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the Nonlinear Dynamics of
Thermomechanically Coupled
Structures
In many applications, coupling between thermal and mechanical domains can signifi-
cantly influence structural dynamics. Analytical approaches to study such problems have
previously used assumptions such as a proscribed temperature distribution or one-way
coupling to enable assessments. In contrast, time-stepping numerical simulations have
captured more detailed aspects of multiphysics interactions at the expense of high compu-
tational demands and lack of insight of the underlying physics. To provide a new tool that
closes the knowledge gap and broadens potential for analytical techniques, this research
formulates and analytically solves a thermomechanical beam model considering a combi-
nation of thermal and mechanical excitations that result in extreme nonlinear behaviors.
Validated by experimental evidence, the analytical framework facilitates the prediction
of the nonlinear dynamics of multi-degree-of-freedom structures exhibiting two-way ther-
momechanical coupling. The analysis enables the investigation of mechanical and ther-
momechanical impedance metrics as a means to forecast future nonlinear dynamic
behaviors such as extreme bifurcations. For the first time, characteristics of mechanical
impedance previously reported to predict the onset of dynamic bifurcations in discrete
systems are translated to illuminate the nearness of distributed parameter structures to
bifurcations. In addition, fundamental connections are discovered in the thermomechani-
cal evaluations between nonlinear low amplitude dynamics of the postbuckled beam and
the energetic snap-through vibration that are otherwise hidden by studying displacement
amplitudes alone. [DOI: 10.1115/1.4040243]

1 Introduction

Interactions between thermal and mechanical domains have
considerable relevance in applications ranging from microcantile-
ver sensors [1] to shape memory material systems [2] to skin
panels of hypersonic aircraft [3], among others. Temperature var-
iations may greatly affect the static configuration and subsequent
displacement amplitudes of structures, leading to phenomena
such as changing resonant frequencies [4], buckling [5], and
temperature-dependent material properties [6]. Likewise, mechan-
ical response may subsequently influence the temperature distri-
bution in the structure, such as through changes to the convective
heat transfer coefficient [7,8]. Because of this, studying one- and
two-way coupling between mechanical and thermal domains is
important to assess how the interactions alter the structural
dynamics.

To this end, extensive numerical investigations have been con-
ducted by Culler and McNamara [9] [10], Miller and McNamara
[11], and Miller et al. [12] to assess the interaction between
coupled structural, thermal, and fluid physics. Finite element
methods have been formulated by Daneshjo and Ramezani [13]
and Carrera et al. [14] to study the linear dynamics of laminate
plates exhibiting rich coupling between thermal and mechanical
domains. Reduced-order models have been shown by Matney
et al. [15], Perez et al. [16], and Settimi et al. [17] to characterize
the intricate thermal and mechanical coupling while requiring less

computational expense than numerical integration of a finite ele-
ment model. Yet, the ability to obtain fundamental insight into
thermal–structural interactions via parametric studies may be lim-
ited by the case study-dependent nature and computational costs
of numerical methods. To surmount such shortcomings, analytical
techniques may be employed to study fundamental aspects of ther-
momechanical interactions to obtain insights.

For example, the nonlinear structural vibrations of plates with
prescribed surface temperature distributions have been studied by
Pal [18] and Lee [19]. A single mode approximation for two-way
interaction between structural and thermal responses of plates
undergoing large deflections was studied by Chang and Wan [20],
Chang and Jen [21], and Shu et al. [22]. The authors of this work
recently proposed an analytical framework by which the near- and
far-from-equilibrium nonlinear dynamics of systems with multiple
degrees-of-freedom may be evaluated using an equivalent lineari-
zation scheme [23]. Additionally, mechanical impedance metrics
were revealed to uncover energy transfer mechanisms that help to
predict the onset of dynamic bifurcations [23]. Yet, the analytical
undertaking and impedance studies lack ability to provide insight
into thermomechanical interactions. This research rectifies the
limitations by building up a new analytical framework that
accounts for thermomechanical coupling between the structural
dynamics of a flat beam and the thermal environment. In the pro-
cess, impedance metrics are newly revealed to elucidate the
coupled dynamic behaviors and potentially forecast future
dynamic response. Furthermore, Kovacic et al. [24], Amabili [25],
and Yamaki et al. [26] [27] have shown that initial imperfections
in geometry lead to a connection between intrawell and interwell
dynamic regimes at nonzero frequencies, in contrast with the non-
linear response of symmetric structures [28]. The influence of
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such static asymmetries on the nonlinear structural dynamics is
observed in this research experimentally, and a comparison of
analytical and experimental impedances examines how imperfec-
tions may also affect impedance metrics.

The remainder of this paper is organized as follows: In Sec. 2,
the thermomechanical beam model and solution procedure are
developed and the experimental system is summarized. Then,
experimental and analytical results are presented to verify the
accuracy and utility of the analytical model. New characteristics
of impedance are examined to enlighten the connections between
impedance changes and the onset of bifurcations. The effects of
slowly changing mean thermal load on the beam are discussed in
detail, providing insight into underlying ties among nonlinear
dynamic regimes. Section 6 summarizes the advancements made
in the analytical efforts and the insights uncovered.

2 Thermomechanical Model Formulation and

Solution

2.1 Governing Partial Differential Equations of Motion. In
this research, a thermomechanical model of a flat, thin beam is
employed to elucidate fundamental characteristics of the inter-
actions between the nonlinear structural dynamics and the ther-
mal domain. The equation of motion for the transverse
deflection of a beam w x; tð Þ of length L is given by Eq. (1).
The equation accounts for large beam curvature [29] and an
applied axial force PM. Note that the axial force PM can be
either positive (tensile force) or negative (compressive force).
Equation (1) is coupled into the thermal domain by a thermally
induced bending moment MT x; tð Þ and a thermally induced axial
load PT x; tð Þ
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The parameters in Eq. (1) are Young’s modulus E, moment of
inertia I, volumetric density q, and cross-sectional area A. A trans-
verse force per unit length f x; tð Þ is applied to the beam. As dis-
cussed in Sec. 3, a spring steel beam is considered here. Non-
negligible changes to the material properties of steel occur for
temperature changes on the order of hundreds of degrees Celsius
[30]. Since the range of temperature changes considered in this
research is around 3 �C, temperature-dependent material proper-
ties are neglected in the present model formulation.

Equation (1) is coupled with the equation of motion (2) for the
thermal moment MT x; tð Þ along the beam length
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In Eq. (2), j, g, and l are parameters that depend upon the mate-
rial properties and beam geometry [31], and q0 x; tð Þ and p0 x; tð Þ
are the heat fluxes over the top and bottom surfaces of the beam,
respectively. The parameters j, g, and l are defined in Eq. (3)
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In Eq. (3), k0 is the thermal conductivity, ce is the specific heat at
constant strain, Tref is the reference temperature, B is the bulk
modulus, G is the shear modulus of the beam, a is the coefficient
of linear thermal expansion, b is the width of the beam, and h is
the thickness of the beam [32]. The thermal moment MT x; tð Þ in
Eqs. (1) and (2) and thermally induced axial load PT x; tð Þ are
given by Eqs. (4) and (5), respectively [33]

MT x; tð Þ ¼ Eab

ðh=2

�h=2

zT x; z; tð Þdz (4)

PT x; tð Þ ¼ Eab

ðh=2

�h=2
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In Eqs. (4) and (5), T x; z; tð Þ is the temperature distribution in the
beam. Assuming a linear temperature distribution through the
thickness of the thin beam in the form of Eq. (6), which is accu-
rate for one-dimensional steady-state heat conduction and
temperature-independent thermal properties [34], Eqs. (4) and (5)
are expressed using Eqs. (7) and (8), respectively
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In Eqs. (7) and (8), h x; tð Þ ¼ Tf x; tð Þ � T0 x; tð Þ is the temperature
difference between the top and bottom surfaces of the beam
through the thickness. In Eqs. (6) and (8), Tm is the mean tempera-
ture of the beam relative to a reference temperature Tref , about
which the temperature difference h x; tð Þ varies.

The Ritz method is used to derive governing equations that are
solved to obtain approximate solutions to the system described by
Eqs. (1) and (2). The Ritz method expansions used here for the
beam displacement and temperature difference are given by Eqs.
(9) and (10), respectively

w x; tð Þ ¼
XN

j¼1

wj tð Þbj xð Þ (9)

h x; tð Þ ¼
XM

j¼1

sj tð Þ/j xð Þ (10)

The trial functions bj xð Þ and /j xð Þ are chosen to satisfy the essen-
tial mechanical and thermal boundary conditions, respectively. As
discussed in Sec. 3, the experimental system used to verify this
model has clamped and isothermal boundary conditions. The hier-
archical function set proposed by Beslin and Nicolas [35] is used
to meet the clamped boundary conditions for the beam. The iso-
thermal boundary conditions correspond to a known temperature
at both ends equal to Tm. Sinusoids are often used in analysis to
meet isothermal boundary conditions [19,20], so the temperature
trial functions are presumed to be of the form sin2 jpx=Lð Þ where j
is the index.

2.2 Derivation of Ordinary Differential Equations for
Generalized Displacements. This Sec. 2.2 derives the ordinary
differential equations (ODEs) that govern the response of the
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generalized displacements wj tð Þ. Substituting the thermal moment
(7) and thermal axial load (8) into Eq. (1) yields the following
equation:
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In Eq. (11), Q ¼ Eabh2=12 is a constant of proportionality
between the thermal moment MT and the temperature difference
h. Substituting the expansions (9) and (10) into Eq. (11), multiply-
ing by the ith trial function bi xð Þ, and integrating over the length
L of the beam results in Eq. (12).

Mij
€wj tð Þ þ cKij

_wj tð Þ þ Kijwj tð Þ þ K 1ð Þ
ij wj tð Þ þ K thð Þ

ijk sj tð Þwk tð Þ

þK 3ð Þ
ijklwj tð Þwk tð Þwl tð Þ ¼ Fi tð Þ � vijsj tð Þ

(12)

In Eq. (12), the repeated indices entail summation over the respec-
tive index, using standard index notation. The coefficients in
Eq. (12) are defined by the integrals (13)–(19)
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Damping proportional to the linear stiffness matrix, using the rela-
tionship C½ � ¼ c K½ �, is introduced in Eq. (12). Note that throughout
the results presented in Secs. 4 and 5, the proportionality constant c
is taken to be 15 ms. The selection of c may greatly affect the ana-
lytically predicted nonlinear dynamics. The proportionality con-
stant c¼ 15 ms in the analysis yields predictions in agreement with
the experimental data, thus supporting its selection.

Equation (12) is the ith equation of the N ODEs governing the
motion of the generalized displacements wn tð Þ. Nonlinearities are

manifest via terms with matrices K thð Þ
ijk and K 3ð Þ

ijkl that signify the
roles of nonlinear thermomechanical coupling and nonlinear beam
bending.

2.3 Derivation of Ordinary Differential Equations for
Generalized Temperatures. This Sec. 2.3 derives the ODEs that
govern the response of the thermal generalized temperatures sn tð Þ
and couple to Eq. (12). Substituting the thermal moment (7) into
Eq. (2) yields the following equation:
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Substituting the expansions (9) and (10) into Eq. (20), multiplying
by the ith trial function /i xð Þ, and integrating over the length L of
the beam yields the following equation:

Bij _sj tð Þ þ ~Kijsj tð Þ þ Kij
_wj tð Þ ¼ Pi tð Þ (21)

The coefficients in Eq. (21) are defined by the integrals (22)–(25).
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Equation (21) is the ith equation of the M ODEs governing the
motion of the generalized temperature sm tð Þ. Equation (21) is
solved with Eq. (12) to obtain an approximate solution to Eqs. (1)
and (2), and thus to yield a thermomechanical characterization of
the beam deflection and temperature distribution when subjected
to external forces and heat fluxes.

2.4 Solution Procedure and Impedance Derivation. Equa-
tions (12) and (21) are used to form a system of N þM equations
that are expressed in Eq. (26) and condensed into Eq. (27)
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ijklyjykyl ¼ F̂i (27)

In Eq. (27), y ¼ w s

 �T

is a vector of the mechanical and thermal

generalized coordinates. The matrices or vectors in Eq. (27) with
over-hat markers are identified from the respective terms in Eq.
(26).

Principles of harmonic or stochastic linearization [36] are uti-
lized to transform the nonlinear equations (27) into equivalent lin-
ear equations (28). The equivalent stiffness matrices of Eq. (28)
are defined by Eq. (29).
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In this research, the nonlinear dynamics of a beam subjected to

harmonic excitation of the form F̂ ¼ f̂ s þ f̂ ejxt is studied. The

heat flux applied to the beam is constant and is therefore contained

in the static component of force f̂ s. To calculate the entries of Eq.

(29), solutions of the form y ¼ qþ rejxt are assumed, where q are

the offsets and r are the complex-valued amplitudes of the gener-
alized coordinates. This assumption provides single-harmonic
approximate solutions to the steady-state forced vibrations prob-
lem and is accurate for most experimentally observed dynamics
[28]. Substituting the assumed solution into Eq. (27) and integrat-
ing over one period of the harmonic excitation force 2p=x results
in Eq. (30). Substituting the assumed solution into Eq. (28) and

isolating the coefficient of parameters dependent upon ejxt yields
Eq. (31)
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In Eq. (31), djk is the Kronecker delta function. The coupled alge-
braic equations (30) and (31) are solved for the offsets q and com-
plex amplitudes r. Then, the physical displacement w x; tð Þ and
thermal difference h x; tð Þ are reconstructed by Eqs. (9) and (10),
respectively. Thus, the solution procedure articulated in this Sec.
2.4 newly enables the analytical prediction of the nonlinear
structural and thermal dynamics of a flat beam wherein two-way
thermomechanical coupling is prevalent. The analysis provides a
bridge between the previous nonlinear analyses [20,21] and the
fidelity of numerical simulations [9,10] and reduced-order models
formulations [17] that exhibit two-way thermal–structural
interactions.

Finally, the mechanical and thermomechanical impedances,
denoted by their respective MM and TM subscripts, are deter-
mined through Eq. (32)

ZMM ¼
XN
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Fibi

jxri
(32a)
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XM
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 !�
h
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 !
(32b)

Mechanical and thermomechanical impedances are reconstructed
at a point along the beam through the trial functions bi and /i.
Mechanical impedance ZMM, defined in Eq. (32a), is the complex
ratio of the input force to the transverse velocity of the beam at a
point location. Thermomechanical impedance ZTM, defined in Eq.
(32b), is the complex ratio of the static thermal gradient at a point
on the beam to the transverse velocity of the beam at another
location.

3 Experimental Setup

The experimental system used to verify the analytical modeling
effort of Secs. 2.1 to 2.4 consists of an initially flat spring steel
beam constrained at either end by stainless steel clamps. A photo-
graph of the experimental setup is shown in Fig. 1(a), while Fig.
1(b) provides a schematic. The beam is 0.386 mm thick and
12.7 mm wide. The thickness of the beam is defined as the small-
est dimension and is parallel to the direction of the shaker table
acceleration, indicated by the white arrow in Fig. 1(a). The length
of the beam between the clamped ends is 291 mm. The beam is
subjected to a uniform base acceleration with slowly varying fre-
quency via the shaker table (APS 400) and amplifier (Crown
XLS2500). The shaker acceleration is measured by an accelerom-
eter (PCB 333B40) and controlled by a vibration controller
(Vibration Research VR9500). A laser (Micro-Epsilon optoNCDT
2300) measures the transverse displacement of the beam at a loca-
tion 41% along the beam length. The laser data sampling rate is
4096 Hz. A heat lamp applies a thermal load, focused on the cen-
ter of the beam, which causes the beam to buckle. Since the beam
is heated primarily in the center, the static temperature loading
can be reasonably approximated as DT sin2 px=Lð Þ. The static tem-
perature distribution leads to the mean temperature of the beam to
be estimated as Tm ¼ DT=2, where DT is the maximum transverse
temperature rise that occurs at the beam center. Four type K ther-
mocouples are positioned in a horizontal plane with the beam as
shown in Fig. 1(b). The sampling rate of the thermocouples is
2 Hz. Thermocouples labeled 1, 2, and 4 in Fig. 1 are offset
30 mm from the unbuckled position of the beam. The transverse
temperature difference h is estimated by thermocouples 1 and 2.
A handheld infrared temperature probe is used to validate the tem-
perature gradient along the beam length and to confirm the accu-
racy of the approximations made by thermocouple measurement.
The positioning of the thermocouples from the heat lamp source
provides an approximation of the heat flux applied to the beam.

Fig. 1 Experimental system: (a) photograph and (b) schematic
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Excitation frequency sweeps of base acceleration are conducted
at a rate of 0.05 Hz/s. Such experiments are conducted with
increasing and decreasing rates from 10 to 30 Hz and with con-
stant base acceleration amplitude. In Sec. 4, the experimental
results at two amplitudes of base acceleration are compared with
corresponding analytical results, and new insight into aspects of
impedance is obtained.

4 Experimental Validation of Analytical Formulation

Two cases are considered to validate the analytical formulation
of Sec. 2. The heat lamp applies a heat flux of approximately 0.98
W/m2 to the surface of the beam, resulting in a static DT increase
of 2.2 K with respect to the reference temperature 298 K. The
thermal load leads the beam to buckle and induces a fundamental
linear natural frequency near 22 Hz. Three mechanical generalized
coordinates (N ¼ 3) are used in the analysis, since this selection
provides good quantitative agreement between the experimental
and analytical fundamental natural frequency, which is the focus
in this research. Two thermal generalized coordinates (M ¼ 2)
capture the thermomechanical coupling effects manifest in the
beam dynamics and demonstrate the ability of the analysis to
account for a multimode expansion in the thermal domain. Table 1
summarizes the parameters utilized in the analytical model. In the
first validation case, a base acceleration amplitude of 0.1 m/s2 is
applied to the beam.

Figure 2 compares the analytical and experimental results for
the first validation case. The time-domain displacement measure-
ment of the beam is converted into the frequency domain via fast
Fourier transform. The experimental displacement amplitudes pre-
sented in Fig. 2(a) are the frequency response of the relative beam
displacement with respect to the motion of the shaker table at the
excitation frequency. The 0.1 m/s2 amplitude of base acceleration
induces softening in the first resonance frequency of the beam,
seen in the experimental and analytical displacement amplitudes
of Figs. 2(a) and 2(d), respectively. The displacement amplitudes
presented in Figs. 2(a) and 2(d) and in all subsequent figures dis-
play only the amplitude of the steady-state oscillations, and do not
refer to the static equilibria of the beam. Only intrawell dynamics,
oscillations about a single stable equilibrium of a postbuckled
structure, are manifest for this amplitude of base acceleration. The
softening leads to coexisting low- and high-amplitude intrawell
dynamics around 20 Hz that are separated by bifurcations. In Fig. 2,
stars denote the frequency at which a vertical tangency appears in
the low amplitude intrawell regime and corresponds to a saddle-
node bifurcation. Although dynamic stability is not assessed in the
results of Fig. 2, it is known that analytical solutions in the low
amplitude intrawell regime of Fig. 2(d) with amplitudes larger than
that of the vertical tangency bifurcation are unstable [28]. This
observation is supported by the lack of such results in the data, Fig.
2(a). The experimental and analytical results exhibit qualitative and
quantitative agreement, although the highest intrawell amplitude
exhibited in the experiment is twice as large as that predicted ana-
lytically. The discrepancy is likely due to imperfections in the
experimental beam, which is explained later in Sec. 4.

Figures 2(b) and 2(e) present the experimental and analytical
mechanical impedances ZMM, while Figs. 2(c) and 2(f) show the
thermomechanical impedances ZTM. An important trend exhibited
in the experimental impedances is predicted by the analysis. The
bifurcations that occur during the transition between low and high
amplitude intrawell dynamics correspond to jumps across zero
reactance, the imaginary component of impedance. This behavior
is clearly borne out in both analysis and experiment in Figs. 2(b),
2(c), 2(e), and 2(f). Specifically, the high-amplitude intrawell
dynamic approaches zero reactance prior to bifurcation, shown by
the light gray arrows in Fig. 2. Meanwhile, the bifurcation in the
low amplitude dynamic denoted by stars in Fig. 2 occurs at a neg-
ative reactance. The difference of this bifurcation from zero react-
ance is marked in the impedance plots of Fig. 2 by black, double-
sided arrows. The experimental and analytical evidence

underscores that the bifurcation from low to high amplitude intra-
well oscillations occurs as a jump across the zero reactance line
from absolute values of reactance greater than the opposite bifur-
cation from high to low oscillation amplitudes. Thus, an overall
comparison of the results in Fig. 2 between experiment (a)–(c)
and analysis (d)-(f) indicates that the analysis accurately charac-
terizes the nonlinear behavior of the softening intrawell dynamic.
The findings also confirm that dynamic bifurcations of distributed
parameter systems between intrawell regimes correspond to van-
ishing reactance of both mechanical and thermomechanical
impedance, previously reported for mechanical impedance of dis-
crete systems [23,37].

Results from the second experimental case utilized in this
research for analytical validation are presented in Fig. 3. The
same thermal conditions from the results of Fig. 2 are used, while
the amplitude of base acceleration by the shaker table is 1.0 m/s2.
The increased excitation level leads to greater softening of the
22 Hz resonance. Additionally, snap-through dynamics, or high
amplitude oscillations between multiple static equilibria of a post-
buckled structure, are manifest and are denoted in the displace-
ment amplitude plots of Figs. 3(a) and 3(d) by solid black curves.
The greatest qualitative difference between the experimental and
analytical displacement amplitudes in Figs. 3(a) and 3(d) is that
the higher amplitude intrawell dynamic in the experiments bends
toward the snap-through regime. The snap-through dynamic
appears around 16 Hz. These nuances are in contrast to the ana-
lytically predicted snap-through dynamic, denoted in Fig. 3(d) by
solid black curves, which appears theoretically at zero frequency
[28], although the frequency span of Fig. 3(d) is bound between
10 and 30 Hz to correspond to the experimental results.

The analytical mechanical and thermomechanical impedance
results of Figs. 3(e) and 3(f) reveal that for decreasing frequency,
intrawell and snap-through regimes approach each other. The
nearness is observed by noting the proximity of the square
markers in Figs. 3(e) and 3(f), which denote dynamics at 1 Hz.
The convergence of intrawell and snap-through dynamics in the
impedance plane suggests an underlying connection between
these otherwise distinct dynamic regimes at zero frequency, or the
condition of rigid body motion. The experimental results, mean-
while, are consistent with results reported for asymmetric Duffing
oscillators [24] and plates with initial imperfections [25]. In other
words, an imperfection or initial curvature in the beam produces
asymmetry and results in a veering of intrawell responses toward
the snap-through displacement amplitudes in Fig. 3(a). Initial
beam curvature is not considered in the analysis at this stage of
development, which explains the less confined analytical imped-
ance predictions in Figs. 3(e) and 3(f) compared to the measure-
ments in Figs. 3(b) and 3(c). Yet, the comparison between Figs.
3(b) and 3(c) and Figs. 3(e) and 3(f) indicates that impedances are
influenced by initial imperfections in a manner analogous to the
displacement amplitudes of asymmetric Duffing oscillators [24]
by virtue of the non-zero frequency connection between intrawell
and snap-through dynamics. Despite the deviation associated with
asymmetry, comparisons between the experimental and analytical
displacement amplitudes and impedance results of Figs. 2 and 3
confirm that the analytical model suitably characterizes the rich,
nonlinear dynamic responses of the harmonically forced beam in
a thermomechanical environment that is analyzed here for the first
time. Future efforts will account for the nuances associated with
asymmetry in the mechanical configuration of the beam.

The qualitative discrepancy observed in Fig. 3 between the
experimental (a)–(c) and analytical (d)–(f) results is attributed to

Table 1 Beam material properties used in the analysis

E
(GPa)

q
(kg/m3)

k0

(W/m K)
ce

(GJ/K)
a� 106

(K�1)
B

(GPa)
G

(GPa)

200 7850 36 10 12 160 77
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initial imperfections in the experimental beam. Other sources of
error, such as the damping model and proportionality constant dis-
cussed in Sec. 2.2, may result in deviations. Yet, it is difficult to
decompose the relative errors associated with damping and asym-
metry. The latter is anticipated to be the greatest contributor to the
qualitative difference since the experimental results of Fig. 3(a)
more closely resemble those of an imperfect duffing oscillator
[24].

The analytical impedance results of Figs. 2 and 3 display devia-
tions from the underlying linear impedances that correlate with
the deviation of the displacement amplitude from the linear
dynamics. In particular, the softening of the resonant peak

corresponds to a “stretching out” of the analytical results along
the line of zero reactance, as particularly observed in Figs. 2(e)
and 2(f). The deviation from the underlying linear impedances
becomes more significant as the deviation from the underlying lin-
ear displacement amplitude increases due to increasing base
acceleration. Eventually, the low- and high-amplitude intrawell
regimes separate and diverge in the impedance plane, denoted in
Fig. 3 by the gray double-sided arrows. The onset of separation of
intrawell regimes coincides with the emergence of snap-through
dynamics that connect to the two intrawell dynamics in the com-
plex impedance plane of Figs. 3(e) and 3(f). The observed changes
from the linear impedance results indicate that when interwell

Fig. 2 (a)–(c) Experimental displacement amplitude, mechanical impedance, and thermomechanical impedance. (d)–(f) Analyti-
cal displacement amplitude, mechanical impedance, and thermomechanical impedance. Stars denote the location of a vertical
tangency bifurcation in the lower amplitude intrawell regime. Base acceleration is 0.1 m/s2.

Fig. 3 (a)–(c) Experimental displacement amplitude, mechanical impedance, and thermomechanical impedance. (d)–(f) Analyt-
ical displacement amplitude, mechanical impedance, and thermomechanical impedance. Stars denote the location of a vertical
tangency bifurcation in the lower amplitude intrawell regime. Base acceleration is 1.0 m/s2.
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dynamics are present, the saddle-node bifurcation that terminates
snap-through corresponds to vanishing reactance. In addition, the
bifurcations in the intrawell regime [38] may be forecasted by
observing the deviations from the underlying linear impedance as
zero reactance is approached in the complex impedance plane.

The mechanical and thermomechanical impedances of Figs. 2
and 3 exhibit similar trends, and therefore may both be used to
forecast dynamic bifurcations. Yet, both characterize distinct
aspects of the dynamics. Mechanical impedance relates the input
force to the velocity amplitude and implicates energy manage-
ment mechanisms [23], while thermomechanical impedance is a
multiphysics transfer function. The similarity stems from their
shared dependence on beam velocity and the constant phase of the
base acceleration. The unique influence of thermal effects on the
steady-state dynamics and energy of the beam is explored in
Sec. 5.

5 Influence of Thermal Loads

In this Sec. 5, the maximum transverse temperature elevation
DT is varied for a constant base acceleration amplitude and fre-
quency. The effects of this changing temperature on the steady-
state displacement amplitude, mechanical impedance, and thermo-
mechanical impedance are examined.

5.1 Influence of Temperature Variation on Displacement
Amplitude. Figure 4 shows the analytical displacement amplitude
predicted for a change in thermal load. The base acceleration is
held constant at 1 m/s2 and 16 Hz. A dashed vertical line is shown
for DT of 2.2 K, which corresponds to the dashed vertical line
depicted in Fig. 3(d) at 16 Hz. Figure 4 indicates the presence of
two linear resonances at 0.87 K and 2.03 K, which correspond to
pre- and postbuckled conditions, respectively. A cusp is observed
in the linear dynamic and lower amplitude nonlinear behaviors at
1.76 K, corresponding to the buckling temperature for the beam
and denoted by a triangle in Fig. 4. Yet, this cusp does not mani-
fest in the coexisting large amplitude nonlinear dynamic regime.
Instead, the higher amplitude of nonlinear displacement exhibits a
more continuous change in amplitude as the temperature differ-
ence changes around the buckling temperature, suggesting a close
underlying connection between pre- and post-buckling large
amplitude dynamics of the beam.

The analytical displacement amplitude shown in Fig. 4 indi-
cates that the pre- and postbuckled “thermal resonances” exhibit
hardening characteristics. The hardening of the prebuckled ther-
mal resonance, originally around 0.87 K, extends into the post-
buckled regime. For the thermomechanically buckled beam, such
large amplitude deflections become the snap-through dynamic.
Such phenomenon is observed in Fig. 4 by noting that the inter-
section of the hardening of the prebuckled resonance and the
dashed line corresponding to 2.2 K manifests as snap-through at
16 Hz in the frequency sweep of Fig. 3(d). The snap-through
dynamic is marked in both Fig. 3(d) and Fig. 4 by circles. The
emergence of snap-through from the large amplitude vibrations of
the prebuckled beam is consistent with the notion that snap-
through is a nonresonant phenomenon and requires increased
amplitudes of input force to sustain the behavior at higher fre-
quencies. Furthermore, these findings suggest a fundamental con-
nection between the high amplitude dynamic of the prebuckled
structure and the interwell regime of the subsequent multistable
structure. Such an underlying connection may also help elucidate
the way by which the snap-through dynamics emerge from and
connect the separate intrawell regimes in the impedance results of
Fig. 3.

The potential energy of the unforced beam is utilized to
uncover the connection between the high amplitude dynamics of
the pre- and postbuckled structure and to further illuminate the
cusp denoted by the triangle in Fig. 4. The expression for this
potential energy is given by Eq. (33), which considers the energy
resulting from mechanical strain, the potential energy of the

induced thermal axial load PT , and from the induced thermal
moment MT . The total potential energy of the unforced beam is
shown in Fig. 5(a).
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The cusp in Fig. 4 occurs when the beam transitions from mono-
stable to bistable at 1.76 K, denoted in Fig. 5 as DTcr . Since the
current analytical formulation does not account for initial beam
curvature, the single equilibrium of the monostable beam occurs
at zero transverse beam displacement, independent of tempera-
ture. As the temperature is increased beyond this value of thermo-
mechanical buckling, the potential well of the beam is seen in Fig.
5(a) to change from possessing one minimum (in the monostable
case) to two minima (in the bistable case). This is a change in the
local topology at the bottom of the potential well and corresponds
to a pitchfork bifurcation. For snap-through oscillations of the
beam to be induced, the input mechanical and thermal energies
must be sufficiently great for the beam to transition between the
two local minima of potential energy by exceeding the potential
energy difference between wells in Fig. 5(a).

The curvature of each potential energy component with respect
to the transverse beam displacement is presented in Fig. 5(b). The
mechanical component of the potential energy curvature is the
mostly parabolic surface with grid lines, while the thermal compo-
nent is the plane originating at zero curvature when DT is zero.
The negative of the thermal component of potential energy curva-
ture is plotted in order to compare the relative sizes of each com-
ponent. In Fig. 5(b), regions where the mechanical curvature is
greater than the thermal curvature indicate locations where the
curvature of the potential well in Fig. 5(a) is always positive. Con-
versely, when the thermal curvature exceeds the mechanical cur-
vature, the system may exhibit multiple states of stable
equilibrium by having a nonconvex region of potential energy.
The fact that the thermal component of curvature changes with
increasing DT while the mechanical component remains constant
illustrates that the mechanical strain energy is independent of tem-
perature change, and clarifies that the thermal aspects of the
potential energy depicted in Fig. 5(a) lead to the observed changes
in the dynamic behavior of the beam. Additionally, it is seen that
at DTcr , the total curvature of the potential energy at the single

Fig. 4 Analytical displacement amplitude with varying maxi-
mum transverse temperature rise. Beam subjected to constant
base acceleration of 1.0 m/s2 at 16 Hz.
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static equilibrium is zero since the curvatures of the mechanical
and thermal components of potential energy are equal and oppo-
site at this point. This produces a stable static equilibrium exhibit-
ing critical slowing down that becomes unstable for increasing DT
as the pitchfork bifurcation occurs [39]. Beyond DTcr , the inter-
section of the mechanical and thermal curvatures in Fig. 5(b)
denotes inflection points of the potential energy surface in Fig.
5(a). The stable equilibria of the bistable beam exist for transverse
beam displacements larger than the transverse beam displace-
ments of these inflection points, since for DT larger than DTcr , the
inflection points separate the stable and unstable equilibria.

5.2 Influence of Temperature Variation on Mechanical
and Thermomechanical Impedances. Figure 6 presents the (a)
mechanical and (b) thermomechanical impedances corresponding
to the results of Fig. 4 to examine the influence of change in maxi-
mum transverse temperature elevation DT. The impedances in
Fig. 6 are plotted parametrically where the changing parameter is
DT. While both mechanical and thermomechanical impedances
exhibit similar trends, the main qualitative difference is that for
increasing DT starting at 0 K, the thermomechanical impedance
results begin at the origin of the complex impedance plane
because the beam is at the reference temperature Tref at this point.
The cusp discussed in Sec. 5.1 is evident in the linear and nonlin-
ear results presented in Fig. 6, denoted by triangles. By the non-
smooth character of the cusp, a clear transition to a qualitatively
different dynamic regime is suggested. Furthermore, the snap-
through regime denoted by the circular marker in Fig. 6 is in close
proximity to the intrawell impedance results near the bifurcation
designated by the star markers in Fig. 6 and close to the analytical
impedance results after the cusp occurs.

The proximity of interwell and intrawell impedances suggests
that the hardening of the prebuckled thermal resonance is the ori-
gin of the separation that occurs between the intrawell regimes in
the impedance plots of Fig. 3, which was inferred in Sec. 5.1. The
snap-through regime denoted by gray arrows in Fig. 6 terminates
when the reactances of mechanical and thermomechanical impe-
dances vanish. This behavior qualitatively agrees with trends in
the snap-through dynamics of the frequency sweeps presented in
Sec. 4. Thus, vanishing reactance is seen to predict the cessation
of snap-through dynamics for both increasing excitation fre-
quency x and temperature elevation DT.

Since the base acceleration amplitude and excitation frequency
are held constant, the trends exhibited in the mechanical imped-
ance of Fig. 6(a) are due only to variations in the steady-state
velocity amplitude. Velocity changes are a direct result of the var-
iation in temperature, which is shown in Fig. 5 to produce large
differences in the shape of the potential energy well of the beam.
In turn, the shape of the potential energy at static equilibrium
determines how dynamic energy is transferred through the system
and governs the sustainability of snap-through dynamics. The
same trend of vanishing reactance is exhibited in the mechanical
and thermomechanical impedances of Fig. 6 due to the influence
that elevated temperature exerts on the velocity amplitude. Conse-
quently, vanishing reactance may be used to forecast the termina-
tion of snap-through regimes. Thus, monitoring either force or
temperature may provide such predictive capacity in applications
with nonconstant temperature. The choice between a force or

Fig. 5 (a) Potential energy of the unforced thermomechanical
beam. Transition from monostable to bistable occurs at DTcr. (b)
curvature of potential energy well with respect to transverse
displacement, separated by mechanical and thermal
components.

Fig. 6 (a) Mechanical and (b) thermomechanical impedances
for increasing DT. Base acceleration is constant at 1.0 m/s2 and
16 Hz. Triangle, circle, and star markers correspond to the same
markers in Fig. 4.
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temperature measuring device would depend upon the ease of
implementation in a particular application.

6 Conclusions

This research formulates an analytical model for a flat, thermo-
mechanically loaded beam. Analytical predictions to the thermal
and structural responses of the beam are obtained by equivalent lin-
earization techniques with a multimode expansion in mechanical
and thermal coordinates. Comparisons with comprehensive experi-
mental results verify the efficacy of the analytical approach to char-
acterize thermomechanical coupling influences on the nonlinear
dynamics of a thermally buckled, harmonically excited beam. The
analytical formulation also facilitates the study of temperature
influences on structural displacement amplitudes corresponding to
each dynamic regime of nonlinear behavior. An examination of
mechanical and thermomechanical impedances indicates that bifur-
cations between intrawell dynamics correspond to jumps across
zero reactance for distributed parameter systems. Additionally, the
saddle-node bifurcation that terminates snap-through regimes is
seen to exhibit vanishing mechanical and thermomechanical reac-
tances for variation in excitation frequency and in temperature. In
addition, fundamental and continuous connections are discovered
in the thermomechanical impedance planes between nonlinear low
amplitude dynamics of the postbuckled beam and the energetic
snap-through vibration that are otherwise discontinuous by study-
ing displacement amplitudes alone. The analytical methodology
articulated here may be extended to encompass a broader class of
nonlinear structural systems subjected to thermomechanical cou-
pling. By way of direct connections to experimentally measurable
impedance values, this research forms a future tool that may be
used to forecast extreme dynamics of structures operating in com-
bined thermal and mechanical loading environments.
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