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The development of materials with periodic microstructures provides the means
to tune mechanical properties via prescribed collapse mechanisms. As investi-
gations give attention to tunable unit cell designs, questions arise regarding
strategic ways to exploit built-up materials to empower large, programmable
control over properties and material functionality. The potential to rationally
design functionally graded elastomeric materials to yield prescribed mechanical
properties is demonstrated herein. Following computational and experimental
studies of simplified unit cells and layers, the results inspire ways to exploit linear
elastic network analogies to design built-up and functionally graded materials.
This approach exemplifies a streamlined means to create pre-programmed
properties on the basis of simple calculations related to measurements from
fundamental material constituents. The results build a foundation for innovative
approaches to newly leverage elastomeric materials with programmable collapse
for myriad engineering applications.

Emerging interest to broaden the toolset of design for advanced
materials has led to numerous material concepts for packaging,
structural damping, vibration attenuation, and so on. For such
practices, the mechanical properties of the materials ideally
exhibit low dynamic stiffness.[1–3] To achieve this target, light-
weight elastomer-based materials with cellular, mesoscale void
patterns are recently exploited.[4–7] Through the collapse and
deformation of the network of beams realized in the void
patterns, researchers are uncovering innovative ways to shape
and manipulate the mechanical properties of such elastomeric
materials.[8–12] When subjected to dynamic loads, reversible elas-
tic buckling and low dynamic stiffness effected in the microscale
beam networks lead to controlled elastic energy absorption and
wave propagation.[13–17] In addition, by scrutinizing the interplay
between viscosity and elasticity, cellular elastomeric materials
composed from viscoelastic polymers may be tailored to mitigate
high-rate shock and vibration by reducing dynamic stiffness and
increasing macroscopic damping.[18–22] All together, the discov-
eries underscore the fact that the mechanical properties of engi-
neered materials may be far more versatile than those of the
underlying bulk material.

Yet, recent attention is turned to devise
techniques for passive adaptation of such
non-natural material behavior to enhance
the multifunctionality and versatility. In par-
ticular, multistability and layering are shown
to adapt mechanical properties through the
ordered triggering of collapse events within
the material void patterns.[13,23–25] The ways
by which such design factors enable control
of properties are unique for each mesoscale
void pattern considered in the engineered
material. This research sees potential in
the “X”-shaped beam network studied by
Bunyan and Tawfick.[26] The antagonistic
crossing of beam elements in this particular
void pattern, Figure 1a, enables collapse by
rotation of the patterned unit cell in a layer,
Figure 1d. Yet despite emerging knowledge
on such unit cell behavior, it is well known
that periodic materials with finite extents

exhibit mechanical and dynamic properties essentially governed
by the boundary conditions.[27] Consequently, there remain needs
to articulate techniques to formulate and characterize built-up,
graded, and adaptive variants of this material platform. While
researchers have begun shedding light on the parametric design
of additively manufactured materials that exhibit multiple states of
collapse,[28,29] the soft matter realization of the functionally graded
material examined here represents a far different local defor-
mation field characterized by continuous conformations and total
self-contact, not represented in the 3D-printed realizations. As a
result, a modeling framework is required to understand the para-
meters and designs that govern collapse in functionally graded soft
material systems.

Motivated by this knowledge gap, in this report, we investigate
mechanisms that give rise to programmable control of mechanical
properties in functionally graded elastomeric materials having
layered, crossed beam networks realized by mesoscale voids,
Figure 1. Here, we specifically exploit functional gradients by
stacking layers of unit cells, Figure 1b. For instance, by tailoring
the beam thicknesses from 0.80 to 1.00mm and then to 1.20mm
for layers of unit cells, Figure 1b, the mechanical properties in
Figure 1c and photographs in Figure 1e reveal a sequential col-
lapse behavior that is qualitatively and quantitatively not manifest
in the material having the single layer of periodic unit cells with
beam thicknesses of 1mm, Figure 1c,d. Essentially nonlinear stiff-
ness is realized in these collapse events,[26] such as in Figure 1c
where the slope of the curves is nearly zero. Through leveraging
such functional gradients in layers of unit cells having crossed
beam networks, we find that substantial control over the material
behavior is empowered. On the other hand, we also find that the
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sequence of collapse is not determined by a linear superposition of
collapsing layers because the critical displacement and force of the
single-layer collapse event are not critical points in the mechanical
properties of the graded material. In the initial uniaxial compres-
sion regime shown in Figure 1c, it is apparent that individual
layers in the functionally graded multilayer geometry do not
behave independently. As such, a need exists to illuminate the
origins of such nonaffine behavior and to understand techniques
to capitalize on the unique material system characteristics. In this
report, we utilize integrated computational and experimental
investigations to shed light on the intriguing mechanisms of
collapse and programmable mechanical properties in this new
class of functionally graded elastomeric material.

The material samples studied in this report are fabricated by
casting a platinum cure silicone rubber (Smooth-On Mold Star
15S) in 3D-printed acrylonitrile butadiene styrene (ABS) molds
(FlashForge Creator Pro) bearing the negative of the sample
shape to be tested. The materials are cured at room temperature
and room pressure. Samples are demolded and then aerated for
24 h prior to experimental study. The mechanical properties are
examined in a load frame (ADMET eXpert 5600) where the actu-
ator uniaxially guides a rigid platen attached to a load cell (PCB
110205A) while displacing at a rate of 0.5mmmin�1. A laser

displacement sensor (Micro-Epsilon optoNCDT ILD1700-200)
provides readout of the load cell position as the rigid platen com-
presses the samples quasi-statically.

To look deeper into the mechanics of the layered elastomeric
materials, we generate finite-element (FE) models that emulate
the experimental protocol. ABAQUS Dynamic-Implicit simula-
tions are conducted with 2D plane strain models, warranted on
the basis of the deep and constant material cross section. We
use a hyperelastic Neo–Hookean material model with empirically
determined Young’s modulus of 476 kPa and Poisson’s ratio of
0.499 for the samples considered here. The model boundary
conditions are similar to the boundaries of the material cross sec-
tion in experiment. The bottom surface in the model is fixed,
whereas the top surface displaces only in the vertical direction.
As evidenced in the simulation results of mechanical properties,
Figure 1c, the simulations qualitatively reproduce the stiffness pla-
teau regions observed in the experimental results. The agreement
is particularly seen in terms of the critical displacements and criti-
cal forces at which the bifurcations occur in the mechanical prop-
erties. Discrepancies between the measurements and predictions
may be associated with the presence of minor defects through the
fabricated cross section, which do not, otherwise, detract from the
overall agreement among the salient trends in the data.
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Figure 1. Functional gradients broaden the range of mechanical properties adaptation. Geometry of elastomeric materials with a) a single layer of unit
cells and b) three layers of functionally graded unit cells. c) Mechanical properties of the materials as determined by experiments and simulation.
Photographs of deformation for the d) single-layer material and e) functionally graded layer material. Labels in (d,e) correspond to points in mechanical
properties in (c).
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To begin a detailed investigation of material behavior evident
from layers of unit cells, the contrasts among mechanical prop-
erties of unit cells and layer assemblies are studied. The specific
crossed beam unit cell geometry studied here has considerably
shorter height than unit cells studied in the previous study.[26] In
addition, the previous study[26] did not investigate assemblies of
the unit cells, instead giving attention to the unit cell in isolation.
Here, we scrutinize the ramifications of unit cell assembly,
especially boundary influences. Figure 2a shows the unit cell
geometry considered in this report and illustrates how the geo-
metry relates to a layer assembly. The unit cell has 1.00mm thick
beams crossed over a 6mm lateral extent and is bounded on top
and bottom by 1mm thick beams to make a unit cell of 8 mm
total height and 6mm total width, Figure 1a. FE simulations of
uniaxial compression are undertaken, and the resulting mechan-
ical properties are shown in Figure 2b. For the unit cell results,
periodic boundary conditions are imposed on all leftmost and
rightmost boundaries, whereas free boundaries at these same
locations are used for simulations of layer material assemblies.
Figure 2b shows that the periodic unit cell exhibits a well-defined
collapse and plateau in the mechanical properties. This behavior
is associated with the rotation of the crossed beams in each unit
cell composing the deformed layer, evident by comparing labels
A and B in Figure 2c corresponding to pre- and post-collapse in
Figure 2b.

To explore the effects of periodic assembly of the unit cell, we
design single-layer materials having 3, 5, 8, or 20 unit cells. Here,
to uncover factors that influence the layer assemblies, we con-
sider each unit cell to be an analogous elastic network of linear
springs kh and kx in series, Figure 2c. The elastic spring kh is the
uniaxial spring stiffness of the top or bottom horizon elastomer
segments of the unit cell, whereas kx is the uniaxial spring stiff-
ness of the crossed beam component. As a result, the layers are
considered to be parallel assemblies of such linear elastic units,
Figure 2d. This assumption is supported on the basis of the FE
simulations in Figure 2b that exemplify nearly linear behavior
prior to collapse for the assemblies of unit cells. For the ideal
elastic network, Hooke’s Law suggests that the force per unit cell
does not change with the change in the number of unit cells
assembled in the layer. Yet, as shown in Figure 2b, the number
of unit cells in the layer influences the force experienced per unit
cell in the material. In particular, with the increase in the number
of unit cells from 3 to 5 to 8 and then to 20, the mechanical prop-
erties progressively converge to those of the unit cell modeled
with periodic boundary conditions.

The deviation of this trend with respect to Hooke’s Law is due
to boundary influences that more strongly affect material layers
having smaller numbers of assembled unit cells. For instance,
Figure 2d shows that the layer having five unit cells reveals con-
sistent collapse behavior for the innermost three unit cells,
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Figure 2. Relation of layered assembly and periodic unit cell behaviors. a) Schematic of unit cell geometry and assembly technique for a layer.
b) Mechanical properties per unit cell determined by the FE model. Schematic of the analogous elastic network and the associated deformation before
and after collapse for c) the unit cell and d) an assembly of five unit cells in a layer. In (c,d), the color shading of simulation results is the von Mises stress.
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whereas the outermost two unit cells do not rotate in a way con-
sistent with the innermost response. Consequently, the bound-
aries inherent in finite assemblies of the crossed beam type unit
cells strongly influence the material behavior and mechanical
properties.

When assembled by stacking identical layers, the elastomeric
material exhibits multiple collapse behaviors originally evidenced
in Figure 1e. As shown in Figure 3a, the effects of periodic assem-
bly of layers are explored by comparing FE simulations where
layers of five identical unit cells are assembled with varied number
of stacked layers. A 2mm thick horizontal elastomer segment
separates each layer. The simulation results in Figure 3b illustrate
a progressive collapse of the layers occurring near the same force
in all the materials. For materials assembled from three, five, or
seven layers, the critical displacements and forces are similar
when contrasted to the differing critical displacement for the sin-
gle layer of unit cells. As shown in Figure 3c, such trend is asso-
ciated with the lack of interlayer deformation field in the single
layer that is observed by bending of the horizontal elastomer seg-
ments in the multilayer materials. These results suggest that the
multilayer materials pose distinct opportunity to tailor mechanical
properties. To capitalize on this opportunity, a predictive tool is
necessary to accelerate an informed design process.

Again using the elastic network analogy, we expand the con-
cept to predict the mechanical properties of multilayer materials.
Here, we exemplify the elastic network predictive tool for the

three-layer material shown in Figure 4a where all unit cells
are identical. A formal modeling approach is described in the
Supporting Information that establishes the relationships among
the unit cell constituents, layer assembly, and material gradients
with the corresponding approximated mechanical properties.
The model requires simplified unit cell FE simulation results
specifically for the linear uniaxial stiffness prior to collapse,
and the critical displacement and critical force at collapse, and
the uniaxial stiffness after collapse. To leverage the predictive
capability for the material in Figure 4a, the unit cell uniaxial stiff-
ness k* is found to be 1.28 kNm�1, and the critical force fc is
found to be 1.14 N. The uniaxial stiffnesses for the three layers
of the material in Figure 4b are nominally the same, so that
k*1 ¼ k*2 ¼ k*3 ¼ 1.28 kNm�1.

As the simulation results (red dashed) of the mechanical prop-
erties in Figure 4a agree well with experimental measurements
(green solid), the calculated results are compared with the simu-
lations. The uniaxial stiffness determined using the spring analogy
for the three-layer material in Figure 4c is approximated to be
2.13 kNm�1, whereas the stiffness determined from FE simula-
tion is 1.51 kNm�1. Furthermore, the critical displacement deter-
mined using the elastic network approximation is also 2.68mm,
whereas the simulated critical displacement is 3.62mm. Such dis-
crepancy is due to nonuniform unit cell collapse in the multicel-
lular geometry. The origins of such discrepancies are evident in
the deformed material states shown in Figure 4c,d. In particular,
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the horizontal elastomer segments exhibit excessive bending that
inhibits the unit cell-like rotation after collapse of all of the unit
cells in a layer, Figure 2b,c.

To confirm that deviation in the predicted uniaxial stiffness and
critical collapse characteristics result from the deformation of the
horizontal elastomer segments, we fabricate multilayer materials
having nearly rigid horizontal members. In particular, we over-
mold laser-perforated acrylic with elastomer during the curing
process of the whole material. The resulting materials have acrylic
inserts in each horizontal segment, thus drastically diminishing
the deformation of the horizontal segments. To incorporate the
perforated acrylic layers in the FE model, we assign the linear
elastic horizontal segment material to have Young’s modulus of
2.8MPa and Poisson’s ratio of 0.37. Young’s modulus value is less
than bulk acrylic due to the elastomer filled holes fabricated in the
acrylic that are found to substantially reduce Young’s modulus
from bulk values. Figure 4a compares the simulation and experi-
mental results for the three-layer material having the acrylic
inserts. While the simulations accurately predict the linear elastic
stiffness, more notable dynamic stiffness changes follow each col-
lapse event compared with the measurements. In addition, the

overall critical force level and critical displacement range are in
good agreement and shift considerably compared with the multi-
layer material without the nearly rigid acrylic inserts. Qualitatively,
the deformation characteristics of the three-layer material with
acrylic inserts agree well comparing FE simulations and measure-
ments, Figure 4e,f.

Furthermore, the linear elastic network approximation of uni-
axial stiffness and critical collapse characteristics is greatly
improved with the introduction of the acrylic inserts. To compute
the linear elastic uniaxial stiffness of the multilayer material with
acrylic inserts, the unit cell stiffness k* is found from unit cell FE
simulations lacking the top and bottom horizontal beam seg-
ments, leading to k*¼ 1.55 kNm�1. In addition, the horizontal
elastomer segments are modeled as rigid layers in the elastic net-
work model. Using these results, the calculated prediction of the
uniaxial stiffness of the multilayer material with acrylic inserts is
2.38 kNm�1 compared with the simulation result of 2.62 kNm�1,
resulting in a 9.3% deviation and a 31.7% improvement in predic-
tion when compared with the nonacrylic material. Similarly, the
approximated critical displacement is computed to be 2.94mm,
whereas the simulated critical displacement is 3.20mm. These
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findings help to uncover the relations among unit cell character-
istics that result in critical collapse events and assembly details that
culminate in multilayer elastomeric materials with distinctive
collapse behaviors for tuning mechanical properties.

Having gained understanding on factors that give rise to assem-
bledmultilayer material properties, we explore functional gradients
of the patterned unit cell geometry as an approach to test the exten-
sibility of the linear elastic network design methodology. In fact,
functional gradients may be realized by any form of local property
variation and not only by the geometric changes studied here in
the layer stacking sequence of unit cells. Intuitively, unit cells hav-
ing different crossed beam thicknesses lead to different critical
collapse characteristics;[26] thus, functional gradients may exem-
plify straightforward ways to cultivate broad control over mechani-
cal properties. Here, we change the crossed beam thicknesses in
layers that include five unit cells each. The material is then an
assembly of three layers. The inset of Figure 5a shows the material
geometry considered here. The crossed beam thickness changes
from 0.8mm in the topmost layer to 1mm in the middle layer
and then to 1.2mm in the bottommost layer. Materials are likewise
fabricated and simulated with and without acrylic inserts in the
horizontal segments.

For the materials in Figure 5, three pronounced collapse events
transpire sequentially at distinct critical displacements and forces.
Furthermore, each collapse and layerwise rotation introduces a
finite loading range where low dynamic stiffness is achieved.
For the material with acrylic inserts, the collapse events are well
defined and may result in negative dynamic stiffness, Figure 5a,
e.g., label A. Dynamic cycling around these collapse events may
yield hysteresis desirable for energy dissipation,[30] although
parametric designs that maximize this functionality are a subject
for continuing research. Comparing the functionally graded mate-
rials with and without the acrylic inserts in Figure 5a, the intro-
duction of the stiffer horizontal segments by the embedded acrylic
globally stiffens the material, so that the collapse events uniformly
occur at higher critical forces and less critical displacement than
without the nearly rigid interfacing segments. Notably, the hori-
zontal segments remain mostly horizontal during and after each

collapse event, Figure 5b,c, justifying the assumptionsmade in the
modeling and elastic network analogy.

The linear elastic network approximation is likewise used to
predict the resulting mechanical properties and critical collapse
characteristics of the functionally graded materials. Full modeling
details are provided in the Supporting Information, and in this
case, the model is more effectively described as piecewise linear
due to the resulting formulation of the predictedmechanical prop-
erties, Figure S2, Supporting Information. Here, the layerwise
uniaxial stiffnesses are different, so that k*1 6¼ k*2 6¼ k*3 . The linear
elastic uniaxial stiffnesses of the unit cells are 1.16, 1.55, and
2.03 kNm�1 for the functionally graded material with acrylic
inserts. Furthermore, following the collapse of each layer, the stiff-
ness of the compacted unit cells is determined from the unit cell
FE results in Figure 2b to likewise calculate the second and third
critical points. These linear elastic uniaxial stiffnesses are 4.95 and
5.15 kNm�1 for the 0.8 and 1.0mm unit cell beam thicknesses,
respectively. Using the network analogy, we estimate the first,
second, and third critical force to be 3.84, 7.58, and 14.80 N, respec-
tively, compared with the simulated critical forces of 3.55, 6.69, and
11.51 N. Thus, the absolute errors in critical forces are 7.5%,
11.7%, and 22.2%. In addition, the first, second, and third esti-
mated critical displacements are 1.53, 5.74, and 9.43mm com-
pared with the simulated critical displacement of 1.60, 5.52, and
7.88mm, respectively. In this case, absolute errors for critical dis-
placement predictions are 4.5%, 3.8%, and 16.4%. It is evident
from the results that the 1D linear elastic network model predicts
the first critical conditions with relatively high accuracy, whereas
the error generally increases with increasing the number of stacked
layers. Such insights give designers a broad freedom to develop
functionally graded elastomeric materials with programmable
mechanical properties and collapse characteristics on the basis
of fundamental information for the material constituents.

In summary, we demonstrate the potential to rationally design
functionally graded elastomeric materials to yield prescribed
mechanical properties, including low dynamic stiffness. We find
analogies between the basic unit cell composition and linear elas-
tic components, inspiring a representation of the whole, layered,
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and finite material as an assembled elastic network. With such
insight, the mechanical properties and points of criticality are rel-
atively straightforward to approximate with sufficient degree of
fidelity to be compared with experimental data. These results
empower the design of intricate and built-up material systems
with pre-programmed properties on the basis of simple calcula-
tions related to measurements from fundamental material con-
stituents. Based on the low dynamic stiffness achieved, these
materials may advance future applications requiring broadband
vibration isolation and controlled wave propagation.[13,15,16]
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1 Elastic Network Model  

1.1 Periodic Multilayer Material 

Using a one-dimensional elastic network analogy derived from Hooke’s law, a model is first 

employed to predict the linear uniaxial stiffness, critical displacements, and critical forces of the 

materials. For sake of example, a material is investigated possessing 3 identically designed layers, 

and thus perfectly periodic, with 5 unit cells per layer, as seen in Figure 4 of the main text. The 

linear elastic uniaxial stiffness of the 
thi  unit cell *

ik  is approximated by Equation (1), where hk  is 

the uniaxial stiffness of the horizontal elastomer segment and xk  is the uniaxial stiffness of the 

crossed beam component. 

1

* 1 1 1
i

h x h

k
k k k

−

 
= + + 
 

 (1) 

In this investigation, we extract *

ik  from the slope of the linear uniaxial regime of the unit cell FE 

simulation, i.e. from Figure 2(b) in the main text. The uniaxial stiffnesses for all units cells in this 

3 layer material example are nominally the same. To determine the critical displacement at which 

a collapse event occurs for the multilayer material, the nodal displacements for each layer  Y  are 
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calculated using Equation (2) by the stiffness matrix  aK  and force vectors F , defined 

respectively in Equation (3) and (4). The vectors in Equations (3) and (4) are multiplied by 5  due 

to the 5 unit cells assembled in parallel for each layer. Here, if  is the critical force for the respective 

unit cell. This is the force at the critical point corresponding to the largest slope change in the 

mechanical properties, such as in Figure 2(b). Similar to the unit cell uniaxial stiffness *

ik , the 

critical force if  is also extracted from unit cell FE simulation results.  

   1[ ]
a

Y K F−=  (2) 

 

* *

1 1

* * * *

1 1 2 2

* * *

2 2 3

0

5

0

a

k k

K k k k k

k k k

 −
 

= − − 
 − − 

 (3) 

  5 0

0

if

F

 
 

=  
 
 

 (4) 

Equation (2) is solved to determine the critical conditions of collapse for the 3 layer material. For 

multilayer materials with any number of periodic layers, only one critical point of the whole 

material occurs. 

1.2 Functionally Graded Multilayer Material 

For multilayer materials with functional gradients characterized by different unit cell designs 

within each layer, multiple collapse events occur, like that shown in Figure 1(c) in the main text. 

The modeling approach described here simplifies the full material behavior to an equivalent 

piecewise linear representation, including linear elastic responses and perfect plateaus of force 

while the layers transition from initially collapsed to fully collapsed and thus self-contacting. 
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Although this modeling approach cannot precisely identify the exact critical points of collapse for 

each layer, the fidelity is good in comparison to the simulation as seen by comparisons presented 

in the main text. Given that this linear elastic network modeling requires minimal effort to compute 

compared to the full field FE simulation, the benefit of this first approximation can be practically 

significant for continued study of functionally graded elastomeric materials exhibiting collapse. 

Here, the functionally graded multilayer material from the main text Figure 5(a) is used as an 

example. The unit cells within each layer are not identical so that * * *

1 2 3k k k  . A sequential 

modeling approach is employed on the basis of several assumptions to be defined here.  

For the first critical point that occurs in this functionally graded material, Equations (1) to (4) are 

used, including all of the appropriate unit cell stiffnesses determined from respective FE 

simulations. To determine the second and third critical points, the force plateau, where 

displacement increases without significant change in force, must be approximated. To determine 

this displacement span, a simplified geometric method is used as illustrated in Figure S1. It is 

assumed that the span of force plateau displacement id  is equal to the difference of height of the 

crossed beams and the height of the compacted cross beam mass. The height of the compacted 

cross beam mass is shown in Figure S1. This height is determined by assuming the cross beam 

mass is fully compressed into a rectangular shape identified by the red dashed box in Figure S1 at 

the fully compacted state. By geometric equality of the uncompressed and fully compressed areas, 

these assumptions lead to the area of the crossed beams iA , calculated in Equation (5), and 

subsequently to the force plateau displacement id  in Equation (6), 

2(2 )
cos(45)

i
i i

a
A h a= −  (5) 
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1( ) ( / )i id h Y A w= − −  (6) 

Here ia  is the crossed beam thickness and 1iY  is the critical displacement of the respective layer. 

This approximation for id  assumes that once the critical force of a given layer is reached, the layer 

of the collapsing unit cells is the only layer that exhibits deformation within the whole functionally 

graded material. This assumption is warranted on the basis of the simulation and experimental 

results, such as in Figure 1(c,e), that demonstrate the collapse of a layer results in near total 

compaction of that respective layer. We also identify *

1c  as the uniaxial stiffness of the unit cell 

after being fully compacted. This stiffness is determined by the post-collapsed slope of the 

corresponding unit cell FE simulation. 

 

Figure S1. Schematic of the geometric method used to approximate the force plateau displacement.  

The deformations in the subsequent linear elastic deformation regime of the graded material are 

determined through Equations (7) to (9). In Equation (9), 2f  is the critical force of the unit cell in 

the second layer. The force 2 12 13( )k Y Y−  is subtracted from 2f  to account for the force exerted on 
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the system from the first linear regime, yielding the force *

2f . The next critical force of collapse 

that occurs in the mechanical properties for uniaxial compression is therefore *

1 2f f+ , Figure S2. 
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 (8) 

*

2 2 2 12 13( )f f k Y Y= − −  (9) 

The process repeats for subsequent layers. For the functionally graded material example with 3 

layers, the final collapse behaviors are characterized by Equations (10) to (12).  
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*

3 3 3 13 23( )f f k Y Y= − +  (12) 
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Figure S2. Illustration of the resulting critical displacement and force using the piecewise defined model.  
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