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a b s t r a c t 

Engineered materials that dissipate large shock and vibration through tailoring microscopic properties are 

of growing interest. To this end, reversible buckling of slender, elastomeric beams serving as microscopic 

constituents of engineered material systems is shown to be effective to tune the mechanical properties. 

Yet, the viscoelasticity and nonlinear deformations inherent in an engineered, elastomeric material sys- 

tem having critically constrained internal constituents challenge the understanding of the macroscopic 

dynamic properties borne out of such intersection of complex characteristics. This research undertakes 

analytical and experimental efforts considering a model specimen to illuminate how criticality, viscoelas- 

ticity, and nonlinearity interact to yield the macroscopic dynamic behavior of engineered, elastomeric 

material systems subjected to harmonic forcing. The analysis reveals that large strain of the internal beam 

constituents is a predominant mode of harmonic energy dissipation for more elastically dominated ma- 

terial characteristics. In contrast, a more equitable balance of viscous and elastic phenomena results in 

dissipation properties that involve history dependent reactions in tandem with the instantaneous strain 

on the constituents. Nonlinear deformations induced by critical constraints on the internal viscoelastic 

beams are discovered to strongly govern the relative amplitude of force transmission and significance 

of frequency tuning observed macroscopically. Experiments validate the findings and emphasize the non- 

intuitive character of elastomeric material system behaviors by virtue of the intersection of viscoelasticity, 

nonlinearity, and critical point constraints. 

© 2017 Elsevier Ltd. All rights reserved. 

1

 

h  

p  

o  

B  

a  

l  

i  

a  

i  

t  

c  

C  

T  

i  

f  

2  

t  

l  

e  

d

 

s  

c  

v  

c  

o  

r  

p  

a  

p  

h  

h

0

. Introduction 

Recent investigations on periodic cellular material systems

ave demonstrated the achievement of unprecedented macroscopic

roperties via sculpting or architecting internal geometries that are

nly observable at more microscopic length scales ( Bertoldi, 2017 ).

y leveraging elastomeric materials, instabilities ordinarily associ-

ted with structural failure, such as buckling, have been particu-

arly cultivated as means to tailor mechanical properties, includ-

ng stiffness, critical strain, and negative Poisson’s ratio ( Overvelde

nd Bertoldi, 2014; Shim et al., 2015; Babaee et al., 2013 ). The util-

ty of these properties in dynamic loading conditions have shown

hat the elastic buckling behavior gives rise to wave propagation

ontrol and elastic energy trapping and release ( Shan et al., 2015;

orrea et al., 2015; Restrepo et al., 2015; Rudykh and Boyce, 2014 ).

he latter phenomena have also been exploited at small scales us-

ng metallic and polymeric base materials in the material system
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abrication ( Meza et al., 2015; Frenzel et al., 2016; Torrents et al.,

012; Salari-Sharif et al., 2014 ). By harnessing the cellular geome-

ries alongside elastic buckling in these new ways, the potential for

ightweight and reusable shock absorbers and vibration isolators is

mpowered that contrast to prior conventions that rely on plastic

eformation to mitigate vibration and wave energies. 

The prevalence of elastomeric materials in the composition of

uch engineered material systems ( Wang and Bertoldi, 2012 ) is en-

ouraged by virtue of an inherent ability to dissipate shock and

ibration via viscous damping influences ( Rivin, 2003 ). The vis-

oelasticity of elastomers has been studied in great detail because

f the significant diversity of contexts where elastomeric mate-

ial systems are utilized ( Lakes, 2009 ). Viscoelastic materials dis-

lay viscous and elastic responses in consequence to applied stress

nd/or strain ( Lakes, 2009 ), which results in delays between the

hases of stress and strain when the materials are subjected to

igh-rate events. The influences of such delays on the dynamic re-

ponse of linear viscoelastic materials is recognized to govern the

nset of nonlinear deformations in elastomeric foams and mag-

etorheological elastomers ( White et al., 20 0 0 ; Singh et al., 20 03 ;

i et al., 2010 ). 

https://doi.org/10.1016/j.ijsolstr.2017.11.020
http://www.ScienceDirect.com
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Fig. 1. (a) Cross section of the elastomeric material system, where labels (A, B, C, D) present the conditions when uncompressed, near the critical point, post-buckled, and 

post-buckled to an extent that compaction occurs. (b) Geometric conventions used to describe the material system topology. (c) Unit cell schematic. (d) A reduced order 

model schematic obtained from the unit cell. (e) Force-strain measurements of the system, where the corresponding labels (A, B, C, D) from (a) are shown to correspond to 

the loading condition. (f) Force transmissibility experimental setup. 
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Yet, for the aforementioned elastomeric materials that are

mostly realized as a bulk, the deformation behavior through the

material often varies linearly through the thickness. This contrasts

with the deformation modes of engineered, elastomeric material

systems with internal cellular geometries that may induce rela-

tively large local translations, rotations, and shear motions hav-

ing local strains far exceeding macroscopic strains ( Bertoldi, 2017 ).

Especially when instabilities are utilized that may magnify the

local nonlinear deformations of internal microscale constituents

( Bishop et al., 2016 ; Harne and Urbanek, 2017 ), such elastomeric

material systems are a unique convergence of material and

structural phenomena associated with viscoelasticity, critical con-

straints near instabilities, and large nonlinear deformations of in-

ternal geometries ( Florijn et al., 2014 ). Although numerous ef-

forts have assessed the decoupled influences of nonlinear defor-

mations ( Kidambi et al., 2016 ), linear viscoelasticity ( Lakes, 2009 ),

and constraints near instabilities observed in structural and ma-

terial systems ( Virgin and Wiebe, 2013 ; Cui and Harne, 2017 ),

an analysis that elucidates their intersection has yet to be devel-

oped. Due to recent efforts that have revealed experimental and

computational evidence of unique behaviors and dynamic proper-

ties cultivated under such conditions ( Santer, 2010 ), including de-

layed snap-through in elastomeric shells when under sudden loads

( Brinkmeyer et al., 2012 ), a clear need exists to establish a vali-

dated analytical framework to illuminate the dynamic properties

of engineered, elastomeric material systems. 

To begin meeting this broad need, this research undertakes

complementary theoretical and experimental efforts that scrutinize

the collective and coupled roles of nonlinearity, viscoelasticity, and

criticality in elastomeric material systems subjected to harmonic

loads. This report first describes the composition and fabrication of

the elastomeric material system considered for closer study. Fol-

lowing a quantification of the mechanical properties, preliminary
 t  
xperimental results are given to exemplify the intricate coupling

f the characteristics that warrant analytical assessment. Then, a

ew analytical model is formulated to characterize the material

ystem constituent dynamic response induced by harmonic loads.

hen, investigations are undertaken contrasting analytical and ex-

erimental findings in order to confidently conclude the respec-

ive influences of criticality, viscoelasticity, and nonlinearity on the

aterial system behaviors. Concluding remarks are provided in the

ast section. 

. Elastomeric material system specimen composition and 

echanical properties 

The engineered, elastomeric material system considered in this

eport is shown in Fig. 1 (a) part (A). The geometric conventions are

enoted in Fig. 1 (b). The material system cross-section geometry

s reminiscent of the portal frame observed in structural sciences

 Bažant and Cedolin, 2010 ), whereby stiff horizontally oriented

embers guide the motion of vertically oriented members. The in-

ernal geometry of the material system is composed of slender ver-

ical beams with thickness t b = 1.08 mm and height h b = 2.93 mm

hat are connected through a central horizontal beam that guides

ateral motion of the material system when under compressive

oad. The center horizontal beam thickness is t m 

= 2.11 mm, which

s sufficiently thick so that it displaces unilaterally under static

nd dynamic loads. Top and bottom horizontal elastomer beams

re used for sake of realizing a more monolithic material sys-

em. The top and bottom horizontal beam thicknesses are both

pproximately t p = 2.05 mm. The material system depth, macro-

copic thickness, width, and mass are, respectively, d s = 26.87 mm,

 s = 12.14 mm, w s = 44.85 mm, and 11 g. These geometric features

re selected to induce global post-buckling response of the ma-

erial system when under static and dynamic loads. This is in
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ontrast to more localized post-buckling behaviors that would be

bserved should the vertical beam thicknesses be closer in propor-

ion to the thicknesses of the several horizontal beams ( Bažant and

edolin, 2010 ). 

Several steps are involved in the specimen fabrication. First, a

D printer (FlashForge Creator Pro) is used to print a negative of

he material system that serves as a mold. Then, silicone rubber

Smooth-on, Inc., Mold Star 15S) is poured into the mold and cured

t room temperature. After a curing time of at least 8 hours, the

pecimen is removed from the mold and is ready to be carried

nto experiments after cleaning. Bulk silicone rubber fabricated by

his process yields the mechanical properties of Young’s modulus

18 kPa in compression, density 1145 kg/m, Poisson’s ratio 0.499,

nd mild viscoelastic loss (see Appendix ). 

To examine the mechanical properties of the material system

pecimen, load frame experiments are carried out (Mark-10 ES20

rame, PCB 1102-05A load cell, Micro-Epsilon ILD 170 0-20 0 laser

isplacement sensor). The specimen is positioned between a base

late and a top plate, where the latter is connected to the load cell.

t least 4 loading cycles are undertaken to exercise the system and

inimize the Mullin’s effect for viscoelastic materials before col-

ecting data ( Bergström and Boyce, 1998 ). The engineering strain

ate for the load frame experiments is 2.7 × 10 −3 1/s which is suf-

ciently slow to avoid notable time-history dependence of the base

iscoelastic material ( Slesarenko and Rudykh, 2016 ). 

This model specimen is prime to investigate with the aim of

ncovering the roles of the material system characteristics. To jus-

ify this argument, the unit cell of the specimen is shown in

ig. 1 (c). Once given a static engineering pre-strain ε0 , harmonic

oads cause motion of the unit cell central mass in the hori-

ontal/lateral direction. According to the pre-strain, the dynamic

esponse of the central mass in the lateral direction is drasti-

ally tailored according to the same harmonic excitation amplitude.

amely, the pre-strains may induce one of several distinct defor-

ation modes of the material system as seen in Fig. 1 (a). Label

A) shows the unconstrained specimen in the geometry associated

ith quasi-linear elastic compression. This regime is shown in the

easurements of applied uniaxial force and engineering strain in

ig. 1 (e). For engineering strains on the order of 0 to 9%, the quasi-

inear elastic deformation mode occurs as labeled by the region 1

n Fig. 1 (e). 

The transition from this deformation state to the subsequent

egime labeled region 2 is associated with the elastic buckling bi-

urcation, labeled (B) in Fig. 1 (a) and (e). Around strains of 9%, the

ateral motion of the central horizontal mass becomes more evi-

ent for further increase in strain, while the local linear stiffness

f the specimen becomes negative. The lateral motion continues to

row through region 2 in Fig. 2 (e) while the applied strain ranges

rom around 9 to 29%, thus causing greater lateral motion of the

entral horizontal mass, seen by part (C) of Fig. 1 (a). The local lin-

ar stiffness of the system when strain is 5% in region 1 is about

0 kN/m, which contrasts to the mean stiffness in region 2 that is

lmost 0 kN/m. With further increasing strain as marked by region

 in Fig. 1 (e), compaction of the elastomeric material system oc-

urs due to self-contact. The resulting force increases more under

he same increase in strain than that in region 1, which indicates

hat the macroscopic stiffness is greater in region 3 than 1. Specif-

cally, when the strain is 32% in area 3, the stiffness of the system

s 40 kN/m, which is twice the stiffness measured for 5% in area

. Due to the large shearing of the vertical beams that is induced

n regions 2 and 3, it is logical to anticipate that nonlinearity as-

ociated with the large vertical beam deformations ( Hodges, 1984 )

lays a considerable role when the pre-strain ε0 upon the speci-

en is around 9% or greater. 

According to the deformation modes observed in the load frame

xperiments, the deformation of the unit cell schematically shown
n Fig. 1 (c) is representative of the full range of global material sys-

em behavior, considering only translation of the central lumped

ass. Due to the symmetry of the unit cell, a reduced order con-

tituent schematic may be realized by that shown in Fig. 1 (d). The

iscoelastic spring is tunable according to a constraint parame-

er, with similar effect as the pre-strain ε0 upon the unit cell in

ig. 1 (c). Clearly, the significant variation of linear stiffness ob-

erved by the local slopes of curves in the force-strain profile in

ig. 1 (e) suggest that the dynamic properties of the material sys-

em may corresponding vary across a wide range of behaviors de-

ending on the pre-strain and amplitude of harmonic excitation.

he understanding of how such aspects couple to the inherent vis-

oelasticity of the elastomeric beams in the material system re-

uires careful analysis of the forced dynamic response. 

. Preliminary results of force transmission through the 

aterial system 

For the purpose of characterizing the fundamental dynamic

roperties of the elastomeric material system under different pre-

train conditions, shaker experiments are conducted. As shown in

ig. 1 (f), the experimental setup includes an electrodynamic shaker

LDS V408) that provides harmonic excitations to the specimen, an

ccelerometer (PCB 333B40) for control feedback to the vibration

ontroller (Vibration Research VR9500), and force transducers on

nput (PCB 208C02) and output (PCB 208C01) sides of the speci-

en to quantify the harmonic force transmitted through the ma-

erial system. The specimen is constrained between two aluminum

lates connected to the input and output force transducers. Pre-

trains are applied to the specimen by adjusting the fore/aft po-

ition of the shaker. A sinusoidal frequency sweep is carried out

t a rate of 12 Hz/min, while data is collected at a sampling fre-

uency 8192 Hz. The dimensionless force transmissibility transfer

unctions of output to input force are calculated from the fre-

uency responses of the measurements. 

The preliminary force transmissibility measurements are shown

n Fig. 2 . In each case, results are shown in a frequency band that

ully encompasses the lowest order resonance identified. This res-

nant behavior is associated with greater, unilateral motion of the

orizontal mass in the left/right directions according to the unit

ell schematic of Fig. 1 (c). Fig. 2 (a) presents the results obtained

ith the material system in a pre-buckled condition using pre-

train ε0 = 4.2%. Results are obtained using different dynamic strain

mplitude excitation amplitudes εd . When the dynamic strain am-

litude increases, the force transmissibility peak shifts to 2% higher

requency with a 1% higher magnitude. In Fig. 2 (b), the measure-

ents are obtained for when the material system is near the crit-

cal point of buckling ε0 = 9.5%. When the amplitude of the dy-

amic strain increases around this critical regime, the force trans-

issibility amplitude decreases by 4% while the resonant fre-

uency is unchanged at around 83 Hz. For a post-buckled condition

f the system with ε0 = 31.8%, the results are shown in Fig. 2 (c).

rom dynamic strain amplitude increases of 0.35%–0.74%, there is a

6% decrease in force transmissibility peak amplitude. With further

ncrease in dynamic strain amplitude to 0.99% as presented by the

lue dotted curve in Fig. 2 (c), the force transmissibility amplitude

s 449% percent of the amplitude that corresponds to 0.090 mm ex-

itation amplitude. The significant increase in force transmissibility

rom the green dashed curve to the blue dotted curve is due to an

nset of compaction in a dynamic manner. 

Fig. 2 (d) consolidates the force transmissibility measurements

f the pre-buckled, near critical, and post-buckled conditions of

he material systems when acted upon by the lowest amplitude

ynamic strains considered, which are the red solid curves in

ig. 2 (a)–(c). As shown in Fig. 2 (d), the resonance amplitude de-

reases by 42% from pre-buckled to near-critical states induced by
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Fig. 2. Force transmissibility experimental results that vary the extent of pre-strain around the critical point of buckling. (a) Pre-buckled ( ε0 = 4.2%), (b) near critical 

( ε0 = 9.5%), and (c) post-buckled ( ε0 = 31.8%). The corresponding dynamic strain amplitude εd for each experiment is specified in the legends. (d) Consolidated results to 

compare force transmissibility of pre-buckled (solid curve), near critical point (dashed curve), and post-buckled (dotted curve) conditions with low dynamic strain ampli- 

tude. These are the red solid curves from (a,b,c).(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the pre-strain, while the resonance frequency shifts downward by

38%. Then with change of the pre-strain from near to criticality to

the post-buckled condition, the peak output force amplitudes are

almost unchanged. As a result, as the elastomeric material system

is pre-strained in the regimes denoted as 1, 2, and 3 in Fig. 1 (e),

the resonance frequency first shifts to lower frequency and then

shifts to higher frequency. Notably, the resonance frequency of the

post-buckled dynamic response is nearly twice of the resonance

frequency observed for the near critical point case, and also 15%

higher than the pre-buckled dynamic response. 

Surveying the works reported in Section 1 , it is concluded that

none of these intricate influences of the pre-strain or input force

excitation amplitude upon the transmitted force response is alone

explained by the large nonlinear deformations, manifestation of

linear viscoelasticity, or nearness to criticality realized in the mate-

rial system. Indeed, clearly an intersection of these material system

characteristics must be the origin for such unusual tailoring of the

force transmitted through the specimen when subjected to differ-

ent operating conditions. Consequently, it is needed to devise an

insightful analytical modeling approach able to probe these influ-

ences of viscoelasticity, criticality, and nonlinearity on the overall

material system dynamic behavior. 

4. Analytical modeling of the elastomeric material system 

As found in Section 2 , the reduced order schematic of the ma-

terial system unit cell may be qualitatively realized by a lumped

mass acted upon by a harmonic force and restored to an equilib-

rium via a constrained, viscoelastic spring. The mass motion is uni-

axial, like the unilateral translation of the central horizontal beam

of the material system specimen observed in Fig. 1 (a). The goals

of the analytical framework devised here are to first quantify the

similarities of dynamic response between the reduced order con-

stituent schematic and the whole material system as measured in

the laboratory. Then, once validation is achieved, the analysis will
ecome a vehicle for more in-depth study than that made feasible

hrough exhaustive experimentation. 

To compose the unit cell model, the appropriate terms that

ake up restoring forces returning the lumped mass to equilib-

ium are first identified. The pre-strain on the unit cell, Fig. 1 (c),

nd resulting large local strains of the vertical beams that support

he central horizontal mass encourage the adoption of constraint

nd nonlinearity parameters in the current analytical formulation

hat are established for nonlinear structural mechanics of beams

oaded in their long axis ( Virgin, 2007 ). To accommodate the lin-

ar viscoelastic material behaviors of the spring in the reduced

rder unit cell model, the model here builds from prior methods

 Franceschini and Flori, 2001 ; Fosdick et al., 1998 ; Awrejcewicz and

zyubak, 2006 ) to expand the space of states required to char-

cterize the dynamic behavior. Thus, a new state associated with

he memory of the viscoelastic material response is defined. The

estoring force contribution of the history dependent viscoelastic

aterial is introduced based on the standard linear solid model

eveloped by Fosdick et al. (1998 ). 

Once these model components are included and non-

imensionalized, the harmonically forced response of the reduced

rder unit cell schematic is governed by the equations 

¨
 + η ˙ x + (1 − p) x + βx 3 − �ζ = F cos ωτ (1a)

˙ = − 1 

γω 0 

ζ − 2 ̇

 x (1b)

n (1), the non-dimensional displacement of the lumped mass

s x = X / l c , where X is the physical displacement of the general-

zed coordinate and l c is a characteristic length, often selected to

e an original beam thickness or length in practice ( Bažant and

edolin, 2010 ). The auxiliary state ζ is associated with the mem-

ry of recent strain that governs the instantaneous dynamic behav-

or via a certain contribution to the total restoring force in ( 1a ). It
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as been shown that the fundamental elements of (1a,b) are math-

matically analogous to the state space of the standard linear solid

odel of a viscoelastic material ( Fosdick et al., 1998 ). The term

 − p denotes the nearness to criticality, such that the load parame-

er p is the ratio of the applied axial load (tailored by the pre-strain

0 in practice) and the Euler buckling load for the vertical beams

 Virgin, 2007 ). Because the linear stiffness vanishes at criticality,

n accommodation to large, nonlinear deformations of the vertical

eams is made via the coefficient β that defines the contribution

f nonlinear beam bending curvature with respect to that obtained

y a linear analysis ( Hodges, 1984 ). The ratio of relaxation modu-

us to linear elastic spring stiffness is �. A viscous dashpot damp-

ng loss factor η is included due to observations that introduction

f small, purely viscous damping greatly improves the agreement

etween experimental and analytical results for the material spec-

men studied here. The viscoelastic material relaxation time is γ
hile a non-dimensional time is introduction via τ = ω 0 t in rela-

ion to the linear natural period of the unit cell oscillation 2 π / ω 0 .

he non-dimensional frequency of the harmonic force excitation is

 = �/ ω 0 , where � is the absolute excitation frequency and ω 0 is

he linear elastic natural frequency of oscillation. Finally, the am-

litude of the non-dimensional input force is F , while the overdot

perator indicates d / d τ . 

The harmonic balance method ( Harne and Wang, 2017 ) is uti-

ized to approximately solve for the forced response of the material

ystem unit cell. Assuming that the responses x and ζ occur at the

ame non-dimensional frequency as the harmonic force excitation,

olutions to (1) are made via low order Fourier series expansions

 ( τ ) = c ( τ ) + a ( τ ) sin ωτ + b ( τ ) cos ωτ (2a)

( τ ) = m ( τ ) sin ω τ + n ( τ ) cos ω τ (2b)

here the coefficients c, a, b, m , and n are time-dependent. Then,

2) is substituted in to (1). The coefficients are considered to vary

lowly in non-dimensional time such that dynamic contributions

rom second order derivatives are negligible. In addition, the higher

rder harmonics generated by the substitution are neglected since

nly the fundamental harmonic is assumed to contribute to the re-

ponse under the single frequency of forced excitation. After sub-

titution of (2) into (1), the coefficients of constant, sine, and co-

ine terms are collected together so as to yield a set of equations

ssociated with the term types. Then, one obtains five unique al-

ebraic equations with slow-varying coefficients 

ηc ′ = 

(
1 − p + 

3 

2 

βr 2 + βc 2 
)

c (3a) 

ηa ′ + 2 ω b ′ = �a − ηω b − �m (3b)

 − 2 ωa ′ − ηb ′ = ηωa + �b − �n (3c)

2 a ′ − m 

′ = −2 ωb + σm − ωn (3d)

2 b ′ − n 

′ = 2 ωa + ωm + σn (3e)

here 

 

2 = a 2 + b 2 (4) 

= 

1 

γω 0 

(5) 

� = 1 − p − ω 

2 + 

3 

4 

βr 2 + 3 βc 2 (6)

ere r is the non-dimensional displacement amplitude of the ma-

erial system constituent, and σ is the time constant ratio which
s a ratio of natural oscillation period to the relaxation time of the

nderlying viscoelastic material. The (3) is also expressed 

 q ′ = G ( q ) (7) 

here q = [ c, a, b, m, n ] T is the vector of coefficients. The steady-

tate response is determined by solving (3) under the assumption

f stationarity of coefficients. To this end, two third order poly-

omials are obtained in terms of the squared displacement am-

litude r 2 . One polynomial corresponds to the case c 2 = 0 which

mplies symmetric deformations of the unit cell around the equi-

ibrium x ∗ = 0, 

9 

16 

β2 r 6 + 

(
3 

2 

β( 1 − p + ( κ� − ω ) ω ) 

)
r 4 

+ 

(
( ηω + κσ�) 

2 + ( 1 − p + ( κ� − ω ) ω ) 
2 
)
r 2 − F 2 = 0 (8) 

he other polynomial corresponds to c 2 � = 0, in which case the de-

ormations occur around the equilibrium x ∗ = 

√ 

( p − 1 ) /β , 

225 

16 

β2 r 6 + 

(
15 

2 

β( 2 ( 1 − p ) + ( −κ� + ω ) ω ) 

)
r 4 

+ 

(
( ηω + κσ�) 

2 + ( 2 ( 1 − p ) + ( −κ� + ω ) ω ) 
2 
)
r 2 − F 2 = 0 

(9) 

nly positive real roots r determined from solving (8) and (9) are

eaningful, while the dynamic stability of the periodic oscillation

s assessed according to the eigenvalues of the Jacobian 

 = 

d 
(
P 

−1 G 

)
dq 

∣∣∣∣∣
q = q ∗

(10) 

ere, q ∗ is a set of coefficients that solves (3) under stationary con-

itions. Eigenvalues of (10) that have negative real components in-

icate that the roots are stable, whereas eigenvalues having posi-

ive real components correspond to unstable solutions ( Harne and

ang, 2017 ). Unstable solutions to (3) are mathematically mean-

ngful but are not physically realizable dynamic responses observed

n experiments. 

The non-dimensional transfer function of response amplitude to

xcitation force amplitude, termed receptance, is computed by 

 x = 

r 

F 
(11) 

o compute the transfer function of output to input force ampli-

udes, termed force transmissibility, the output force expression is

etermined from (1a) as 

 r = η ˙ x + ( 1 − p ) x + βx 3 − �ζ (12) 

ubstituting the assumed solution (2) into (12) , the steady-state

mplitude of the output force is found to be 

 r = 

[(
( 1 − p ) a − ηω b + 

3 

4 

βa 3 + 

3 

4 

βa b 2 + 3 βa c 2 − �m 

)2 

+ 

(
ηω a + ( 1 − p ) b + 

3 

4 

βa 2 b + 

3 

4 

βb 3 + 3 βb c 2 − �n 

)2 
]1 / 2 

(13) 

he non-dimensional force transmissibility is subsequently com-

uted from 

 F = 

F r 

F 
(14) 

. Preliminary assessment of analytical and experimental 

esults 

The efficacy of the analytical approach to predict the material

ystem constituent dynamic response is examined with respect to
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Fig. 3. Analytical force transmissibility results for (a) pre-buckled condition p = 0.2, (b) critical point constraint p = 1.0, and (c) post-buckled condition p = 1.8. Results for 

a low excitation amplitude F = 0.01 are indicated by red solid curves, and for a high excitation amplitude F = 0.5 are indicated by blue dashed curves. (d) Consolidated 

low excitation amplitude ( F = 0.01) results. Solid curve represents pre-buckled condition, dashed curve represents critical point condition, and dash-dotted curve represents 

post-buckled condition. Additional parameters used in analysis are ( ω 0 , η, β , �, σ ) = (1, 0.05, 0.1, 1, 0.5).(For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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the preliminary experimental findings reported in Fig. 2 . The qual-

itative agreement between the theoretical predictions and labora-

tory measurements is first sought for sake of projecting the utility

of the analysis to investigate the complex interactions among the

material viscoelasticity, the large nonlinear vertical beam deforma-

tions when subjected to constraints, and the relative nearness to

criticality via the constraint. 

Fig. 3 presents the analytical results of force transmissibility for

different selections of the load parameter that denote nearness to

criticality. Parameters used to obtain the analytical results are pro-

vided in the figure caption. In Fig. 3 (a) the p = 0.2 the material

system is pre-buckled. For an increase in the non-dimensional am-

plitude of force excitation from 0.01 (red solid curve) to 0.5 (blue

dashed curve), the trend that force transmissibility peak amplitude

and frequency increase by about 3% agrees well with the experi-

mental results shown in Fig. 2 (a). In Fig. 3 (b), the load parameter is

p = 1 to denote a critical point constraint. The increase in excitation

amplitude increases the force transmissibility amplitude by about

2.5%, which compares to the experimental trend of a 4% decrease.

Although the shifts of the peak force transmission differ between

the measurements and predictions, the overall relative variation is

small, and within the range of experimental and fabrication error,

such as the practical difficulty in configuring the specimen with a

precise critical point constraint via shaker position adjustment. For

the post-buckled results shown in Fig. 3 (c) via computations with

load parameter p = 1.8, the response amplitude is clearly decreased

by 15% and the resonance frequency is shifted to lower frequency

for the increase amplitude of the input force. This agrees with the

trend of experimental results (from red solid to green dashed, be-

fore compaction occurs) indicated in Fig. 2 (c). As observed both an-

alytically and experimentally, the amplitude of the input force has

greater influence on the force transmissibility for the post-buckled

condition of the material system than for pre-buckled or critically
constrained states. b  
In Fig. 3 (d), the predictions of force transmissibility are consol-

dated for the cases shown in (a,b,c) using the lower amplitude

f input force. As the labels indicate in Fig. 3 (d), from the pre-

uckled condition (solid) to the critically constrained state of the

aterial system (dashed), the force transmissibility peak amplitude

ecreases by 38%, from 4.2 to 2.6, and the non-dimensional peak

requency of resonant response shifts downwards by 18%. These

rends are in good qualitative agreement with measurements re-

orted in Fig. 2 (d). With the increase in compressive constraint to

ransition from the critical condition to a post-buckled configura-

ion of the material system, the peak amplitude of force transmis-

ion increases by 2.3 times of the amplitude at the critical con-

ition. The resonance frequency also increases by 38%. Compared

ith the pre-buckled condition of the material system, the post-

uckled force transmissibility peak has 40% greater amplitude and

3% higher frequency. The experimental results shown in Fig. 2 (d)

gree with these analytical predictions according to the observed

uning of force transmissibility peak frequency by the constraint

xtent. Also in good agreement between analysis and experiment

s the finding that the material system constrained nearest to the

ritical point exhibits the lowest resonant frequency. Yet although

he analytical and experimental material system behavior is com-

arable for the pre-buckled condition and critical point, the con-

rast differs for the post-buckled condition. Specifically, in the ex-

eriments Fig. 2 (d) the post-buckled amplitude of peak force trans-

issibility is not greater than the pre-buckled condition, which is

redicted by the analytical model Fig. 3 (d). Indeed, the origin of

uch discrepancy is uncovered in the undertaking of the follow-

ng studies that explore the relative roles that viscoelasticity, non-

inearity, and criticality play in determining the dynamic response

f the material system when subjected to harmonic input force. It

s important to note that the experimental and analytical results

re not directly comparable between Figs. 2 and 3 , respectively,

ecause the model employs a time scale that is normalized to a
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Fig. 4. Force transmissibility for (a) pre-buckled condition p = 0.2, (b) critical point p = 1.0, and (c) post-buckled condition p = 1.8. Parameters used for computation are ( ω 0 , 

η, β , �, F ) = (1, 0.05, 0.1, 1, 0.01). 
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Section 3 are uncovered. 
inear elastic natural frequency, which cannot be explicitly identi-

ed and decoupled from the frequency of free oscillation of the

aterial system. On the other hand, an overall good qualitative

greement between analytical and experimental trends is observed

n Figs. 2 and 3 . As a result, a pathway is established to leverage

he analysis to investigate the intricate and coupled roles of such

aterial system characteristics on the dynamic behavior. 

. Studies on the intersections of criticality, viscoelasticity, and 

onlinearity 

In this section, the analytical approach to solve the non-

imensional equations (3) that govern the dynamic behavior of

he material system unit cell is leveraged to explore the inte-

rated influences of criticality, viscoelasticity, and nonlinearity. Al-

hough the fabrication capabilities used in this research are lim-

ted to modulate the relative significance of viscous compared to

lastic behaviors of the material system by using material sys-

em geometric variation, emerging additive manufacturing tech-

iques are demonstrating means to fabricate viscoelastic materi-

ls with large freedom over the material properties independent

f geometric features ( Hardin et al., 2015 ; Kokkinis et al., 2015 ).

oreover, the specific internal architecture of the material sys-

ems play significant roles in the resulting mechanical properties

y virtue of the inherent integration of structural engineering prin-

iples with materials science in these emerging engineered me-

ia ( Bertoldi, 2017 ; Shan et al., 2015 ). Consequently, the stud-

es of this section uncover how the viscoelasticity, nonlinear de-

ormations, and realizations of critical point constraints result in

road tuning of the force transmission through and dynamic re-

ponse of the engineered, elastomeric material system shown in

ig. 1 (a). 

.1. Assessments of weakly nonlinear dynamic behaviors of the 

armonically forced viscoelastic and constrained material system unit 

ell 

Previous effort s have shown quantit atively that cert ain material

ystem internal architectures cultivate unusual macroscopic prop-

rties, such as extreme damping when global constraints give rise

o critical point conditions for internal elements ( Bishop et al.,

016 ; Lakes et al., 2001 ). In the model (3), the load parameter

 governs the relative nearness of the unit cell to the critical

oint of buckling, with p < 1 being pre-buckled/critical, while con-

traints such that p > 1 imply post-buckled/critical states. To as-

ess the influence of the load parameter alongside broad variation

f the time constant ratio σ which expresses the ratio of elastic

o viscous time constants, Fig. 4 presents analytical predictions of

orce transmissibility for (a) pre-buckled p = 0.2, (b) critical p = 1.0,

nd (c) post-buckled p = 1.8 conditions of the material system
nit cell. The surface amplitude and color correspond to the force

ransmissibility as functions of the ratio σ and non-dimensional

requency of the harmonic input force ω. For the analytical re-

ults of Fig. 4 , the relative significance of nonlinear deformations

s low by selection of the parameter β = 0.1. Other parameters

sed to generate the analytical results are provided in the figure

aption. 

As shown in Fig. 4 (a) for the pre-buckled condition p = 0.2,

mall or large values of the time constant ratio σ lead to relatively

reater force transmissibility than for ratios σ spanning these ex-

remes. Similar trends are observed for the post-buckled condi-

ion p = 1.8 shown in Fig. 4 (c). Consequently, for these constrained

onditions of the material system unit cell, an intermediate value

f the time constant ratio may be identified that suppresses the

orce transmitted through the system, where these ratios are of-

en around σ = 2 (in other words, the natural period of oscillation

s twice the relaxation time). Comparatively, the critical point con-

traint p = 1 results shown in Fig. 4 (b) reveal that a large overall

eduction of the peak force transmission is achieved across the

requency bandwidth and range of time constant ratios. Specifi-

ally, the peak force transmissibility for p = 1 is reduced by 37% for

= 0.5, and 60% for σ = 5.0 when compared to results for p = 0.2,

nd a corresponding reduction of 55% and 72% when compared to

he results for p = 1.8. From these results, it may be concluded that

t the critical point of buckling of the material system unit cell,

orce transmissibility is minimized when compared to the pre- and

ost-buckled conditions for viscoelastic materials. This conclusion

s valid across a large range of time constant ratios σ . Moreover,

hese influences of criticality are greater when the material re-

ponds in a more elastic way, such that the time constant ratio

s σ > 1. Namely, Fig. 4 (b) shows more substantially reduced force

ransmission for σ > 1 than for σ < 1, which indicates that when

he material properties are more strongly governed by elastic phe-

omena ( σ > 1), the critical point constraint p = 1.0 gives rise to

reater macroscopic damping mechanisms. 

These influences are assessed in greater detail through Fig. 5

hat presents analytical predictions of force transmissibility for

hree different time constant ratio σ values. For the case of time

onstant ratio σ = 0.2 shown in Fig. 5 (a), as the load parameter p

ncreases from 0 to 1, the frequency of peak force transmissibil-

ty lowers in value while the peak force transmissibility amplitude

imultaneously decreases. As the load parameter p increases fur-

her from 1 to 2, the resonance frequency shifts to higher values

t a faster rate for change in p than in the pre-buckled case. In ad-

ition, the peak amplitude of force transmissibility also increases

o an extent that is greater than the pre-buckled condition. Simi-

ar trends are observed for time constant ratios σ = 1 in Fig. 5 (b)

nd for σ = 5 in Fig. 5 (c). Likewise, similar influences of the pre-

train ε0 upon the force transmissibility measurements reported in
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Fig. 5. Force transmissibility for ratios of natural period to relaxation time (a) σ = 0.2, (b) σ = 1, and (c) σ = 5. Parameters used for computation are ( ω 0 , η, β , �, F ) = (1, 

0.05, 0.1, 1, 0.01). 

Fig. 6. Receptance contours for ratios of natural period to relaxation time (a) σ = 0.2, (b) σ = 1, and (c) σ = 5. Parameters used for computation are ( ω 0 , η, β , �, F ) = (1, 

0.05, 0.1, 1, 0.01). 
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a  
From the results of Fig. 5 (a) and (b), the overall force transmis-

sibility amplitudes for the material system with time constant ratio

σ = 1 are uniformly smaller than that of σ = 0.2, although the fre-

quency band around which peak force transmission occurs is not

significantly different. This contrasts with the case of time con-

stant ratio σ = 5 presented in Fig. 5 (c) that reveals a more sub-

stantial reduction of frequency to small values near ω = 0 as the

load parameter tends to p = 1. For this greater proportion of elas-

tic phenomena contributing to the material system behavior with

σ = 5, near the critical point p = 1 the force transmissibility is al-

most zero over the whole frequency range. Consequently, the col-

lective results of Fig. 5 suggest that constraints near to the critical

point p = 1 uniformly reduce transmitted force through the elas-

tomeric material system, regardless of the relative proportion of

viscous to elastic phenomena to govern the material system prop-

erties (at least within the range 0.2 < σ < 5). This finding explicitly

supports observations made previously in examinations of critically

constrained engineered metamaterials in impact/drop experiments

( Bishop et al., 2016 ) and agree with related analytical predictions

using linearized models ( Antoniadis et al., 2015 ; Kochmann, 2014 ).

The explanation for the reduction of dynamic force transmit-

ted through the material system unit cell is elucidated by study-

ing the receptance contours in Fig. 6 that are generated using the

same parameters are those employed in Fig. 5 . As a ratio of the

internal displacement amplitude to the harmonic input force, the

receptance quantifies the internal deformation induced by the ex-

citation. The results of Fig. 6 reveal that the receptance is maxi-

mized near the critical point when σ ≥ 1, whereas the internal

displacement motion is greater for higher or lower values of the

load parameter when viscous phenomena predominate the mate-

rial properties, such that σ < 1. Interestingly, the peak of recep-

tance for the case of time constant ratio σ = 1 is the lowest among

the three cases shown. This indicates that the absolute amplitude
 u  
f the internal material system constituent oscillation is least when

he material composition equally balances viscous and elastic char-

cteristics. Coupled to the low transmission of force as observed in

ig. 5 (b), the use of such a “balanced” viscoelastic material induces

otable tailoring of the force transmission properties as well as

inimizes the internal strains acting upon the unit cell, which are

he vertical beams in bending and shearing, Fig. 1 (a) and (c). These

re practical insights that may motivate concepts for resilient vi-

ration isolators or shock attenuators. 

In Fig. 6 (c), it is found that the receptance amplitude is large for

ow frequency near the critical point. The least force transmission

s observed in this same parameter regime in Fig. 5 (c). This estab-

ishes the explanation that force transmission is minimized for the

ore elastic material system composition ( σ = 5) when the inter-

al constituents are most strained due to large deformation (large

eceptance). This establishes a theoretical supporting basis to prior

ypotheses that the primary energy dissipation mechanism in crit-

cally constrained engineered material systems composed of elas-

ic media is due to large internal strains of the constrained mem-

ers ( Antoniadis et al., 2015 ). Of course, for damped, elastic reso-

ant metamaterials, this is the primary mode of energy attenua-

ion ( Hussein and Frazier, 2013 ). Interestingly, this contradicts the

bserved trends for the material system unit cell results with more

iscous dominated behaviors, σ < 1, like that shown in Fig. 6 (a)

here the receptance is not maximized at a parametric point co-

ncident with minimum force transmission in Fig. 5 (a). 

.2. Influences of greater nonlinear deformations on the unit cell 

aterial behavior 

The analytical results presented in Figs. 3 –6 considered a rel-

tively small contribution of nonlinear bending and stretching via

se of parameter β = 0.1. On the other hand, the near-critical con-
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Fig. 7. Force transmissibility for (a) pre-buckled p = 0.2, (b) critical point p = 1.0, and (c) post-buckled p = 1.8 conditions. Comparison is made between a relatively low 

contribution from nonlinear deformations β = 0.1 (blue solid curves) and higher contribution β = 1 (magenta dotted curves). Parameters used for computation are ( ω 0 , η, σ , 

�, F ) = (1, 0.05, 0.5, 1, 0.5).(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. (a) Analytical results of force transmissibility using load parameters p at and variably below and beyond the critical point of p = 1. Parameters used for computation 

are ( ω 0 , η, σ , �, F ) = (1, 0.05, 0.5, 1, 0.5). (b) Experimental results of force transmissibility of below, near to, and beyond the critical point by variation of the pre-strain, 

which are indicated in the legends. 
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traints suggest that the large deformations of the internal vertical

iscoelastic beams of the material system, Fig. 1 (a), may be exac-

rbated when subjected to harmonic input force because the lin-

ar elastic restoring forces are eliminated for cases around p = 1

 Virgin, 2007 ). Thus, here the influence of the relative contribution

f nonlinear bending and stretching is examined for its influence

n the material system dynamic behavior in tandem with the roles

f viscoelasticity and criticality. 

Fig. 7 presents the analytical force transmissibility results of (a)

re-buckled p = 0.2, (b) critical point p = 1.0, and (c) post-buckled

f p = 1.8 conditions of the material system when the time con-

tant ratio σ = 0.5, indicating that the relaxation time is twice the

atural period of oscillation. In each subfigure, blue solid curves

epresent results obtained using β = 0.1, while magenta dotted

urves denote that β = 1. For conditions of p = 0.2 and p = 1.0, as

hown in Fig. 7 (a) and (b) respectively, the larger β leads to 23%

nd 26% increase in force transmissibility amplitude. For these

ases of load parameter p ≤ 1, the responses of the material system

onstituent are symmetric stable responses that oscillate around

ero equilibrium x ∗ = 0. For the post-buckled material system such

hat a pre-strain leads to p = 1.8, Fig. 7 (c), a more significant contri-

ution from nonlinear deformations by β = 1 results in decreased

orce transmissibility amplitude by 52% when compared to β = 0.1.

hen the unit cell is post-buckled, the stable responses are asym-

etric around the equilibrium x ∗ = 2.83 for β = 0.1, and x ∗ = 0.89

or β = 1, while the unstable (non-physical) predictions of force

ransmissibility are shown in Fig. 7 (c) for sake of completeness.

he nonlinearity has an effect on the force transmissibility am-

litude that cannot be neglected, and the influence regarding the

rend of increasing or decreasing the amplitude is different for p ≤
 and p > 1. From the analytical results presented in prior sections

f this report, the force transmissibility amplitudes at the critical
oints are the lowest compared with pre- and post-buckled condi-

ions. Yet here, it is noticed when comparing the results of force

ransmissibility of β = 1 for different buckling conditions (magenta

otted curves in Fig. 7 ), the peak amplitude for the post-buckled

ondition in Fig. 7 (c) with p = 1.8 is lower than that peak observed

hen the material system is loaded at the critical point, Fig. 7 (b). 

Indeed, this feature is in qualitative agreement with the ob-

ervation from the preliminary experimental results in Fig. 2 (d)

hat suggested a discrepancy with the preliminary analytical pre-

ictions in Fig. 3 (d). In other words, the significance of nonlinear

eformations on tailoring the force transmission measured experi-

entally may have been greater than that anticipated via the use

f β = 0.1 to generate Fig. 3 (d). To look into this feature in greater

etail, the nuanced roles of the load parameter p when β = 1 and

= 0.5 are given in Fig. 8 . 

Fig. 8 (a) shows that the frequency of peak force transmissibil-

ty and the peak amplitude both decrease when the pre-strain is

hanged such that is goes from critical p = 1 to just beyond crit-

cal so that p = 1.4. As the pre-strain on the material system unit

ell is made greater to shift from p = 1.4 to p = 2.0, the force trans-

issibility peak frequency and amplitude increase. Yet the peak

f force transmissibility when p = 2.0 is still smaller than that at

he critical point p = 1.0, and also much smaller than that at the

re-buckled point p = 0.2. For β = 0.1 as shown in Fig. 5 , the criti-

al point p = 1.0 coincides with the least force transmissibility peak

mplitude for all cases of the load parameter p and time constant

atio σ . On the other hand, the increase in the significance of non-

inear deformations by β = 1 modulates this trend such that the

orce transmissibility peak amplitude and frequency are the least

or load parameters p > 1. For p = 1.4 when β = 1 as presented in

ig. 8 (a), symmetric and asymmetric stable responses may be in-

uced, indicating that the unit cell may oscillate laterally back-and-
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forth between the stable configurations (symmetric) or may oscil-

late around either of the post-buckled equilibria (asymmetric, one

of which is shown in Fig. 1 (a) part (C)). 

To experimentally validate these analytical findings and close

the loop on the prior discrepancy between analysis and experi-

ment, additional experiments are conducted with the results pre-

sented in Fig. 8 (b). Here, the pre-strain is tailored from the pre-

buckled point ε0 = 4.2%, to the critical point ε0 = 9.5% (red solid

curve), to slightly post-buckled ε0 = 13.1% (blue dashed curve),

to still further post-buckled ε0 = 31.8% (magenta dash-dot curve).

These pre-strains may be identified in Fig. 1 (e) with respect to the

corresponding significance of deformation of the material system

specimen using the photographs and labels in Fig. 1 . As Fig. 8 (b)

indicates, from near the critical point to a slightly post-buckled

condition, both the peak frequency and amplitude of force trans-

missibility decrease. This agrees qualitatively with the respective

analytical predictions for p = 1 and p = 1.4 in Fig. 8 (a). From the

slightly post-buckled to a more post-buckled condition, the peak

frequency increases from around 65 Hz to 150 Hz, and the peak

amplitude increases by 18%, although it is similar to that peak of

force transmissibility measured for the near critically constrained

material system. These experimental findings also agree well with

the analytical predictions in Fig. 8 (a). Therefore, the significance of

nonlinear deformations of the vertical beams in the engineered,

elastomeric material system explains why the force transmissi-

bility amplitude of the post-buckled state is not greater than

that observed for the near critical or pre-buckled conditions in

Fig. 2 (d). 

7. Conclusions 

The accelerated interest to architect elastomeric materials that

possess cellular, internal geometries for tailoring vibration and

elastic wave propagation behaviors has introduced a need to elu-

cidate the intricate and coupled influences of viscoelasticity, non-

linear deformations, and critical point constraints on the dynam-

ics of the engineered material systems. This research establishes

an analytical approach to uncover the intertwined relationships

among such material system characteristics and validates the effi-

cacy of the predictions via agreement with experiments. By tun-

ing the unit cell of the material system to be near the critical

point of buckling, the force transmissibility peak frequency and

amplitude are minimized when the contribution of nonlinear de-

formations β is low. For the time constant ratios σ ≥ 1 that cor-

respond to more elastically dominated material behavior, this re-

duction of force transmissibility is associated with large internal

strain of the material system constituent, namely the vertical beam

bending and shearing observed experimentally. On the other hand,

the analytical predictions suggest that for material systems fab-
Fig. 9. Base material properties for compression of the silicone rubber used on the 

stress/strain. (b) tan δ measured from DMA. 
icated such that the viscous nature of the elastomeric materials

redominates, σ < 1, the history dependent nature of the viscoelas-

ic material is coupled with the large deformations of the material

ystem constituent such that the force transmissibility reduction

s not coincident with peak receptance and strain. Moreover, for

 material system with more significant contribution from non-

inear deformations in the pre-strained vertical beams, the peak

orce transmissibility frequency and amplitude may be minimized

hen the pre-strain is slightly beyond critical, in contrast to the

xact critical point itself. These trends are borne out in the exper-

ments and provide strong qualitative agreement with the analyt-

cal predictions. In summary, this research reveals the integrated

nfluence of criticality, viscoelasticity, and nonlinearity on the dy-

amic properties of an elastomeric material system, and exem-

lifies that such intertwined characteristics cannot be neglected

n the assessment of high-rate oscillations induced by forced

xcitations. 
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ppendix 

The mechanical and dynamic properties of the base silicone

ubber material (Smooth-on, Inc., Mold Star 15S) used for the ex-

erimental specimen are provided in Fig. 9 . The measurements are

onducted at room temperature in uniaxial compression. The sil-

cone rubber material sample from which the data are derived

s a cylinder of 8 mm diameter and 8 mm length. The density of

he material is measured to be around 1145 kg/m 

3 . Fig. 9 (a) shows

he compressive stress measured by a load frame (Tinius Olsen

10KS) with 100 N load cell as uniaxial compressive strain is ap-

lied to the sample. The compressive Young’s modulus is found

o be around 318 kPa. To measure dynamic properties, a dynamic

echanical analysis (DMA) is conducted with dynamic strain am-

litude of 50 μm (TA Instruments, Ares). The loss tangent, tan

, measured from the sample is presented in Fig. 9 (b). Resonant

ehavior is observed around 50 Hz. The tan δ increases in value

elow this resonant feature and greatly reduces above the reso-

ance. In general, the DMA results demonstrate that the base sil-

cone rubber material has mild viscoelastic loss, tan δ < 0.2 out-

ide of the narrow-band resonant frequency range. Such trends in

an δ are indicative of silicone rubbers modeled as standard lin-

ar solids ( Shipkowitz et al., 1988 ). This data supports the model

omposition used in this research, presented in Section 4 , that ac-

ounts for the viscoelasticity of the base material of the material

ystem. 
material system specimen studied in this research. (a) Mechanical properties in 
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