. Here, the acoustic-structure interac-
tion among the enclosure-resonator-flexible member system is
investigated. In this study, the Helmholtz resonator absorbs acoustic
energy in a way analogous to resonant elastic metamaterials [24],
where the motion of the metamaterial masses is 90-deg out-of-phase
with the motion of an input vibration source.
For purposes of applying compression constraints to the resona-

tor, the adaptive Helmholtz resonator is placed between two pieces
of medium density fiberboard whose distance apart is adjusted by

(a)

(d) (e)

(b) (c)

Fig. 1 (a) Cross-section of the Helmholtz resonator. Below the horizontal flexible structural member is the
primary cavity, and above is the secondary cavity. (b) Compressed configuration of the Helmholtz resonator
cross section. (c) Complete resonator geometry and dimensions. (d ) Schematic for acoustic experimental
setup. (e) Schematic of the lumped parameter model of the experimental setup in (d ).
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threaded rods and nuts. A loudspeaker is mounted on one side of the
enclosure to excite the enclosure. Two microphones (PCB 130E20)
are used to measure the acoustic pressure. One microphone is
inserted into the enclosure cavity and hung at a location that is
slightly off-center. The second microphone is inserted into the
primary cavity of the resonator via a separate opening that is
sealed up after the microphone is inserted. In this way, the Helm-
holtz resonator has just one working opening to couple the
primary cavity volume to the enclosure volume via the designed
neck opening, as shown in Figs. 1(c) and 1(d ). Sine sweep
signals from 50 to 250 Hz are used to drive the loudspeaker and
thus excite acoustic pressure variations in the enclosure.

3 Analytical Modeling of the Adaptive Helmholtz
Resonator and Enclosure System
A lumped parameter model is devised to analytically study the

dynamic behavior of the resonator and enclosure system.
The schematic of the model is shown in Fig. 1(e).
Based on the Helmholtz resonance of the enclosure around
164 Hz and the attention of this research to such low-frequency
range respecting the size of the enclosure and resonator, the
long-wavelength approximation is taken to characterize the
acoustic-elastic system via lumped parameter equivalents. The
air in the opening of the enclosure, the air in the opening of
the resonator, and the lowest-order modal mass of the flexible
structural member are thus considered to be lumped masses. Sim-
ilarly, the compressibility of the air in the cavity of the enclosure
and of the air in the cavities of the resonator is considered to be
lumped springs. The analytical model is phenomenological in the
sense that qualitative agreement is sought for approximation of
the system behaviors. In the model, only the lowest order
mode of vibration is considered for the flexible member due to
frequency range interested.
For the enclosure opening, the acoustic mass is m0 = ρ0S0t

*
0,

where ρ0 is the density of air, S0 = πa20 is the opening area, and
a0 is the characteristic opening radius. The dimension t*0 = t0 +
1.7a0 is the thickness of the opening t0, including the end correction
for the flanged opening [2,25]. The equation of motion for the air
mass m0 having displacement x0 is then obtained by consideration
of dynamic equilibrium

ρ0S0t
*
0 ẍ0 = −c2ρ20S0dv0 (1)

where c is the sound speed in air and dv0 is the differential specific
volume change. Xu et al. [26] report that the differential specific
volume change is expressed as

dv0 =
S0x0 − S1x1

ρ0V0
(2)

Here, S1 = πa21 is the area of the opening in the adaptive resona-
tor, x1 is the displacement of the acoustic mass in the resonator
opening, a1 is the characteristic opening radius of the resonator,
and V0 is the volume of the enclosure cavity. By substituting
Eq. (2) into Eq. (1) and rearranging terms, the undamped and
unforced governing equation of motion for the air mass m0 is

ẍ0 +
c2S0
V0t*0

x0 −
c2S1
V0t*0

x1 = 0 (3)

Considering the harmonic pressure excitation shown in Fig. 1(e)
and the loss factor η0 due to air flow resistance through the enclo-
sure opening, the governing equation is written as

ẍ0 + η0ω0ẋ0 +
c2S0
V0t*0

x0 −
c2S1
V0t*0

x1 =
P0

ρ0S0t
*
0

S0 cosΩt (4)

The natural frequency of the enclosure without the resonator is
ω0 =

�������������
c2S0/(V0t*0)

√
.

The acoustic mass in the adaptive Helmholtz resonator opening is
m1 = ρ0S1t

*
1, where t*1 = t1 + 1.7a1 is the end-corrected opening

thickness of the actual resonator wall thickness t1. By considering
the dynamic equilibrium of the displacement x1 of the air mass
m1, the governing equation is obtained

ρ0S1t
*
1 ẍ1 = −c2ρ20S1dv1 + c2ρ20S1dv0 (5)

where

dv1 =
S1x1 − S2xe

ρ0V1
(6)

Here, V1 is the volume of the primary cavity of the resonator, S2 is
the area of the flexible structural member that interfaces with V1,
and xe denotes the displacement of the flexible member. Substitut-
ing Eq. (6) into Eq. (5) and rearranging terms yield the governing
equation of motion for the air mass m1 in the resonator neck

ẍ1 + η1ω1ẋ1 +
c2S1
V1t*1

+
c2S1
V0t*1

[ ]
x1 −

c2S2
V1t*1

xe −
c2S0
V0t*1

x0 = 0 (7)

The loss factor η1 is introduced to account for air flow resistance
through the resonator opening. The fundamental natural frequency
of the resonator opening and primary cavity is ω1 =

�������������
c2S1/(V1t*1)

√
.

Finally, the governing equation of motion for the lowest-order
generalized displacement of the flexible structural member xe is
obtained

meẍe = −ke(1 − p)xe − kenx
3
e + c2ρ20S2dv1 − c2ρ20S2dv2 (8)

Here,me= ζMe is the mass contribution to the lowest-order vibra-
tion of the flexible member. The mass contribution me is a portion ζ
[27,28] of the total massMe= ρeVe of the flexible member, which is
determined by the density ρe and volume Ve of the flexible member.
The fundamental elastic stiffness ke of the flexible member is
defined as ke = meω2

e , where ωe is the lowest-order natural fre-
quency of the flexible panel. According to a study of rectangular
plates by Leissa [29], the lowest order natural frequency of a rect-
angular panel can be approximated from a vibration frequency
factor λ that is expressed as

λ = ωea
2

������
ρe/D

√
(9)

A tabulated set of frequency factors λ is available based on the
panel aspect ratio a/b [29]. Equation (9) is the vibration frequency
factor for flexible panels that are simply supported on two opposite
sides of length a, and clamped on the other two opposite sides of
length b. These are similar to the boundary conditions of the flexible
structural member used in this work. In Eq. (9), D=Eh3/[12(1−
ν2)] is the bending stiffness determined by the isotropic Young’s
modulus E, Poisson’s ratio ν, and thickness h of the flexible
member.
In Eq. (8), the flexible member is subjected to axial compression

constraint characterized by the load parameter p, as a proportion of
the fundamental Euler buckling load. Nonlinear geometric deforma-
tion is subsequently included since elastic buckling may be mani-
fest. With a thickness to length ratio of less than 0.1 in each
direction for the flexible member, the member is considered suffi-
ciently thin to neglect span-wise modal coupling in this low-
frequency range. As a result, a nonlinear force determined by the
product of a stiffness ken, which is proportional to the elastic stiff-
ness ke by coefficient β Eq. (A1c), and the cubic power of displace-
ment xe is introduced [30]. Here, dv2 is given by

dv2 = S2xe/(ρ0V2) (10)

where V2 is the secondary volume of the resonator. Substituting
Eq. (10) into Eq. (8) and rearranging terms yields the governing
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equation of motion for the mass me

ẍe + ηeωeẋe + ω2
e (1 − p) +

c2ρ0S
2
2

V2me
+
c2ρ0S

2
2

V1me

[ ]
xe +

ken
me

x3e

−
c2ρ0S1S2
V1me

x1 = 0 (11)

The elastic loss factor ηe is introduced to account for hysteretic
damping in the flexible member. Because the lowest-order dynam-
ics are considered for the flexible member, the damping model may
be empirically identified, and as such the elastic loss factor is used
without loss of generality.
The governing equations for the three degree-of-freedom

acoustic-elastic systems are (4), (7), and (11). Then, the harmonic
balance method [31] is utilized to approximately solve for the
steady-state dynamic response. The detailed steps for solving the
governing equations are given in the Appendix.
In addition to the air mass displacements and flexible member

generalized displacement, the complex-valued transfer function of
the acoustic pressure inside the primary cavity of the resonator to
the acoustic pressure inside the enclosure cavity of the enclosure
is computed. The amplitude H and phaseΦ, Eq. (A12), of the trans-
fer function are used to explore the acoustic-structure interaction
phenomena. To assess the effectiveness of the resonator to suppress
the acoustic energy in the enclosure, the sound pressure level (SPL),
Eq. (A11), is computed using the acoustic pressure in the enclosure.

4 Finite Element Modeling of the Adaptive Helmholtz
Resonator
In order to relate the compression constraint applied in the exper-

iments to the load parameter p in the analytical model, a FE model
in ABAQUS CAE is developed. Figure 2(a) is the schematic of the 3D
model of the resonator developed in ABAQUS using the exact geom-
etry of the fabricated resonator. An isotropic, Neo-Hookean, hyper-
elastic material model is applied to characterize the resonator using
the material properties given in Table 1. The bottom of the resonator
is fixed, and the compression is applied to the top surface of the res-
onator in the vertical direction shown in Fig. 2(a) using a
dynamic-implicit formulation. Presented in Fig. 2(b) is the deforma-
tion of the resonator without front face under 5.6% engineering
strain colored according to the von Mises stress. The volumetric
change of the primary resonator cavity is less than 1% of the
cavity in the absence of the flexible member deformation. The engi-
neering strain ɛ is the ratio of the applied compressive displacement
to the total height H of the resonator. By removing the front face of
the resonator from view in Fig. 2(b), the deformation and stress over
the flexible member are apparent.

The FE results of engineering strain von Mises stress are pre-
sented in Fig. 2(c). The stress is measured from the middle point
of the flexible member edge on the left, at the evaluation point
shown in Fig. 2(b). The critical point is defined at 7.78% strain
where the slope of the curve in Fig. 2(c) approaches zero, as indi-
cated by the marker and legend in Fig. 2(c). Analytically, the critical
value of the load parameter p* is the value that makes the coefficient
of xe in the governing equation Eq. (11) equal zero. The critical
value p* is obtained by solution to Eq. (12).

ω2
e (1 − p*) +

c2ρ0S
2
2

V2me
+
c2ρ0S

2
2

V1me
= 0 (12)

Using the parameters in Table 1, the critical load for the resonator
is p* = 1.75. Assuming that a null load parameter corresponds to
zero strain and that p* = 1.75 corresponds to ε = 7.78%, then the
linear relationship between the load parameter p and engineering
strain ɛ is Eq. (13).

p = 0.225ε (13)

The relationship of Eq. (13) is used to relate analytical model
results with load parameters to the corresponding experimental
measurements of engineering strains. The load parameters corre-
sponding to the specific engineering strains are presented in
Fig. 2(c) on the bottom x-axis label. The correlation between the
engineering strains applied in the experiments and the load param-
eters in the analytical model results in Sec. 5 adopts the relationship
obtained here through the finite element study.

5 Experimental Validation of the Analytical Model
An experimental validation of the analytical model is undertaken

to establish confidence in the capability of the lumped parameter
modeling approach. For the low-frequency range interested in
this study, the wavelength is much longer than the dimensions of
the enclosure and the resonator. Thus, the pressures inside the
enclosure and inside the resonator are uniform. Therefore, the
point microphone measurements inside the cavities accurately rep-
resent the system dynamics. Physical parameters from the

Table 1 Parameters for analytical modeling

ρ0 (kg/m
3) c (m/s) a0 (m) t0 (m) V0 (m

3) a1 (mm) t1 (m)
1.2 343 0.0874 0.019 0.01639 4.7/4.2/3.8 0.007
V1 (m

3) E (N/m2) h (m) ν ζ V2 (m
3) η0

0.000307 2.2e6 0.003 0.49 0.1 2.68e−5 0.05
η1 ηe β F0 ρe (kg/m

3) Ve (m
3) S2 (m

2)
0.15 0.05 0.1 0.0006 2100 8.04e−6 0.00268

(a) (b) (c)

Fig. 2 (a) Schematic of a finite element model of the uncompressed HR. (b) FE results of the cross-section when
the complete HR is under 5.6% engineering strain. Color shading indicates the von Mises stress. (c) FE results of
engineering strain von Mises stress. The relationship between load parameter and strain is indicated in x labels,
and the critical point is indicated by the legend.
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enclosure-resonator system used in experiments that are subse-
quently employed in model calculations are listed in Table 1.
Parameters included in Table 1 that are not introduced in the deri-
vation in Sec. 3 are defined in the Appendix. The resonant fre-
quency of the enclosure is 164 Hz, and remains unchanged in the
study. For the analytical results, the parameter λ= 14, 538 is
used. This parameter is selected since the boundary conditions of
the flexible structural member are not precisely the same as those
idealized in Ref. [29]. The damping terms η0, η1, and ηe, excitation
F0, and nonlinear to linear stiffness ratio of the resonator β, are
identified empirically.

5.1 Controlling Enclosure Sound Pressure Level by
Helmholtz Resonator Design and Constraint. A comparison
between experimental and analytical results of the SPL inside the
enclosure is presented in Fig. 3. The experimental results of the
enclosure SPL are obtained from the microphone inside the enclo-
sure, labeled as M1 in Fig. 1(d ). In Figs. 3(a)–3(c), the experimental
results are shown for three opening radii, 4.5 mm, 3.5 mm, and
2.5 mm. The baseline (thin solid curves) is the experimental result
of the enclosure SPL without the resonator inside the enclosure
cavity. A rigid mass occupying the same volume as the resonator
is placed in the enclosure cavity during baseline experiments. For
experimental results that introduce the resonator into the enclosure,
the compression constraint achieved by the experimental fixture is
specified in engineering strain ɛ as indicated in the legends. In
Figs. 3(d )–3( f ), the analytical results of SPL are shown for three
opening radii, 4.7 mm, 4.2 mm, and 3.8 mm. The baseline (thin
solid curves) is the response of the enclosure without a resonator,
and the other curves correspond to the SPL with the addition of
the resonator. For each opening radius, results considering the
uncompressed condition p= 0 (thick solid curves) and two com-
pressed conditions of specific load parameters related to the exper-
imental engineering strains are presented.

The influence of change in the opening radius for the resonator is
examined by comparing the results of the columns in Fig. 3. Exper-
imentally, from Figs. 3(a)–3(c), the attenuation of the resonator is
first quantified by comparing the SPL reduction of the uncom-
pressed condition (0% engineering strain ɛ) to the baseline. For
Figs. 3(a)–3(c), the opening radii are 4.5 mm, 3.5 mm, and
2.5 mm, the frequency ranges of SPL reduction are 165–214 Hz,
163–200 Hz, and 164–192 Hz, and the SPL reductions at 175 Hz
are 1.85 dB, 3.86 dB, and 3.14 dB, respectively. When the
opening radius decreases, the effective frequency range is nar-
rowed, yet the SPL reduction is increased. The analytical results
presented in Figs. 3(d )–3( f ) show similar influences as those in
the experiments. In the analysis, for the uncompressed condition
p= 0 the three opening radii are 4.7 mm, 4.2 mm, and 3.8 mm. In
experiments, the material and structural compliance of the Helm-
holtz resonator softens the equivalent stiffness of the resonator,
and thus greater radii than experimental results are adopted in ana-
lytical study to compensate for the compliance. It is seen from anal-
ysis that the reduction in opening radius leads to narrower frequency
ranges wherein the SPL is reduced from the baseline level. Specifi-
cally, the effective frequency ranges for Figs. 3(d )–3( f ) are 160–
214 Hz, 159–199 Hz, and 157–186 Hz, respectively. In addition,
the SPL reductions in Figs. 3(d )–3( f ) at 175 Hz are 2.6 dB,
3.6 dB, and 4.34 dB, respectively. The peak SPL reduction trends
are in qualitative agreement with the experimental findings.
By increasing or decreasing the opening radius of the resonator,

the natural frequency of the resonator is changed. Specifically, the
smaller opening radius decreases the natural frequency of the reso-
nator and brings it closer to the resonant frequency of the enclosure.
Consequently, the maximum SPL reduction is enhanced although
the frequency range of effective SPL reduction may be slightly
reduced. For traditional Helmholtz resonators, reducing the
opening radius may lead to a reduction in the magnitude of acoustic
wave absorption due to reduction in acoustic mass in the resonator
neck and increase in air flow resistance [25]. Yet, in this research

(a) (b) (c)

(d) (e) (f )

Fig. 3 Experimental results for enclosure SPL of different resonator opening radii (a) 4.5 mm, (b) 3.5 mm, and (c) 2.5 mm. Thin
solid curves are the baselines (enclosure only) for each set of experiments. The applied compression, engineering pre-strain ɛ,
for each experiment is specified in the legends. Analytical results for enclosure SPL of opening radius (d ) 4.7 mm, (e) 4.2 mm, and
(f ) 3.8 mm, where thin curves are the baselines, thick curves are the uncompressed conditions, p=0, and dotted and dashed
curves are the compressed conditions of load parameters indicated in the legends.
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reducing the opening radius of the adaptive Helmholtz resonator
increases the SPL reduction and hence increases the wave absorp-
tion by the resonator. This may be due to the fact that a smaller res-
onator opening radius results in a greater area ratio of the flexible
member to the resonator opening δ2= S2/S1. For instance, the δ2
values for Figs. 3(d )–3( f ) are 38.62, 48.36, and 59.08, respectively.
A greater area ratio δ2 would more strongly couple the acoustic air
in the resonator primary cavity to the structural dynamics of the
flexible member. This stronger coupling may explain the enhance-
ment of the SPL reduction in the enclosure achieved by smaller
opening radii. Yet, it must be noticed that the opening area needs
to be great enough to maintain the air flow through the opening.
After examining the influence of the opening radius of the reso-

nator, the effect of the compression constraint applied to the resona-
tor is contrasted between analytical and experimental trends. Tuning
the compression constraint modulates the peak SPL value. Experi-
mentally in Fig. 3(c), for ε = 0% the highest SPL is near 164 Hz,
and by applying compression to ε = 4.00% and then to
ε = 5.78%, the SPL reduces at this peak value. In addition, at
higher frequencies, for instance around 180 Hz in Fig. 3(c), with
the increase of ɛ the SPL in the enclosure increases. The analytical
results reveal similar physical behavior by the increase in load
parameter p. For instance in Fig. 3( f ) comparing the uncompressed
condition p= 0 to the compressed conditions p= 0.90 and p= 1.30,
as p increases, the SPL at 157 Hz decreases, while the SPL at
180 Hz increases. This effect is similar to that increased damping
on a traditional mass-spring-damper resonator has on the vibration
of a host structure [32]. In other words, the increase in damping for a
mass-spring-damper increases the host structure response amplitude
at the tuned frequency while also lowering the resultant peaks of
modal response created by the two degrees-of-freedom system.
Such enhancement of damping by increased compression applied
to the resonator is further observed for the other cases presented
in Figs. 3(a), 3(b), 3(d ), and 3(e). The agreement of qualitative
behavior between analysis and experiment enables the conclusion
that the change of opening radius primarily tailors the frequency
of the resonant phenomena whereas adjusting the compression con-
straint applied to the adaptive Helmholtz resonator tunes the
damping. Lakes [33] found that buckling may enhance the
damping of compressed silicone rubber tubes by orders of magni-
tude. Similar phenomena are reported by Bishop et al. [34] and
Cui and Harne [22], where applying external constraint to elasto-
meric metamaterials leads to a growth of damping capacity.
The agreement between experimental and analytical results is not

complete in Fig. 3 due to the utilization of a phenomenological
model. For instance, the detailed geometry of the adaptive Helm-
holtz resonator and the compliance of the walls of the resonator
are not taken into consideration. Yet, the salient physics observed
in the experiment is reproduced through the analytical model
trends. This indicates that the phenomenological model leveraged

in this study is able to provide insight into the acoustic-structure
influences that manifest in the enclosure-resonator system.
Overall, the experiments and analysis indicate that tuning the

compression constraint applied to the resonator enhances acoustic-
structure interaction via the buckling condition of the flexible
member, and the acoustic damping characteristics of the resonator
are likewise tuned. Scrutinizing the non-dimensional governing
equation of motion helps to illuminate the influence of system
parameters to realize such adaptable acoustic damping. For
instance, for the compression constraint to be effective, the ratio
of resonator secondary cavity stiffness to flexible member elastic
stiffness, α= k2/ke, should be on the same order as the load param-
eter p. When α is much greater than p, the flexible member is
effectively fixed by a stiff acoustic spring in the secondary
cavity, thus the compression constraint is unable to buckle the
flexible member. If α= 0, the flexible member interfaces with
the surrounding air, thus the buckling condition of the flexible
member is tuned solely by the compression constraint, and
sound radiation to the environment by the vibration of the flexible
member may occur.

5.2 Resonant Behavior of the Adaptive Helmholtz
Resonator with Constrained Flexible Member. The transfer
function of the acoustic pressure inside the resonator primary
cavity to the acoustic pressure inside the enclosure cavity is inves-
tigated to gain insight on the inner-workings of the resonator under
various compression conditions. The transfer function is the ratio of
frequency responses of microphone M2 to that of microphone M1
in Fig. 1(d ). In Fig. 4, experimental (a) and analytical (b) results
of the transfer function phasesΦ for the same experimental and ana-
lytical conditions presented in Figs. 3(c) and 3( f ), respectively. The
greater attenuation of the enclosure SPL occurs when the transfer
function phase is nearest to −90 deg, which agrees with the
results reported by Zhao et al. [35].
The compression constraint is seen through the measurements

and predictions to influence the transfer function phase.
Figure 4(a) reveals that from 0% to 4.00% to 5.78% pre-strains,
the phase of the transfer function shifts to lower frequency referenc-
ing the −90 deg phase shift. In the analytical predictions in
Fig. 4(b), a similar, albeit not as dramatic, frequency shift of the
phase occurs. Although experimental results present a more dra-
matic shift in frequency under constraints than analytical results,
utilizing the phenomenological model reveals comparable insight
on the basic physics of the problem. The qualitative agreement
between experimental and analytical results provides validation to
the analytical model formulation and solution approach. To more
deeply investigate the intricate acoustic-structure interaction phe-
nomena observed by the adaptive resonator with internal flexible
structural members, detailed parameter studies are then undertaken.

(a) (b)

Fig. 4 Experimental results of the transfer function phase (a) for the same experimental
set presented in Fig. 3(c). The pre-strains are indicated in the legends. Analytical results
of the transfer function phase (b) for the same parameter set presented in Fig. 3( f ). The
compressed conditions are indicated in the legends.
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6 Analytical Study of Acoustic-Structure Interaction
Phenomena

6.1 Assessment of Resonator Design and Compression
Extent. To broaden the understanding of methods to exploit the
design and compression constraint of the resonator for adaptive
control over the acoustic field in the enclosure, additional investiga-
tions are carried out. In Fig. 5 are results for the enclosure SPL as
functions of the excitation frequency and load parameter. The
shading indicates the SPL value. Darker shading increments indi-
cate a 2 dB increase from the prior shading. For Fig. 5, the top
thin contour plots are the results of the enclosure SPL without the
resonator (the baseline), while the larger contour plots in Fig. 5 cor-
respond to the enclosure with the resonator. The resonant frequency
of the enclosure is indicated by a thin dashed line around 164 Hz
where the enclosure SPL is 101.8 dB. Several SPL values are
marked on the contour plot for convenience.
In Fig. 5(a), the parameters listed in Table 1 are used to generate

analytical model results, except for a1= 3.4 mm. For the system
parameters employed, the fundamental natural frequency of the
enclosure is around 164 Hz, the natural frequency of the resonator
is 166 Hz, and the fundamental frequency of the flexible member
is 908 Hz. The ratio of the fundamental natural frequency of the
flexible member to that of the enclosure is f2= 5.54. As presented
in Fig. 5(a), when the load parameter p is close to zero, or large
such as p= 3, around 9 dB attenuation of the enclosure SPL is
achieved at 164 Hz. When p= 1.75, which is the critical load
parameter value p* calculated from Eq. (12), the enclosure indeed
has a resonant peak at 164 Hz despite containing the adaptive reso-
nator. In this latter case, the SPL value is only 0.4 dB less than the
baseline SPL at this frequency. In other words, for the design of the
adaptive resonator used for the results in Fig. 5(a), compression
constraints on the resonator less than or greater than the critical
value provide a considerable reduction of the enclosure SPL,
whereas the critically compressed resonator is not particularly effec-
tive to attenuate the SPL.
These trends distinctly contrast to the results of the system anal-

ysis using a different parameter set in Fig. 5(b). For results pre-
sented in Fig. 5(b), the parameters for the flexible member are
changed to be S2= 0.0016 m2, Ve= 8e− 5 m3, ζ= 1, h= 0.01 m, λ
= 145.38, and the opening radius of the resonator is a1= 3.3 mm.
The remaining system parameters are those listed in Table 1. As
seen in Fig. 5(b), the overall trends of how the enclosure SPL is
influenced by the change in load parameters are unique when com-
pared with Fig. 5(a). For instance, in Fig. 5(b), the fundamental
natural frequencies of the enclosure, the resonator, and the flexible
member are 164 Hz, 162 Hz, and 155 Hz, respectively. The ratio of
the fundamental natural frequency of the flexible member to that of
the enclosure is f2= 0.95, which compares to f2= 5.54 for Fig. 5(a).
The influence of the load parameter on the enclosure SPL shown in

Fig. 5(b) is evidence of more pronounced acoustic-structure cou-
pling. For instance, for a load parameter around the critical value
p* = 1.18, calculated from Eq. (12), 8.7 dB attenuation is achieved
at 164 Hz in Fig. 5(b). For lightly compressed conditions p≈ 0.25
or when the load parameter is slightly greater than the critical
value, such as p≈ 1.73, the attenuation at 164 Hz is less than
2.5 dB. Yet, for still further increase in load parameter, for instance
when p= 3, the resonator attenuates the enclosure SPL by at least
7.8 dB over the frequency range of 156–168 Hz.
In summary, small constraint or over constraint maximizes the

enclosure SPL reduction for the system in Fig. 5(a) when the flex-
ible member is stiffer (908 Hz). In contrast, a critical constraint or
over constraint maximizes the enclosure SPL reduction for the
system in Fig. 5(b) when the flexible member is less stiff
(155 Hz). In other words, the difference in the selection of p to
achieve the greatest attenuation for the flexible structures studied
in Figs. 5(a) and 5(b) is governed by the flexibility of the internal
structure. The ratios of the fundamental natural frequency of the
flexible member to the enclosure resonant frequency in Figs.
5(a) and 5(b) are f2= 5.54 and 0.95, respectively. Based on the
results of Fig. 5, the frequency ratio f2 exerts a significant influ-
ence on the overall interaction between acoustic and elastic
physics.

6.2 Structural Acoustic Response Adaptation by Varying
Compression. To more closely scrutinize the acoustic-structure
coupling between the enclosure and the adaptive Helmholtz resona-
tor, results for specified load parameters selected from Fig. 5 are
presented in Fig. 6. Along with the plots of enclosure SPL in
Figs. 6(a) and 6(d ), the transfer function amplitude (b,e) and
phase (c,f ) are given for deeper insight. In Figs. 6(a)–6(c) are the
enclosure SPL, transfer function amplitude, and transfer function
phase computed using the same parameters as used in Fig. 5(a)
for p= 0 (thick solid), p= 1.69 (dotted), and p= 2 (dashed) along
with the baseline (thin solid). The near-critical value p= 1.69 is pre-
sented instead of the critical value p* = 1.75, because the critical
condition exhibits a computational singularity.
In Fig. 6(a), the SPL resulting in near-critical compression p=

1.69 condition is not greatly different than the SPL in the baseline
case. A study of the corresponding transfer function results in Figs.
6(b) and 6(c) explains this result. Although the near-critical com-
pression makes the flexible member more compliant and possessed
with greater damping capacity [22], the vibration of the flexible
member is mostly −180 deg out-of-phase with the pressure increase
and decrease in the enclosure, evidenced by the phase difference in
Fig. 6(c). The transfer function amplitude for p= 1.69 has values
less than 1 as shown in Fig. 6(b), indicating that no magnification
of acoustic pressure amplitude occurs in the resonator primary
cavity in this case. Magnification of response, by H> 1, is required

(a) (b)

Fig. 5 Analytical results for enclosure SPL at 120–200 Hz (x-axis) with load parameter in
the range 0–3 (y-axis) for a flexible member that has the fundamental natural frequency
of (a) 908 Hz and (b) 155 Hz

Journal of Vibration and Acoustics APRIL 2020, Vol. 142 / 021005-7

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/142/2/021005/6467618/vib_142_2_021005.pdf by O

hio State U
niversity | O

SU
 user on 13 January 2020



for an acoustic absorber to suppress the acoustic energy in the host
enclosure.
On the other hand, when the resonator is uncompressed p= 0 or

more highly compressed p= 2 than the critical value, attenuation of
the enclosure SPL is achieved, as seen in Fig. 6(a) around the res-
onant frequency of 164 Hz. In Figs. 6(b) and 6(c), the transfer func-
tion amplitude and phase for the case p= 2 is shifted to lower
frequency when compared with the uncompressed condition p=
0. The similar behavior of the enclosure SPL and transfer function
amplitude and phase for the conditions p= 0 and p= 2 indicates
similar acoustic-structure interaction in the system for the two con-
ditions. The distinguishing factor is that in the case of p= 2, the
flexible member is post-buckled.
The parameters used in Fig. 5(b) are then used to generate the

results of Figs. 6(d )–6( f ) where attention is given to the cases of
load parameter p= 0 (thick solid), p= 1.18 (the critical value,
dotted), p= 1.6 (dashed), and p= 2.5 (dash-dotted). For compari-
son, the baseline result is also provided in Fig. 6(d ) (thin solid).
For the uncompressed p= 0 condition, two peaks for the transfer
function amplitude are observed in Fig. 6(e), and two approximately
−90 deg phase shifts are evident in Fig. 6( f ). These two frequencies
around 150 Hz and 178 Hz are the same frequencies in Fig. 6(d )
where attenuation of the enclosure SPL is most prominent for p=
0. On the other hand, the SPL at the enclosure resonator frequency
164 Hz is not significantly reduced. Yet, such a combination of
parameters suggests that strong acoustic-structure occurs among
the enclosure-resonator-flexible member system so as to give rise
to two local peaks of the transfer function.
When the load parameter is at the critical point p* = 1.18, a single

peak appears in the transfer function amplitude around 166 Hz in
Fig. 6(e) and one −90 deg phase shift in Fig. 6( f ) is evident. In
this event, Fig. 6(d ) shows that the SPL for the enclosure at
164 Hz is reduced with a local minimum of around 166 Hz. If the
resonator is under a constraint slightly greater than the critical
load, such as p= 1.6 in Fig. 6(d ), although the SPL at 164 Hz is sup-
pressed compared with the baseline, the attenuation is not great as
that achieved by the critical condition. The trends of transfer func-
tion amplitude and phase for p= 1.6 are similar to those for p = 0,

although the transfer function peaks occur at distinct frequencies.
Finally, when the resonator is under greater compression constraint,
p= 2.5, as presented in Figs. 6(d )–6( f ), similar behaviors compared
with the critical condition are observed. The attenuation for enclo-
sure SPL around resonance 164 Hz is achieved, and transfer func-
tion amplitude and phase have similar trend with the critical
condition p= 1.18, albeit the features are shifted slightly to frequen-
cies of 4 Hz lower.
Considering the collective results of Figs. 5 and 6, the acoustic-

structure interaction phenomena in the system may be fully inter-
preted. For the specific flexible member structure studied in Figs.
5(a) and 6(a)–6(c) with resonant frequency 908 Hz, although the
near-critical compression constraint tunes the damping of the flex-
ible member, it does not magnify the pressure in the adaptive res-
onator primary cavity when compared with the enclosure cavity
pressure. Only magnification of the transfer function H> 1 attenu-
ates the enclosure SPL. For the flexible member structure with
parameters studied in Figs. 5(b) and 6(d )–6( f ), the natural fre-
quency of the flexible member (155 Hz) is nearer to the natural
frequency of the resonator (162 Hz) and the enclosure (164 Hz).
When no compression constraint is applied (p= 0), a greater
acoustic-structure interaction occurs due to the compatibility of
stiffnesses, and two transfer function amplitude peaks and two
effective attenuation frequencies are achieved. This result indicates
that the resonator with the flexible member can be utilized for
attenuating more than one resonance. On the other hand, once
the flexible member is compressed near the critical point p* =
1.18 in Fig. 6(d ), the engagement of the flexible member is sup-
pressed around the 164 Hz enclosure resonance. In this case, the
enclosure SPL attenuation is associated more with the Helmholtz
resonance of the primary resonator cavity, whereas the critically
constrained member contributes additional dissipation seen by
the suppressed transfer function magnitude in Fig. 6(e) near
164 Hz. These findings reveal insight on the interactions
between acoustic and elastic physics in the adaptive resonator
concept proposed here. Although this research probed the most
influential parameters governing sound absorption characteristics
of the tunable Helmholtz resonator, future parametric studies

(a) (b) (c)

(d ) (e) (f )

Fig. 6 Analytical results of enclosure SPL (a) and (d ), transfer function amplitude (b) and (e), and transfer function phase (c) and
(f ) using (a)–(c) the same system parameters as in Fig. 5(a), and (d )–(f ) the same parameters as in Fig. 5(b), where the baseline is
indicated by thin solid curve, and load parameters are indicated in the legends
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may be carried out on other design details that may introduce new
acoustic energy mitigating capability.

7 Conclusions
This research introduces and studies a tunable adaptive Helm-

holtz resonator that exploits compression upon an internal flexible
structural member to tune dynamic stiffness and damping character-
istics for mitigation of acoustic energy. A phenomenological analyt-
ical model is established to characterize the behavior of the
resonator under compression as well as the acoustic-structure inter-
action inside the enclosure-resonator-flexible member system.
Change of the opening radius of the resonator tunes the Helmholtz
resonance and tailors acoustic-structure interaction by adjusting the
significance of air impingement upon the flexible member. Larger
area ratio may enhance the SPL reduction of the enclosure.
Tuning the compression constraint applied to the flexible member
causes a tuning on the damping effect of the resonator. Specifically,
the results show that the compression constraint tunes the resonator
by shifting the amplitude and phase of the transfer function of the
resonator primary cavity pressure to the enclosure pressure. For a
stiffer flexible member, small or large compression constraint
leads to increased damping and maximum reduction of the enclo-
sure SPL. For a softer flexible member, the resonator engages
with the enclosure either like a two degrees-of-freedom sub-system
or like a one degree-of-freedom system, depending on the compres-
sion constraint. Despite this broad shift of global behavior, the
overall attenuation of the enclosure SPL is robust to change in com-
pression constraint. In summary, this research uncovers fundamen-
tals of the acoustic-structure interaction between an enclosure and a
Helmholtz resonator with a compressible internal flexible member,
develops an analytical tool to analyze the dynamic characteristics of
this acoustic-structure system, and opens new avenues for future
work on Helmholtz resonators composed of compliant materials.
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Appendix
The steps to solve Eqs. (4), (7), and (11) by the harmonic balance

method are presented here. The non-dimensional time τ=ω0t is
introduced. The derivative with respect to τ is (d/dτ)= ()′. The stiff-
ness terms are defined by k0 = c2ρ0S

2
0/V0, k1 = c2ρ0S

2
1/V1, and

k2 = c2ρ0S
2
2/V2. Then, Eqs. (4), (7), and (11) are simplified as

x′′0 + η0x
′
0 + x0 − δ1x1 = F0 cosωτ (A1a)

μ1x
′′
1 + μ1f1η1x

′
1 + μ1f

2
1 x1 + δ21x1 − μ1f

2
1 δ2xe − δ1x0 = 0 (A1b)

μ2x
′′
e + μ2f2η2x

′
e + μ2f

2
2 α + 1 − p +

μ1f
2
1

μ2f
2
2

δ22

( )
xe

− μ1f
2
1 δ2x1 + μ2f

2
2 βx

3
e = 0 (A1c)

where non-dimensional parameters are defined as ω= (Ω/ω0), μ1=
(m1/m0), μ2= (me/m0), f1= (ω1/ω0), f2= (ωe/ω0), δ1= (S1/S0),
δ2 = (S2/S1), α = (k2/ke), β = (ken/ke), F0 = P0S0/(m0ω2

0) and the
fundamental natural frequencies are defined as ω0 =

�������������
c2S0/(V0t*0)

√
=�������

k0/m0
√

, ω1 =
�������������
c2S1/(V1t*1)

√
=

�������
k1/m1

√
, ωe =

�������
ke/me

√
.

Then, the harmonic balance method is applied to solve for x0, x1,
and xe. The solutions are assumed as

x0(τ) = m0(τ) sin ωτ + n0(τ) cos ωτ (A2a)

x1(τ) = m1(τ) sin ωτ + n1(τ) cos ωτ (A2b)

xe(τ) = g2(τ) + m2(τ) sin ωτ + n2(τ) cos ωτ (A2c)

Then, Eqs. (A2a)–(A2c) are substituted into Eqs. (A1a)–(A1c).
The coefficients in Eqs. (A2a)–(A2c) are considered to vary
slowly such that the second derivatives are neglected. Higher-
order harmonic terms are also neglected since only the fundamental
harmonics are considered to contribute under single and low-
frequency excitation. The coefficients of sine, cosine, and constant
terms are then collected together to yield seven unique equations.
Considering steady-state solutions, coefficients in Eq. (A2) are
solved as

m0 = θ(F0η0ω + δ1(1 − ω2)m1 + δ1η0ωn1) (A3a)

n0 = θ(F0(1 − ω2) − δ1η0ωm1 + δ1(1 − ω2)n1) (A3b)

m1 = ϕ1κ + ξκm2 + σκn2 (A4a)

n1 = ϕ2κ − σκm2 + ξκn2 (A4b)

where the coefficients are defined as

θ = 1/(1 − 2ω2 + η20ω
2 + ω4)

κ = 1/((δ21η0θω + μ1f1η1ω)
2

+ (μ1( f1 − ω)( f1 + ω) + δ21(1 + θ(−1 + ω2)))2)

ϕ1 = F0δ1θ(−δ21η0θ − μ1f1η1)ω(−1 + ω2)

+ F0δ1η0θω(μ1( f1 − ω)( f1 + ω) + δ21(1 + θ(−1 + ω2)))

ξ = μ1f
2
1 δ2(μ1( f1 − ω)( f1 + ω) + δ21(1 + θ(−1 + ω2)))

σ = μ1f
2
1 δ2(δ

2
1η0θ + μ1f1η1)ω

ϕ2 = F0δ1θ(μ1( f
2
1 − (1 + f 21 + f1η0η1)ω

2 + ω4)

− δ21(−1 + ω2 + θ(1 + (−2 + η20)ω
2 + ω4)))

Then, the equivalent equations

Λm2 − ψn2 = A (A5a)

ψm2 + Λn2 = B (A5b)

are acquired, and m2 and n2 are solved to be

m2 =
AΛ + Bψ

Λ2 + ψ2
(A6a)

n2 =
BΛ − Aψ

Λ2 + ψ2
(A6b)

with coefficients

Λ = μ1f
2
1 δ

2
2 − μ1f

2
1 δ2κξ + μ2f

2
2 (α + 1 − p) − μ2ω

2

+ 3μ2f
2
2 βg

2
2 +

3
4
μ2f

2
2 βr

2

ψ = μ1f
2
1 δ2σκ + μ2f2η2ω, A = μ1f

2
1 δ2κϕ1, B = μ1f

2
1 δ2κϕ2

For Eqs. (A5a) and (A5b), the square of each equation is taken
and summed to yield

(Λ2 + ψ2)r2 = A2 + B2 (A7)

where r2 = m2
2 + n22 is the amplitude square of the response of xe.

For steady-state solutions, one gets the equation

g2 μ1f
2
1 δ

2
2 + μ2f

2
2 (α + 1 − p) +

3
2
μ2f

2
2 βr

2 + μ2f
2
2 βg

2
2

( )
= 0 (A8)

The solutions to g22 are either g22 = 0 for the symmetric solu-
tion where the equilibrium is x*e = 0, or g22 = −μ1f 21 δ

2
2/(μ2f

2
2 β) −
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((α + 1 − p)/β) − (3/2)r2 for the asymmetric solution with equilib-

rium x*e =
��������������������������������������
−μ1f 21 δ

2
2/(μ2f

2
2 β) − ((α + 1 − p)/β)

√
. Then, from

Eq. (A7), third-order polynomials in terms of r2 are obtained. For
g22 = 0 and g22 = −μ1f 21 δ

2
2/(μ2f

2
2 β) − ((α + 1 − p)/β) − (3/2)r2,

respectively, the polynomials are

9
16

μ22f
4
2 β

2r6 +
3
2
μ2f

2
2 β

[
(μ1f

2
1 δ2(δ2 − κξ)

+ μ2( f
2
2 (α + 1 − p) − ω2))]r4

+ [ψ2 + (μ1f
2
1 δ2(δ2 − κξ) + μ2( f

2
2 (α + 1 − p) − ω2))

2
]r2

− (A2 + B2) = 0 (A9)

225
16

μ22f
4
2 β

2r6 +
15
2
μ2f

2
2 β(μ1f

2
1 δ2(2δ2 + κξ)

[

+ μ2(2f
2
2 (α + 1 − p) + ω2))]r4

+ [ψ2 + (μ1f
2
1 δ2(2δ2 + κξ) + μ2(2f

2
2 (α + 1 − p) + ω2))

2
]r2

− (A2 + B2) = 0 (A10)

Then, the roots for r2 are solved from (A9) and (A10), and the
corresponding solutions to x0, x1, and xe are acquired through the
relationships in Eqs. (A3), (A4), and (A6). The stability of each
root is determined using the Jacobian. Only positive real roots r
from (A9) and (A10) are meaningful. If the eigenvalues of the Jaco-
bian have negative/positive real components, then the correspond-
ing roots are stable/unstable. For the analytical results reported in
this research, stable solutions are presented unless specified.
After acquiring the solutions to Eqs. (A2a)–(A2c), the SPL of the

enclosure at each frequency is obtained

SPL0 = 20 log10 iωρ0c
���������
m2

0 + n20

√
/

��
2

√
/(20 × 10−6)

∣∣∣∣
∣∣∣∣ (A11)

The transfer function of the acoustic pressure inside the resonator
primary cavity to the acoustic pressure inside the enclosure cavity is
determined in terms of amplitude H and phase Φ

H =
S1
S2

���������
m2

1 + n21

√( )
/

S0
S*0

���������
m2

0 + n20

√( )∣∣∣∣
∣∣∣∣,

Φ = tan−1 (m0/n0) − tan−1 (m1/n1)

(A12)

where S*0 = 0.0645m2 is the cross-sectional area of the enclosure
cavity.
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