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Investigation of direct current power
delivery from nonlinear vibration
energy harvesters under combined
harmonic and stochastic excitations

Quanqi Dai and Ryan L Harne

Abstract
Leveraging smooth nonlinearities in vibration energy harvesters has been shown to improve the potential for kinetic
energy capture from the environment as a transduced, alternating flow of electrical current. While researchers have
closely examined the direct current power delivery performance of linear energy harvesters, there is a clear need to
quantify the direct current power provided by nonlinear harvester platforms, in particular those platforms having bis-
table nonlinearities that are shown to have advantages over other smooth nonlinearities. In addition, because real world
excitations are neither purely harmonic nor purely stochastic, the influences of an arbitrary combination of such excita-
tion mechanisms on power delivery must be uncovered. To bring needed light to these roles and opportunities for non-
linear energy harvesters to provide direct current electrical power for numerous applications, this research formulates a
new analytical approach to characterize simultaneous harmonic and stochastic mechanical and electrical responses of
nonlinear harvester platforms subjected to realistic base excitation. Based on the outcomes of analytical, numerical, and
experimental studies, it is found that additive stochastic excitation may result in direct current power enhancement via
perturbation from a low amplitude state particularly at low frequencies or reduce the direct current power by prevent-
ing persistent snap-through response often at higher frequencies. When the noise standard deviation is greater than the
harmonic amplitude by approximately two times, the advantages to direct current power generation are more often
realized.
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Introduction

Traditionally, the maintenance of engineered infra-
structures is undertaken according to a scheduled basis,
which is ineffective in the long-term due to accumu-
lated expense and the serious potential for unintended
failures (Randall, 2011). Condition-based structural
health monitoring has risen as a promising alternative
whereby the health of the infrastructures is assessed in
real-time through a network of sensor nodes (Randall,
2011). Such sensors individually demand from around
100 mW to about 100 mW of direct current (DC)
power supply, based on the function involved (Anon,
2015; Baert et al., 2006; Roundy et al., 2003). Because
many of the sensors are placed so as to monitor the
structural vibration levels as dynamic health indicators,
kinetic energy is available to the sensor nodes. Thus,
harvesting the kinetic energy using electromechanical
oscillators collocated with the sensors has emerged as a

way to realize self-sufficient structural health monitor-
ing systems (Erturk and Inman, 2011b; Priya and
Inman, 2009). In order to effectively harvest the kinetic
energy from the structural oscillation, the vibration
energy harvester must be sensitive to the ambient
energy forms, because conventional electromechanical
transduction mechanisms produce current flow in pro-
portion to displacement or velocity of the mechanical
response (Erturk and Inman, 2011b; Priya and Inman,
2009). Numerous researchers have found that the
smooth nonlinearities of monostable and bistable
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Duffing oscillators may lead to broader spectral sensi-
tivities to ambient vibrations than linear resonators,
which has motivated considerable research attention to
scrutinize the opportunities (Leadenham and Erturk,
2015; Mann and Sims, 2009; Masana and Daqaq,
2011a, 2011b; Tang et al., 2010).

The non-resonant nature of snap-through dynamics
of bistable energy harvesters is a particularly advanta-
geous feature for transduction, since the unique, large
amplitude motions may be tuned and triggered with
relatively low level input vibrations across a broad
range of frequencies (Cottone et al., 2009; Daqaq,
2011; Erturk et al., 2009; Harne and Wang, 2014b,
2017; Stanton et al., 2010; Virgin, 2000). Despite the
strong nonlinearity involved which challenges many
theoretical tools, several research teams have studied
base excited bistable energy harvesters coupled with
resistive electrical circuits through rigorous analytical
methods to assess alternating current (AC) power deliv-
ery opportunities. For instance, Stanton et al. (2012),
Panyam et al. (2014), Daqaq (2011), and Harne and
Wang (2014b) have leveraged various theoretical
approaches to explicitly predict the AC power genera-
tion from bistable vibration energy harvesters when
subject to either harmonic or stochastic base excita-
tions. Despite the value of such insights, in order to
supply useful power for structural monitoring sensor
nodes, DC power must be delivered from the harvester.
Thus, a rectifier circuit is needed to interface between
the oscillatory electromechanical response and the elec-
trical load. Rectifier circuits are dynamic systems, are
nonlinear, and coupled to the dynamic response of the
harvester itself, thus demanding special attention in
model approaches (Liang and Liao, 2012; Shu and
Lien, 2006a). Researchers have found that active syn-
chronized switch harvesting on inductor circuits
(Guyomar et al., 2005; Liang and Liao, 2012; Shu
et al., 2007) and synchronized electric charge extraction
circuits (Badel and Lefeuvre, 2016; Lefeuvre et al.,
2005; Wu et al., 2012) enable promising DC power
delivery for linear vibration energy harvesters under
harmonic excitations. Comparatively, the simple and
passive standard diode bridge rectifier provides an
effective DC power delivery from linear and nonlinear
vibration energy harvesters (Elvin, 2014; Pasharavesh
et al., 2017; Shu and Lien, 2006b; Sodano et al., 2005)
without unfavorable loss of power resulting from active
synchronization. For instance, Shu and Lien (2006b)
have shown that the electromechanical coupling coeffi-
cient is strongly influential on the mechanical-to-
electrical energy conversion efficiency of linear energy
harvesters interfaced with diode bridge rectifiers, which
emphasizes the importance of comprehensively investi-
gating the roles of practical rectifying circuits in con-
trast to AC resistive circuit counterparts. Yet, despite
the significance of this knowledge, the insights are rele-
vant only for linear vibration energy harvesters, while

the analytical methodologies are not directly extensible
to the numerous cases in which energy harvesters pos-
sess nonlinearities for performance enhancement.

Yet, considering the broad range of knowledge
revealed by the studies surveyed above, such insights
pertain only to the responses of energy harvesters when
subjected to pure harmonic or pure stochastic excita-
tions. In fact, numerous environments in which energy
harvesters will be deployed alongside structural moni-
toring sensors do not exhibit such simple purely harmo-
nic or stochastic excitation spectra. Instead, real world
excitations contain a combination of noise and periodic
contributions, which is inevitable based on the fact that
the monitored structures oscillate in primary modes
but are themselves acted upon by random excitations
such as tire–road interaction or footfalls (Green et al.,
2013; Turner and Pretlove, 1988; Zuo and Zhang,
2013). There is a clear lack of investigations on energy
harvester electrodynamic responses that result from
excitation conditions more closely representative of rea-
listic vibrations. Although the dynamic sensitivities of
weakly nonlinear oscillators have been examined under
such conditions (Anh and Hieu, 2012; Bulsara et al.,
1982; Nayfeh and Serhan, 1990), and a recent analysis
has been presented to explore the purely mechanical
responses of post-buckled structures to combined har-
monic and stochastic perturbations (Harne and Dai,
2017), no such analysis exists to characterize the elec-
tromechanical responses and DC power delivery of
nonlinear vibration energy harvesters subjected to arbi-
trary combinations of harmonic and stochastic base
accelerations.

Motivated to close this fundamental knowledge gap,
this research undertakes comprehensive efforts to char-
acterize the DC power delivery from nonlinear vibra-
tion energy harvesters subjected to a combination of
harmonic and stochastic excitation. Due to the strategic
advantages of bistable nonlinearities, attention is
directed to bistable energy harvesters, although the
model and analytical methods presented pertain to the
broader class of smooth, stiffness-based nonlinearities.
The comprehensive efforts undertaken here notably
include a new analytical procedure that facilitates direct
prediction of the structural dynamics and electrical
responses (including DC power), in parallel with a
track of numerical simulation for verification and
experiments for validation of the theoretical approach.
The following sections first introduce the nonlinear bis-
table vibration energy harvester platform examined
and describe the corresponding analytical framework
established to investigate the platform. Then, a comple-
ment of analytical, numerical, and experimental results
are presented to uncover the influences of the combined
excitation form and electrical circuit parameters on the
DC power delivery. A summary of primary conclusions
and directions for future research are provided in the
final section.

Dai and Harne 515



Nonlinear vibration energy harvester
modeling

Energy harvester platform

This section introduces the experimental platform
around which the model formulation is established, while
further modeling details and analytical procedures are
given in section ‘‘Governing equations,’’ ‘‘Approximate
analytical solution to governing equations,’’ ‘‘Harmonic
electromechanical dynamics,’’ ‘‘Stochastic electromecha-
nical dynamics,’’ and ‘‘Combined harmonic and stochas-
tic response of the nonlinear energy harvester.’’ In this
study, the energy harvester under consideration employs
a pair of attractive magnets that act on a cantilevered
piezoelectric energy harvester. The positioning of the
magnets with respect to the ferromagnetic cantilever tip
tailors the type and strength of the nonlinearity (Erturk
and Inman, 2011a; Feeny and Yuan, 2001; Hikihara and
Kawagoshi, 1996; Moon and Holmes, 1979). Figure 1
provides a photograph and schematic of the experimen-
tal system examined in the research. A piezoelectric beam
(PPA-2014; Midé Technology) is used as the energy har-
vester structure. The device is composed of layers of
PZT-5H, copper, and glass-reinforced epoxy FR4; this
composition results in appreciable inherent mechanical
damping due to both the laminated design and the FR4
in particular. This beam is clamped at one end of a rigid
aluminum mount. Attached to the free end of the cantile-
ver are steel extensions, with total mass m = 9 g, that
reduce the lowest order natural frequency of the beam
and provide for a ferromagnetic material for the magnets
to act upon. The total length of the cantilever and exten-
sion is L = 61 mm. A pair of neodymium magnets is
positioned near the ferromagnetic extension, which cause
attractive forces that work in opposite directions to lin-
ear elastic forces induced in the beam by displacement of
the beam tip (Moon and Holmes, 1979). By reducing the
distance between the beam tip and magnets, d, and the
distance between the magnets, D, the energy harvester
may become bistable, thus maintaining one of two stati-
cally stable equilibria. In this work, the bistable nonli-
nearity is focused upon in the investigations, although
the model framework composed for study is extensible
to the significantly greater class of smooth, stiffness-
based nonlinearities. As shown in Figure 1(b), the electri-
cal leads from the energy harvester are connected to a
standard diode bridge (1N4148 diodes). After the bridge,
the DC flows through a parallel arrangement of filtering
capacitor Cr and resistive load R, across which the recti-
fied voltage, and DC power, are evaluated.

Governing equations

Considering that the nonlinear energy harvester exhi-
bits a weak mono- or bistable nonlinearity, has a lowest
order mode at a frequency much less than higher order

modes, and is excited at frequencies near to this lowest
order mode, the governing equations for this system
are shown to be (Harne and Wang, 2014a; Moon and
Holmes, 1979; Panyam et al., 2014)

m€x+ c _x+ k1 1� pð Þx+ k3x3 +anp =�m€z ð1aÞ

Cp _vp + I =a _x ð1bÞ

The assumptions described above are all borne out
in the ensuing experimentation. In equation (1), x is the
relative displacement of the energy harvester tip (i.e.
the end of the extension in the experimental platform)
with respect to the motion of the base z to which the
clamped end of the harvester is attached; m, c, k1, k3

are the contributions from the cantilever mass, viscous
damping, linear, and nonlinear stiffness to lowest order
mode dynamics; p is referred to as a load parameter

Figure 1. (a) Photograph and (b) schematic of experimental
setup.
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since it characterizes the significance of magnetic force
influence on reducing the linear stiffness similar to an
axial compressive load (Moon and Holmes, 1979); Cp is
the internal capacitance of the harvester; vp is the vol-
tage across the piezoelectric beam electrodes; a is the
electromechanical coupling constant; and the overdot
operator denotes differentiation with respect to time t.

The diode bridge AC–DC converter is connected to
the energy harvester as shown in Figure 1(b). Here, per-
fect rectification is assumed. I(t) is the AC that flows
into the diode bridge and is related to the rectified vol-
tage vr through (Shu and Lien, 2006a)

I tð Þ=
Cr _vr +

vr

R
; if vp = vr

�Cr _vr �
vr

R
; if vp =�vr

0; if vp

�� ��\vr

8>><
>>: ð2Þ

To maintain a steady rectified voltage vr for the load,
which may be used for supplying a sensor or charging a
temporary battery reserve, a sufficiently large capacitor
Cr is needed (Shu and Lien, 2006a) so that the electrical
time constant RCr is much larger than the period of
mechanical oscillation.

Non-dimensionalization of the governing equations
assists in the acquisition of explicit analytical solutions
via computationally efficient algorithms. Here, a new
non-dimensionalization approach is introduced due to
the presence of nonlinearities in the energy harvesting
structure and in the rectifying circuit. After non-dimen-
sionalization, the governing equations become

x00+hx0+ 1� pð Þx+bx3 + kvp =� z00 ð3aÞ

v0p + I = ux0 ð3bÞ

I tð Þ=
gv0r + rvr; if vp = vr

�gv0r � rvr; if vp =�vr

0; if vp

�� ��\vr

8<
: ð3cÞ

The corresponding non-dimensional parameters are
defined as follows

t =v0t; v0 =
ffiffiffiffiffiffiffiffiffiffi
k1=m

p
; z= z=x0

b= k3x2
0=k1; h= c=mv0;

k=aV0=k1x0; g =Cr=Cp;

r= 1=CpRv0; u=ax0=CpV0

where x0, V0 are characteristic length and voltage, such
that x= x=x0, vp = vp=V0, and vr = vr=V0. Here, ( )0

indicates differentiation with respect to non-
dimensional time t.

In order to analytically investigate realistic combina-
tions of excitations on the nonlinear energy harvester
for the first time, the base acceleration excitation
includes harmonic and stochastic components

�z00= a cos vt +sw tð Þ ð4Þ

such that w(t) is a Gaussian white noise process with

w tð Þh i= 0 and w tð Þw t + t0ð Þh i= d t0ð Þ ð5Þ

and where s is the normalized standard deviation of
the noise (Roberts and Spanos, 1990). Considering the
harmonic excitation component, a is the normalized
base excitation magnitude and v is the angular fre-
quency of excitation v0 normalized with respect to v0.
Thus, the absolute base excitation magnitude and stan-
dard deviation are a= ax0k1=m and s =sx0k1=m,
respectively.

Approximate analytical solution to governing
equations

By leveraging both harmonic and stochastic lineariza-
tion, a strategy to predict mechanical responses of
post-buckled structures was recently introduced (Harne
and Dai, 2017). Yet, in the current context of vibration
energy harvesting, the prior analysis is insufficient since
it does not account for electrodynamic responses and
has no means of characterizing DC power delivery.
This research thus builds significantly beyond the prior
work (Harne and Dai, 2017) for a comprehensive and
first analysis suitable for nonlinear energy harvesters
subjected to arbitrary harmonic and stochastic
excitations.

To begin, a linearized governing equation system is
created to approximate the influences of the nonlineari-
ties in equation (3). Since the nonlinearity is present
only in equation (3a), the equivalent linear system is
governed by

x00+hx0+ve
2x+ e+ kvp =�z00 ð6aÞ

v0p + I = ux0 ð6bÞ

I tð Þ=
gv0r + rvr; if vp = vr

�gv0r � rvr; if vp =�vr

0; if vp

�� ��\vr

8<
: ð6cÞ

The parameter v2
e is an equivalent linear natural fre-

quency while e is an equivalent offset of displacement
that exists if the nonlinearity induces bistability.
Specifically, for bistable nonlinearities in the energy
harvester, e= 0 corresponds to snap-through responses
that are symmetric about the unstable equilibrium,
while e 6¼ 0 correspond to intrawell responses that oscil-
late with low displacement amplitude around one of the
non-zero stable equilibria. To determine the relations
between these parameters and the original parameters
of the exact governing equation system (equation (3)),
the mean-square error E between equations (3a) and
(6a) is minimized
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E = 1� pð Þx+bx3 � v2
ex� e ð7Þ

The mean-square error occurs when ∂ E2
� �

=∂v2
e = 0

and ∂ E2
� �

=∂e= 0 (Roberts and Spanos, 1990). By tak-
ing advantage of the linearized governing equations
(equation (6)), to derive such relations, the mechanical
and electronical responses are assumed to be composed
from a pair of contributions strictly associated with
either the harmonic or stochastic excitation compo-
nents (equation (4)). A similar concept has been estab-
lished to predict mechanical responses of post-buckled
oscillators that are subjected to combined harmonic
and stochastic excitation (Harne and Dai, 2017). Here,
this concept is significantly extended to consider the
overall electrodynamic responses of nonlinear energy
harvesters, including DC power delivery, according to
the requirements to account for the intricate electrome-
chanical coupling and rectification stages. Using sub-
script h to denote the harmonic contribution and r to
denote the random or stochastic contribution, one has

x tð Þ= xh tð Þ+ xr tð Þ ð8aÞ

vp tð Þ= vp,h tð Þ+ vp,r tð Þ ð8bÞ

vr tð Þ= vr,h tð Þ+ vr,r tð Þ ð8cÞ

Note that the components associated with the white
noise have zero-mean, xrh i= vp,r

� �
= vr,r

� �
= 0. The

harmonic components are written by a Fourier series
expansion associated with the normalized frequency of
the base acceleration, while vr,h(t) is assumed to be
constant

xh tð Þ= k tð Þ+ h tð Þ sin vt + g tð Þ cosvt

= k tð Þ+ n tð Þ cos vt � f tð Þ½ �
ð9Þ

vp,h tð Þ= p tð Þ sin vt + q tð Þ cos vt ð10Þ

The coefficients k, h, and g vary slowly in time, while
n2 = h2 + g2 and tan f= h=g. If the energy harvester
exhibits a bistable nonlinearity, the constant coefficient
k is required to realize the displacement bias while the
piezoelectric voltage associated with the harmonic base
acceleration does not require such accounting according
to equation (3b). Then, the mean-square error is mini-
mized when

∂ E2
� �
∂v2

e

= 1� pð Þx2 � v2
ex2 +bx4 � ex

� �
= 0 ð11aÞ

∂ E2
� �
∂e

= 1� pð Þx� v2
ex+bx3 � e

� �
= 0 ð11bÞ

Substitution of the assumed solution equation (8a)
into equation (11) enables the determination of v2

e and
e (Ibrahim, 1985)

v2
e = 1� pð Þ

+
3

4
b

n4 + 8n2 x2
r

� �
+ 8 x2

r

� �2
+ 4k2 n2 + 2 x2

r

� �� �
n2 + 2 x2

r

� �
ð12Þ

e=
1

4
bk

3n4 � 8k2 n2 + 2 x2
r

� �� �
n2 + 2 x2

r

� � ð13Þ

Because equation (6) is linear, the combined
response of the linearized system is the superposition of
responses individually associated with the harmonic or
stochastic excitation components. Thus, the simulta-
neous solution to equations (14) and (15) enables the
determination of the unknowns within the assumed
solution forms of equation (8)

x00h +hx0h +v2
exh + e+ kvp,h = a cos vt ð14aÞ

vp,h
0+ Ih = uxh

0 ð14bÞ

Ih tð Þ=
gvr,h

0+ rvr,h; if vp,h = vr,h

�gvr,h
0 � rvr,h; if vp,h =� vr,h

0; if vp,h

�� ��\vr,h

8<
: ð14cÞ

x00r +hx0r +v2
exr + e+ kvp,r =sw tð Þ ð15aÞ

vp,r
0+ Ir = ux0r ð15bÞ

Ir tð Þ=
gvr,r

0+ rvr,r; if vp,r = vr,r

�gvr,r
0 � rvr,r; if vp,r =�vr,r

0; if vp,r

�� ��\vr,r

8<
: ð15cÞ

Harmonic electromechanical dynamics

To predict the harmonic electromechanical dynamics
of the nonlinear energy harvester coupled to the rectify-
ing circuit, we build upon a strategy devised by Liang
and Liao (2012) that was developed for linear energy
harvesting platforms. Introducing a total phase
vF=vt � f, the periodic voltage vp,h is presented in
Figure 2 as the solid green curve. When the displace-
ment xh reaches a peak, the vp,h begins to fall from the
level of the rectified voltage vr,h until the time at which
the condition of equation (14c) is met for the negative
value of the vp,h that matches the absolute value of the
steady-state rectified voltage.

Considering the sinusoidal form of the electromecha-
nical responses and the switching conditions of equa-
tion (14c), the harmonic voltage across the piezoelectric
electrodes vp,h is expressed

vp,h vFð Þ=

un cosvF� 1½ �+ vr,h; 0\vF�Y
�vr,h; Y\vF�p

un cosvF+ 1½ � � vr,h; p\vF�p +Y
vr,h; p +Y\vF� 2p

8>><
>>:

ð16Þ

As shown in Figure 2, Y corresponds to the phase
angle at which current flow changes from the blocked
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to passing states. Using equation (16), this phase is
found to be

cos Y= 1� 2vr,h

un
ð17Þ

according to the continuity of the piecewise functions.
To leverage the harmonic steady-state assumptions of
equation (14), a sinusoidal form of equation (16) is
required. Thus, vp,h is approximated by its fundamental
terms of its Fourier series expansion. Using the fact
that for one-half cycle of the steady-state behaviors
(Figure 2) the electromechanical responses oscillate
from peak-to-peak (Shu and Lien, 2006a), one finds

ðp
0

vp,h
0 � ux0d(vF)=�2vr,hv+ 2unv ð18Þ

In addition, assuming that the rectified voltage
change per cycle is negligible compared to the mean
value, an energy balance yields

ðp
0

gvr,h
0+ rvr,hd(vF)=prvr,h ð19Þ

Therefore, integrating equation (14c) in a semi-
period yields

vr,h =
2u

p
v

r+ 2
n ð20Þ

Consequently, the DC power associated with the
harmonic base acceleration is

Ph =
vr,h

2

R
=

4u2

R p
v

r + 2
� �2

n2 ð21Þ

Then, the first-order time-harmonic of vp,F is found
by the fundamental term of the Fourier series of equa-
tion (16) using equation (20)

vp,F tð Þ= �g tð Þ
p

u sin2 Y+
h tð Þu

2p
2Y� sin 2Yð Þ

� 	
sinvt

+
h tð Þ

p
u sin2 Y+

g tð Þu
2p

2Y� sin 2Yð Þ
� 	

cos vt

ð22Þ

The prior steps to yield equation (22) are compara-
ble to the prior work (Liang and Liao, 2012). Yet, to
leverage equation (22) for the nonlinear energy harvest-
ing system of interest here, continued steps are required
to provide meaningful predictions of the dynamic
response. By virtue of the assumption of single harmo-
nic response, it is here assumed that vp,F(t)’vp,h(t).
Then, using all of the assumed, harmonic electromecha-
nical responses, the coefficients of the constant, sin vt,
cos vt terms are collected from substitution of the
response forms into equation (14a)

�hk0=ve
2k + e ð23aÞ

�hh0+ 2vg0=Lh�Xg ð23bÞ

�2vh0 � hg0=Lg +Xh� a ð23cÞ

where

L= ve
2 � v2

� �
+

uk

2p
2Y� sin 2Yð Þ; X=hv+

uk

p
sin2 Y

ð24Þ

Under steady-state conditions such that the time var-
iations on the left-hand side of equation (23) vanish,
one determines that

k2 = 0 or k2 =
e2

v4
e

=� 3

2
n2 � 3 x2

r

� �
� 1� pð Þ=b ð25Þ

Then, equations (23b) and (23c) together yield

½L2 +X2�n2 = a2 ð26Þ

Equation (26) is a cubic polynomial in terms of n2.
The complex roots and negative real roots of equation
(26) are therefore not physically meaningful.

Stochastic electromechanical dynamics

Equation (26) characterizes the harmonic displacement
response of the nonlinear energy harvester, out of which
the corresponding piezoelectric beam voltage and recti-
fied voltage are, respectively, computed from equations
(22) and (20). Yet, it is seen that the polynomial of
equation (26) is a function of the equivalent linear natu-
ral frequency ve which itself is a function of the mean-
square displacement xrh i associated with the stochastic

Figure 2. Representation of single period of voltage across the
piezoelectric and displacement of the energy harvester, as
adapted from Liang and Liao (2012).
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excitation component. Therefore, by the linearization
approach to equation (6), the harmonic and stochastic
contributions become intertwined in the analysis. As a
result, with solutions to the harmonic-related equation
system (equation (14)), the stochastic-related equation
system (equation (15)) is addressed.

To determine relations among the mean-square non-
linear harvester displacement xrh i and the piezoelectric
vp,r and rectified vr,r voltages, a new empirical approach
is undertaken. Specifically, a large number of simula-
tions are evaluated using a range of non-dimensional
parameters r and g where a non-dimensional beam
velocity x0r is prescribed using zero-mean white noise.
Considering the assumption of linearity, one has that
(x2

r )
0

D E
’ x2

r

� �
v2

e . Fitting the results with surfaces among
r, g, and xrh i, the following relationships are revealed

vp,
2
r

� �
’

200 x2
r

� �
ve

2

3r2 + 6r + g1:5

2000

ð27Þ

vr,
2
r

� �
’

ffiffiffi
2
p

vp,
2
r

� �
ð28Þ

With equations (27) and (28), of the system equation
(15) only equation (15a) requires solution. Yet, this
equation is not amenable to straightforward solution.
A second linear approximation is then made, assuming
a new equivalent natural frequency ven, which assists
to approximate equation (15a) by

x00r +hx0r +ven
2xr =sw(t) ð29Þ

The error between equations (15a) and (29) is

En =ve
2xr + kvp,r � ven

2xr ð30Þ

Using the same procedures as in the prior section,
one has

∂ En
2

� �
∂v2

en

=
∂ ve

4xr
2 � 2ve

2ven
2xr

2 +ven
4xr

2 + 2k(ve
2 � ven

2)vp,rxr + vp,r
2k2

� �
∂v2

en

= 0 ð31Þ

Toward solving equation (31), the expectation of the
product of xr and vp, r

is taken according to the covar-
iance process (Soong, 2004)

E xrvp,r


 �
=std xrð Þstd vp,r

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200

3r2 + 6r + g1:5

2000

s
x2

r

� �
ve

ð32Þ

Consequently, the new equivalent natural frequency
is

ven
2 =ve

2 + kve
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Thereafter, the mean-square displacement xrh i
induced by the zero-mean, white noise base excitation
component is (Bulsara et al., 1982)

x2
r

� �
=

s2

2hv2
en

ð34Þ

With equation (34), the piezoelectric and rectified
voltages associated with the stochastic excitation are
found from equations (27) and (28), respectively.

Combined harmonic and stochastic response of the
nonlinear energy harvester

Considering the prior analytical formulation and non-
linear coupling of equations, equations (12), (26), and
(34) must be simultaneously solved to compute the total
response of the energy harvester when subjected to a
combination of harmonic and stochastic base accelera-
tion. Then, by equation (8), the total responses may be
reconstructed.

In addition to the response forms reconstructed in
equation (8), specific measures are useful to character-
ize the energy harvesting performance of the nonlinear
platform. For instance, one meaningful measure is the
total mean-square displacement

x2
� �

= x2
h

� �
+ x2

r

� �
= k2 +

1

2
n2 + x2

r

� �
ð35Þ

The total mean-square voltage across the piezoelec-
tric electrodes is given by equation (36). Finally, the
total mean-square rectified voltage across the resistive
load R is computed from equation (37) which leads to
the determination of the total DC power delivery to the
load via equation (38)

vp
2

� �
=

1

2
vp,h

�� ��2 + vp,
2
r

� �
ð36Þ

vr
2

� �
= vr,h
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2
� �

R
ð38Þ

All together, the new analytical approach builds
greatly from prior work that studies the harmonically
excited response of linear energy harvesters coupled
with rectifying circuits (Liang and Liao, 2012) and
from prior work that studies the structural dynamics of
post-buckled oscillators subjected to harmonic and sto-
chastic excitations (Harne and Dai, 2017). Indeed, the
analysis of this report enables the first approach to
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explicitly predict the structural and electrical dynamics
of nonlinear vibration energy harvesters subjected to
arbitrary combinations of harmonic and stochastic
excitations when coupled to rectifying circuit for DC
power delivery.

Experimental methods

The experimental platform is shown in Figure 1(a).
Laser displacement sensors (Micro Epsilon ILD-1420)
measure the absolute cantilever tip displacement and
absolute displacement of the electrodynamic shaker
table. An accelerometer (PCB Piezotronics 333B40)
also measures the shaker table acceleration in the same
axis of motion. The base excitations are applied by a
controlled electrodynamic shaker (LabWorks ET-140),
as driven by an amplifier (LabWorks PA-141). The
noise excitation component is defined as the variance of
a normally distributed voltage time series that superim-
poses with a harmonic voltage time series, which
together drive the shaker. The AC piezoelectric voltage
across the electrodes of the energy harvester is recorded
in addition to the rectified voltage evaluated over the
resistive load. All channels of data are recorded at a
sampling frequency of 4096 Hz and are thereafter digi-
tally filtered from 1 to 500 Hz. The experimentally iden-
tified parameters of the nonlinear energy harvester and
diode bridge circuit are provided in Table 1. As seen in
the table, the load parameter p is greater than unity,
which indicates that the energy harvester was subjected
to enough magnetic force to induce bistability.

Results and discussions

In order to verify the analytical predictions, direct
numerical simulations of the governing equations are
carried out using fourth-order Runge–Kutta numerical
integration with increased tolerances on adaptive time-
stepping routines in the MATLAB software. Initial
conditions for the states of the electromechanical sys-
tem are chosen from normally distributed random
numbers approximately within an order of magnitude
of the ultimate response state amplitude. The analytical
and numerical efforts are undertaken in parallel with
experimentation, using the parameters identified from
the experimental platform, as given in Table 1. To
determine the natural frequencies associated with each
low amplitude intrawell response and the damping con-
stant, impulsive ring down responses are undertaken. It
is ensured that the influences of the magnets upon the
ferromagnetic beam tip are positioned such that the
natural frequencies around both stable equilibria are
identical to v0, thus leading to only parameters k1 and
k3. The distance between statically stable equilibria is
measured, 2x�. Using classical relations, the equivalent
mass of the harvester m is determined by considering it
to be a cantilever with tip mass, while the linear

stiffness k1 is similarly identified according to the piezo-
electric beam properties and dimensions. With this
information, the load parameter is computed as
p= 1+v2

0m=2k1 for x� 6¼ 0 and as p= 1� v2
0m=k1 for

x�= 0. Finally, the nonlinear stiffness k3 is determined
from k3 = k1(p� 1)=(x�)2 for x� 6¼ 0 which is the rele-
vant case of this research that gives attention to the bis-
table nonlinearity of the energy harvester. For
monostable energy harvesters, the determination of the
nonlinear stiffness k3 can be achieved using data from
forced excitation experiments (Rao, 2004).

The following paragraphs present the collective ana-
lytical, numerical, and experimental results that enable
the detailed study of excitation and electrical parameter
influences upon the nonlinear energy harvester DC
power delivery.

Electromechanical responses induced by pure
harmonic excitation

As a limiting case of the model predictions, the vibra-
tion energy harvester is first subjected to base accelera-
tion of amplitude a= 7:5m=s2 without noise
contribution s= 0. The linearized natural frequency of
the bistable nonlinear energy harvester is around
25.36 Hz, and the frequencies of the harmonic excita-
tion are applied around this resonant state.

For this excitation condition, Figure 3(a) and (b)
presents the analytical (curves) and numerical (data
points) results of the beam tip harmonic displacement
amplitude and average charging power, respectively,
while the corresponding experimental measurements
are shown in Figure 3(c) and (d). According to the ana-
lytical and simulation results, for harmonic excitation
frequencies less than around 20 Hz, the bistable energy
harvester may exhibit either the large amplitude snap-
through dynamics or the low amplitude ‘‘intrawell’’
responses associated with oscillations around one or
the other stable equilibria. Such coexistence of dynamic
regimes is revealed by more than one analytical predic-
tion or numerical simulation data point for the same
harmonic excitation frequency less than about 20 Hz,
in Figure 3(a) and (b). At higher frequencies, only the
low amplitude oscillation is found. Together, the analy-
tical and numerical results are in overall good agree-
ment across the whole frequency range, excepting

Table 1. Experimentally identified system parameters.

m (g) b (N s/m) k1 (N/m) p (dim)

9.45 0.125 160 1.75

k3 (MN/m3) Cp (nF) Cr (mF) a (mN/V)

33 96 10 1.4
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around 20–25 Hz where the simulations suggest aperio-
dic or chaotic states of vibration may occur, which the
analysis is unable to predict by virtue of steady-state
assumptions. Considering these different dynamic
regimes, it is clear from Figure 3(b) that the snap-
through dynamics are the favored behavior for enhan-
cing DC power delivery. Indeed, in Figure 3, a range of
load resistances is considered: R= ½4:7 , 47, 470� kO.
By change of the resistance from 4.7 to 47 kO and then
to 470 kO, the activation of the snap-through response
is suppressed across portions of the harmonic excita-
tion frequency bandwidth. More importantly, consider-
ing this large range of resistance, an optimal value is
suggested. Namely, the peak DC power generation
increases from around 0.62 mW using a resistance of
4.7 kO to around 2.88 mW using 47 kO; then by
increasing the resistance still further to 470 kO, the
peak power reduces to just 2.70 mW. These trends are
in good agreement between the simulations and theore-
tical predictions, providing strong verification to the
analytical formulation created here.

In the corresponding series of experiments, harmo-
nic base acceleration is applied with slowly sweeping
frequency from low to high and then high to low val-
ues at a rate of 0.09 Hz/s. The experimental results
shown in Figure 3(c) and (d) are in good qualitative

and quantitative agreement with the model findings.
In particular, the potential for an optimal resistance
for DC power delivery is also apparent in the measure-
ments since the resistor of 47 kO provides the highest
peak DC power among the three values of resistances
examined. Also, the bandwidth of the snap-through
dynamic regime is suppressed by increase in the resis-
tance, which is likewise revealed both analytically and
numerically.

Overall, the results of Figure 3 establish that the ana-
lytical model accurately reproduces the electrodynamic
behaviors of the bistable nonlinear energy harvester
under the limiting case of pure harmonic excitation.
The following section examines the influence of the
additive stochastic excitation contribution on the
dynamic response and DC power generation.

Nonlinear energy harvesting under combined
harmonic and stochastic excitations: case example

Then, in addition to the harmonic amplitude of base
acceleration a= 7:5m=s2, stochastic noise is introduced
with standard deviation s= 11:25m=s2 to result in the
overall combined excitation form that acts on the non-
linear harvester. In other words, the ratio of noise stan-
dard deviation to harmonic amplitude is approximately

Figure 3. Analytical prediction (in lines) and simulated results (in shapes) of (a) beam tip harmonic displacement magnitude at the
harmonic excitation frequency and (b) average charging power across resistive loads R, under pure harmonic excitation with
amplitude a= 7:5 m=s2. Corresponding experimental measurements are shown in (c, d).
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3/2. To provide an easier visualization of the different
cases of excitation, the following results only consider
the case when the load resistance is R= 47kO while the
excitations are either purely harmonic or include the
noise to harmonic excitation ratio of 3/2.

In Figure 4(a) and (b), the analytical results are
shown for the pure harmonic case (dashed-dot curves)
and for the case with the additive noise (solid curves).
Figure 4(a) and (b) shows the beam tip harmonic dis-
placement amplitude and the average charging power,
respectively. As shown in Figure 4(a) and (b), the
numerical results are shown as gray data points for all
of the simulations and as filled red squares for the
averages of the simulations at any specific harmonic
excitation frequency. Figure 4(c) and (d) presents the
corresponding experimental findings, with the pure
harmonic data sets indicated with solid curves and the
short-time averages of the measurements under the
combined harmonic and stochastic base excitations
plotted as red filled circles.

According to the analytical predictions shown in
Figure 4, due to the additive noise excitation

component, the nonlinear harvester loses the ability to
undergo coexistent responses, since only one dynamic
regime is predicted analytically at any given frequency,
across the bandwidth considered. This result is in
agreement with the outcomes of the numerical simula-
tions. The introduction of the stochastic excitation
component causes the displacement amplitudes in
Figure 4(a) to reduce considerably from the levels asso-
ciated with harmonic snap-through, although the dis-
placements are still greater than the low amplitude
dynamic regime. The average charging powers shown
in Figure 4(b) are correspondingly reduced; at frequen-
cies less than about 20 Hz, the powers are approxi-
mately one-half of the levels achieved for the harvester
when snap-through dynamics are triggered under pure
harmonic excitation. Yet, the experimental measure-
ments in Figure 4(c) do not discover as great of reduc-
tion in the response as predicted analytically and
observed numerically. In particular, while the noise also
suppresses the coexistence of the dynamic regimes, it
does not as greatly impact the response amplitudes,
whether considering the displacement or charging

Figure 4. Analytical predictions and numerical simulations of (a) beam tip harmonic displacement magnitude at the harmonic
excitation frequency, (b) average charging power across resistive loads R = 47 kO, with harmonic excitation amplitude a= 7:5 m=s2.
Dash-dot curves indicate responses without stochastic excitation, s= 0. Thick solid curves indicate response with noise
s= 11:25 m=s2. Small squares and filled large squares are, respectively, the individual and means results of numerical simulations
conducted at each excitation frequency. Corresponding experimental measurements are shown in (c, d). Solid curves indicate
responses without stochastic excitation, s= 0, while filled circles indicate response with noise s= 11:25 m=s2.
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power. One explanation for this difference between
experiment and model is that the overall dissipation of
energy in the harvester is modeled by a viscous damp-
ing. Yet, the piezoelectric beam used experimentally
contains a significant proportion of glass-reinforced
epoxy laminate, which is a viscoelastic material and as
such leads to frequency- and rate-dependent damping
properties (Fosdick et al., 1998; Ketema, 1998). Thus,
the omission of viscoelastic damping in the current
model may explain the difference between experimental
measurements and model predictions, which encourages
a more accurate model formulation in future to apply
such a nonlinear energy harvester in practice. Despite
such minor differences in the amplitudes of the displace-
ment and DC comparing the model predictions and
measurements, the experimental results are still in over-
all good agreement with analytical prediction as well as
the numerical simulation. Thus, the theoretical formula-
tion and solution procedure established here are suffi-
ciently validated.

Considering the influence of the stochastic contribu-
tion to the overall base excitation upon the harvester,
Figure 4(b) and (d), while the peak DC power delivery
may be reduced, a favorable outcome is the elimination
of the coexistence of low amplitude and snap-through
dynamics at low frequencies. This results in a form of
insurance to obtain a meaningful DC power level closer
in value to the result achieved under pure harmonic
excitation. Both model results and experimental mea-
surements reveal such behaviors.

To look deeply at the impact of additive stochastic
excitation, experimental time series at 13 Hz are pre-
sented in Figure 5. The time series of base acceleration
is shown in Figure 5(a) with and without the stochastic
component, recalling that the ratio of noise standard
deviation to harmonic amplitude is 3/2, which explains
the considerable differences between the two time series
of base acceleration. The beam tip displacement time
series is shown in Figure 5(b) and (d) while the corre-
sponding voltages across the piezoelectric beam electro-
des and across the load resistor R = 47 kO are shown
in Figure 5(c) and (e). For the low amplitude intrawell
oscillation, Figure 5(b) and (c), the additive stochastic
excitation provides a beneficial perturbation away from
the low amplitude dynamic state, inducing greater
mechanical response and hence rectified voltage. This is
seen in Figure 5(b) and (c) comparing the time series
response without noise (dashed or dotted curves) to
those measures with noise (solid or dash-dot curves).
The corresponding impact on the electromechanical
snap-through dynamics are shown in Figure 5(d) and
(e). According to Figure 5(d) and (e), the additional
stochastic excitation slightly reduces peak-to-peak
piezoelectric voltage generation, although the displace-
ment amplitude is not reduced overall. Yet, because the
snap-through response is perturbed from a steady state,
the measurements show that the loss of rectified voltage

results in an overall reduction in the charged voltage
across the resistor, and hence less DC power.

DC power delivery for varied levels of stochastic
excitation

As found from the results of the previous section, the
additive stochastic excitation component may signifi-
cantly change the electromechanical responses of the
bistable nonlinear energy harvester. And as exemplified
in the time series of Figure 5, the effects of the noise on
the overall behavior are unique whether the underlying
steady-state response is a coexistent low amplitude
intrawell oscillation or the high amplitude snap-through
dynamic. To closely investigate these influences, this
section examines a wide range of stochastic excitation
levels with respect to a fixed harmonic level of base
excitation.

Figure 6 presents analytical, numerical, and experi-
mental results obtained when the 13 Hz harmonic exci-
tation amplitude is a= 2:85m=s2 while the ratio of the
noise standard deviation to harmonic amplitude, s=a,
varies from 0 to 4.5. The value for the load resistor for
these results is R = 470 kO. The analytical predictions
are shown by blue solid (red dashed) curves in Figure
6(a) and (b) according to the snap-through (intrawell)
responses for the harmonic displacement amplitude
and charging power, respectively. Numerical and
experimental results are, respectively, denoted by open
and filled data points. All of the results agree that for
low levels of noise, using this harmonic excitation
amplitude, the nonlinear harvester exhibits the low
amplitude intrawell response as the underlying steady
state. Similar to the case of the role of the harmonic
excitation frequency upon the harvester electromecha-
nical dynamics, the analysis used to generate the results
of Figure 6 also suggests that coexisting dynamic beha-
viors may exist for a given value of s=a. Indeed, the
analysis predicts that another low amplitude dynamic
may occur for low levels of additive noise such as
s=a\1, although neither simulations nor experiments
detect its existence. This suggests that such additional
dynamic behavior may have low likelihood of being
induced in practice according to its basin of attraction
(Harne and Wang, 2017). Nevertheless, the intrawell
responses provide negligible DC power, as shown in
Figure 6(b) for low noise levels.

As the noise standard deviation is increased respect-
ing the harmonic amplitude of the excitation, the DC
power gradually increases, with a significant growth
observed analytically, numerically, and experimentally
around a ratio of s=a= 2. An explanation for this
behavior is given by simulated and measured results in
Figure 6(c) which plot the percentage of time that the
beam undergoes the coexistent snap-through dynamic.
Around s=a= 2, this percentage clearly begins to
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Figure 5. Portions of time series of experimental measurements for the (a) base accelerations provided to the energy harvester
for harmonic-only and combined harmonic with stochastic excitations, (b, d) beam tip displacement without noise (dashed curves)
and with noise s= 11:25 m=s2 (solid curves), and (c, e) voltage from piezoelectric beam and rectified voltage across resistive load
R = 47 kO, without noise (dashed curves and dotted curves) and with noise s= 11:25 m=s2 (solid curves and dash-dot curves).
Results shown in (b, c) without noise correspond to the intrawell steady state indicated by the square data point in Figure 4(c), while
results shown in (d, e) without noise correspond to the snap-through steady state indicated by the circle data point in Figure 4(c).

Figure 6. (a) Harvester harmonic displacement amplitude, (b) average charging power across resistive load R = 470 kO, and (c)
percentage of time that the beam spends snapping through, as a function of the ratio between noise standard deviation and harmonic
amplitude of the base excitation. Blue solid (red dash) curves indicate analyzed responses associating with snap-through (intrawell)
dynamics, blue triangles are the simulated results, and green filled circles indicate experimental measurements. In all cases, the
harmonic excitation amplitude is a= 2:85 m=s2 while the frequency is 13 Hz.
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increase from near-zero values obtained for smaller
ratios of excitation properties. This indicates that the
noise begins to contribute favorably to DC power
delivery provided by the harvester because the snap-
through response is induced, even though the underly-
ing steady-state response is a low amplitude intrawell
behavior. The results of Figure 6 suggest that for har-
monic amplitudes of base excitation that are insuffi-
cient to activate snap-through dynamics in the bistable
nonlinear energy harvester, the DC power delivery may
be considerably enhanced by the introduced of enough
noise, here around s=a.2, that triggers the desirable
dynamic in a stochastic way, similar to the time series,
as shown in Figure 5(c).

Figure 7 presents results considering greater ampli-
tude of the harmonic base excitation, a= 5:85m=s2,
while all other notations and system parameters remain
the same as the case shown in Figure 6. For this har-
monic amplitude of base acceleration, in the absence of
noise, the harvester exhibits the persistent snap-through
response as the underlying steady-state behavior, simi-
lar to the time series show in Figure 5(d) and (e)
derived from the measurements used to present Figure
4(c) and (d). It is plainly revealed in Figure 7(a) that
the snap-through dynamic is inhibited by low levels of
noise, specifically when the ratio of the noise standard
deviation to amplitude of harmonic components is
about 0\s=a� 0:8. Figure 7(b) shows that the DC
power reduces greatly under such circumstances, when
compared to the harmonic-only DC power output
shown under the condition s=a= 0.

These features are illuminated further by observing
the time series of electromechanical response labeled as
H and J in Figure 7(a). In Figure 8, the response
labeled as H is shown in (a) for displacement and (b)
for piezoelectric and charging voltages, which consider
a case when the noise is insignificant in standard devia-
tion when compared to the amplitude of the harmonic
excitation. When the ratio s=a is increased closer to

around 0.75, Figure 8(c) and (d) shows the correspond-
ing displacement and voltage time series. Comparing
these two cases of noise contribution to the overall base
excitation, it is evident that the snap-through dynamic
is suppressed for the case of s=a’0:75, leading to
reduced charging voltage and hence less DC power
delivery due to the reduced periodicity of the mechani-
cal oscillations.

Studying the results of Figure 7(a) further, when the
ratio s=a increases beyond around 0.75, the snap-
through behavior is predicted by analysis to be the only
dynamic regime triggered. Comparatively, as shown in
Figure 7(c), the percentage of time that simulations and
experiments observe the snap-through response
increases significantly for ratios s=a greater than about
0.75, which supports the more idealized prediction by
the analysis. Thus, large DC power delivery is recov-
ered for greater noise contribution in the excitation.
Figure 8(e) and (f) plots time series of displacement
and voltage for the data point labeled as K in Figure
7(a). Interestingly, the displacement is clearly not a
steady snap-through, although as shown in Figure 8(f)
the rectified voltage is greater than the voltage achieved
when the persistent snap-through dynamic is triggered
in the absence of noise (Figure 8(b)). These results indi-
cate that for the greater amplitude of harmonic base
excitation, a= 5:85m=s2, that induces the snap-
through response in the absence of noise, the introduc-
tion of stochastic contributions to the excitation is
adverse to DC power generation if the noise level is low
because snap-through dynamics are inhibited, but addi-
tive noise may be a significant benefit to DC power
delivery if the noise contribution is large enough, here
around s=a � 2. The theoretical predictions are in
good agreement with the trend of DC power generation
for increased noise when compared to the qualitative
and quantitative results of simulation and experiment,
as shown in Figure 7(b). This suggests that the new
analytical model formulation and solution strategy

Figure 7. (a) Harvester harmonic displacement amplitude, (b) average charging power across resistive load R = 470 kO, and (c)
percentage of time that the beam spends snapping through, as a function of the ratio between noise standard deviation and harmonic
amplitude of the base excitation. Blue solid (red dash) curves indicate analyzed responses associating with snap-through (intrawell)
dynamics, blue triangles are the simulated results, and green filled circles indicate experimental measurements. In all cases, the
harmonic excitation amplitude is a= 5:85 m=s2 while the frequency is 13 Hz.
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may be used to assist implementation of nonlinear
energy harvesters in practical application environments
where the base acceleration available is neither purely
harmonic nor purely stochastic.

Conclusion

In order to take advantage of the broadband and large
power generation characteristics of nonlinear energy
harvesters for self-sufficient sensors in structural health
monitoring applications, this research investigated DC
power generation from nonlinear vibration energy har-
vesters subjected to excitations that contain realistic
combinations of harmonic and stochastic components.
These efforts of this work established a new analytical
method to predict the overall electromechanical
responses induced under such excitations, including the
DC power delivery from rectifier circuits coupled to
such nonlinear harvester platforms. With numerical
verification and experimentally validation, the accuracy
of the analysis is exemplified. Through subsequent
model and experimental studies, it is found that despite
the introduction of stochastic excitation, the DC power
may be increased from steady-state levels associated
with the low amplitude intrawell dynamic regime. The
noise excitation contribution has more intricate influ-
ences upon the snap-through responses: the additive
noise reduces the mean DC power generation at low
harmonic excitation frequencies when snap-through is
achieved under pure harmonic excitations, while the
stochastic excitations are beneficial when the ratio of

noise standard deviation to harmonic amplitude is
greater than about two. The outcomes indicate that the
analytical model formulation and solution strategy
have potential to assist in the design and implementa-
tion of nonlinear energy harvesters in real world appli-
cation for improved, practical performance. In
addition, due to the dependence of DC power genera-
tion on the resistive load, harmonic excitation charac-
teristics, and additive stochastic excitation levels,
optimization studies are promising directions for fur-
ther investigations toward capitalizing on nonlinear
energy harvesters deployed in real world environments.
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