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An Experimental
Characterization of the
Impedance and Spectral Content
of Multistable Structural
Responses During Dynamic
Bifurcations
The ability to predict multistable structural dynamics challenges the development of
future high-performance air vehicles that will be subjected to extreme multiphysics loads.
To aid in the establishment of methodologies that characterize the response states of har-
monically excited multistable structures, a catalog of empirical and practical evidence is
necessary. Recent research has suggested that evolving aspects of mechanical impedance
metrics may be correlated with measurable quantities, although their relation to bifurca-
tions of the dynamic response remains incompletely understood. Motivated to begin
establishing such knowledge base, this research seeks to construct a library of experi-
mental evidence from which to draw generalized insights on the impedance- and
spectral-changing trends of multistable structures undergoing severe nonlinear response
due to harmonic loading. A connection between vanishing real and imaginary compo-
nents of impedance and dynamic bifurcations is uncovered. In the process, a technique to
forecast dynamic bifurcations is articulated, which utilizes mechanical impedance meas-
urements in real-time to monitor the susceptibility of postbuckled structural components
to undergo dynamic bifurcations. An examination of higher-order harmonics of the
dynamic responses further illuminates the nearness to bifurcations and may help classify
the precise response regime. Thus, by correlating the real-time impedance and spectral
response with analytical predictions, a future tool may be established for condition moni-
toring and diagnosis. [DOI: 10.1115/1.4039533]

1 Introduction

Future generation of high-performance, lightweight aircraft
may provide significant advantages to many applications [1,2].
One of the long-standing challenges of such aerostructural formu-
lation is that the acoustic, thermal, and mechanical loads [3] may
stress the lightweight, slender aircraft components into post-
buckled, multistable configurations [4]. For panel structures, such
phenomenon is known as skin-buckling [5]. In response to diverse
excitation energies, multistable structures may exhibit snap-
through dynamics, which are large-amplitude oscillations between
the stable static equilibria of the structure [6]. In addition to
decreased fatigue life or structural failure [7], the large deflections
of snap-through on aircraft panels may lead to performance and
life degradation of the air-breathing propulsion systems [8,9].

Thus, the accurate prediction of snap-through dynamics is criti-
cal to the operation of future high-performance air vehicles. To
this end, Culler and McNamara [10,11] and Matney et al. [12]
have made advancements toward a simulation-based framework
by which the complex multiphysics interactions may be investi-
gated. Yet, the large computational costs incurred by numerical
methods have encouraged researchers to probe the dynamics of
lightly buckled bistable beams and postbuckled oscillators
because the low-dimensional dynamic systems are favorable to
obtain underlying insights associated with bifurcations and

snap-through response through analytical methods. For example,
Wiebe et al. [13] examined a single degree-of-freedom (DOF)
Duffing-type oscillator to understand the conditions that cause a
multi-DOF curved panel to exhibit snap-through buckling. Indeed,
the numerous fields in which bistable oscillators may be employed
and the relative simplicity of bistable platforms compared to more
general multistable systems have led to established analytical
methods to study and predict the dynamic responses of bistable
systems [14–16].

On the other hand, it is difficult to generalize the methods of
analysis for single-DOF systems to structures of higher dimen-
sion, such as for buckled panels, particularly when multiple nonli-
nearities are present [17] and when responses may be far from
equilibria [18]. Seeking to address the challenge, recent advance-
ments have been made in the analytical prediction of multi-DOF
nonlinear systems using describing functions [19–21]. Yet, these
methods rely on assumptions of input/output similarities and are
thus inadequate to predict the coexistence of near-to- and far-
from-equilibrium dynamic responses, such as the potential for
either small excursions from equilibria or large amplitude snap-
through in multistable structures.

To facilitate the analytical prediction of nonlinear dynamic
responses potentially far-from-equilibria in multi-DOF systems,
the authors recently proposed and validated a semi-analytical
framework to solve the governing equations of motion when the
systems are driven by harmonic inputs [22]. Moreover, the
method obtains mechanical impedance metrics that provide
insight on dynamic state integrity, including the onset of transition
between coexisting dynamic responses [22]. While impedance has
been used to study linear structural [23], electrical [24], and
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acoustic systems [25], it has not yet been widely used to study
nonlinear structural systems. Approaches of evaluating receptance
in harmonically driven nonlinear structures [16,26,27] provide a
counterpart view to impedance. Yet, the use of mechanical imped-
ance specifically helps identify energy transfer paths of built-up
multistable structures. This becomes a potential means to charac-
terize structural integrity in the vicinity of dynamic bifurcations
due to the energy-based formulation, which is not revealed by
receptance metrics. To enable such understanding, a comprehen-
sive investigation of the newly identified energy management
mechanisms observed in practice is required. Because of the chal-
lenges encountered to generalize ideal analytical insights to the
context of practical multistable structures, a consistent set of
experimental data to catalog such dynamic behaviors and observ-
able impedance metrics is motivated.

This research meets the need by experimentally examining the
impedance and frequency content of the dynamic response of a
built-up multistable structure subjected to harmonic excitation,
and characterizing such energy management metrics when the
structural system undergoes dynamic bifurcations. The justifica-
tion of close attention to the bifurcation events is that such sudden
transitions into new dynamic regimes may be detrimental to any
structural system in practice due to the increased local stresses
associated with large amplitude deflections. Through the experi-
mental studies undertaken in this report, methods to predict these
dynamic regime changes in practice are articulated, which may
aid in the real-time health monitoring of aerostructural systems
when implemented in concert with modeling efforts [28].

The remainder of this paper is organized as follows: In Sec. 2,
the archetypal multistable structure used in this research and the
experimental methodology are described. Then, in Sec. 3, experi-
mental evidence is presented and discussed in the context of
mechanical impedance and response frequency characteristics.
These observations are then used in Sec. 4 to articulate new meth-
odologies that may be used to predict dynamic bifurcations in real
time and distinguish between distinct dynamic regimes.

2 Experimental Platform and Methodology

Description

A similar experimental system as that used in Ref. [22] is
implemented in this research to characterize the impedance of
built-up multistable structures subjected to harmonic excitation.
This system is chosen since it is a low-order representation of a
more realistic multistable structure while still allowing generalized
insight to be uncovered. A schematic is given in Fig. 1. The system
consists of three simply supported and elastically coupled beams.
Each beam is lightly postbuckled via fine-threaded load screws that
axially compress each beam so as to only induce the fundamental
mode of buckling. The “beam 1” of the system is driven by the
electrodynamic shaker (LDS V408, Br€uel & Kjær, Nærum, Den-
mark). The slight post-buckling leads to oscillations with spatially
distributed deflections proportional to the fundamental buckling

mode. As such, dynamic behaviors that occur at frequencies other
than the driving frequency of the shaker are associated with nonlin-
ear harmonics of the fundamental, rather than with higher order
vibration modes of the postbuckled beams.

Each beam is coupled to its nearest neighbor via a pair of leaf
springs. The springs have clear influence on the potential dynam-
ics that the system may exhibit. For instance, if the leaf springs
are too compliant, only beam 1 will respond as driven by the
shaker. In contrast, if the leaf springs are too stiff, all three beams
will respond at nearly the same phase although only beam 1 is
driven. The coupling leaf springs are, therefore, selected to facili-
tate a wide range of response dynamics. The coupling springs
joining beams 1 and 2 (2 and 3) have a stiffness of 35 N/m (53 N/
m). The spring stiffness between beam 1 and the shaker is 150 N/
m. The remaining structural parameters of the platform, utilizing
the same notation as Ref. [22], are given in Table 1.

An accelerometer (PCB 333B40, Depew, NY) and a force trans-
ducer (PCB 208C01) measure the acceleration and force input into
beam 1. Miniature accelerometers (PCB 352A24) attached near the
center of each beam measure the dynamic response of each beam.
The shaker base acceleration output is governed by a vibration control-
ler (Vibration Research VR9500, Jenison, MI) and subjects beam 1 to
sinusoidal excitations with slowly varying excitation characteristics.

A particular contribution of this research is an investigation on
differences between drive-point and transfer impedances when
structural members undergo bifurcations. Mechanical impedance
is determined by the ratio of excitation force to a response veloc-
ity. In analysis, the ratio is of complex, time-harmonic values,
whereas experimental data employ the Fourier transforms of time
series measurements. If the force and the velocity are measured at
the same point, the ratio is a drive-point impedance. If the force
and the velocity are not measured at the same point, the ratio is a
transfer impedance. As a result, only one force transducer meas-
uring the single external force on the system is required to calcu-
late the impedance metrics presented in Sec. 3. In fact, any
position, velocity, or acceleration sensor may be practically uti-
lized in the characterization of impedance due to the time-
harmonic nature of the metrics. Small accelerometers are used in
this study for practical ease of fixturing and availability.

In this research, two types of harmonic shaker excitation are
considered. Slow sweeps of varying base acceleration frequency
with constant amplitude, termed “excitation frequency sweeps,”
are undertaken, along with slow sweeps using constant frequency
with varying base acceleration amplitude, termed “excitation
amplitude sweeps.” This contrasts with the previous efforts [22],
which focused exclusively on excitation frequency sweeps. Excita-
tion frequency sweeps are conducted at a 0.05 Hz/s sweep rate with
both an increasing and a decreasing excitation frequency and con-
stant input amplitude, while excitation amplitude sweeps are con-
ducted from at a rate of 0.0113 m/s2/s, with both an increasing and
a decreasing excitation amplitude. The sweep rates are chosen so as
to induce quasi-steady-state dynamic responses. The constant
amplitudes and frequencies for these experiments are selected to
induce bifurcations in the experimental system for the sake of char-
acterizing the impedance change near such critical points.

3 Experimental Results and Discussion

3.1 Energy Management Metrics During Bifurcations of
Intrawell Dynamics. The first of the experimental results exam-
ined in this research are presented in Fig. 2. An excitation

Fig. 1 Schematic of experimental platform employed in this
research. Beam numbering denotes relative nearness to
shaker.

Table 1 Experimentally measured structural parameters, utiliz-
ing the notation from Ref. [22]

Beam mi (g) ci (m N s/m) ki;i (N/m) kNL;i;i (MN/m3) pi (dim)

1 15.1 134 222 159 2.44
2 15.1 130 222 86 2.21
3 15.1 87 222 497 2.12
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frequency sweep is conducted with a base acceleration amplitude
of 2.84 m/s2, which induces a range of low amplitude, intrawell
responses around the several statically stable equilibria. A fast
Fourier transform converts the time-domain acceleration measure-
ments to the frequency domain, which is then integrated in the
time-harmonic sense to generate the velocity frequency response
of each beam at the fundamental harmonic shown in Fig. 2(a).
While the base acceleration amplitude of this experiment does not
induce snap-through dynamics through driving beam 1, the excita-
tion does induce dynamic bifurcations in the intrawell regime for
all three beams, which occur near the linear natural frequencies
due to softening of the primary resonances of the beam system.
These natural frequencies are 16, 18, and 21.25 Hz. The bifurca-
tion transitions are denoted in Fig. 2(a) by dashed lines with circu-
lar endpoints. Bifurcation transitions that occur during the
increasing (decreasing) excitation frequency sweeps are denoted
by light (dark) gray dashed lines, while the solid circular endpoint
denotes the end of a dynamic bifurcation. The results shown in
Fig. 2 are shown between 14.5 and 22 Hz, which is the frequency
range wherein dynamic bifurcations occur. The largest response
amplitude changes occur on beams 2 and 3. In addition, hysteresis
effects lead the bifurcations about 2 Hz apart depending on
whether the excitation frequency is increasing or decreasing in
value. At the bifurcations occurring at 15 Hz and 17 Hz, during
decreasing and increasing frequency sweeps, respectively, beam 1
enters a new steady-state dynamic with approximately the same
amplitude. In contrast, beams 2 and 3 undergo more dramatic
bifurcations that exhibit response amplitude changes by factors of
2.1 and 12.8, respectively.

Once the input force to beam 1 is converted into the frequency
domain by a fast Fourier transform, the impedance of each beam
is calculated by taking the ratio of the input force frequency
response to the beam velocity frequency response [29]. When the
velocity response and force are measured at the same (different)
point, the result is termed drive-point (transfer) impedance. In this
research, the impedance of beam 1 is drive-point, while those of
beams 2 and 3 are transfer impedances. Figures 2(b) and 2(c) plot
the impedances of beams 1–3 during increasing and decreasing
excitation frequency sweeps, respectively. The plots use a stand-
ard convention of presenting the real (resistive) and imaginary
(reactive) components of impedance in a parametric plane. Here,
the parameter of change is the excitation frequency. To correlate
between the frequency response of velocity in Fig. 2(a) and the

parametric impedance plots in Figs. 2(b) and 2(c), the dashed lines
denoting bifurcations in Fig. 2(a) also correspond to those dashed
lines shown in Figs. 2(b) and 2(c).

By examining the impedance trends of each beam in Figs. 2(b)
and 2(c), one notes that the reactance of all three beams vanishes
near to the occurrence of each bifurcation. This is shown by the
gray dashed lines crossing zero reactance. Since reactance corre-
sponds to the effectiveness of energy exchange between a system
component and the excitation in a manner analogous to exchange
of kinetic and potential energies [29], it is determined that the
intrawell dynamic bifurcations occur when a beam is no longer
able to exchange so great of energy with the excitation force
delivered to beam 1 and transmitted through the system. If the
beams are unable to manage input energy effectively via damping
or otherwise transferring energy to other DOF, the current steady-
state dynamic becomes unstable and a dynamic bifurcation
occurs. This vanishing reactance phenomenon during intrawell
bifurcations was previously observed to occur for drive-point
impedances [22] and is newly uncovered here in the parametric
trends of transfer impedance.

Figure 3 displays the acceleration time series of the three beams
(a) before and (b) after the bifurcation at approximately 20.25 Hz
during the increasing excitation frequency sweep. This bifurcation
event is denoted in Fig. 2(a) with a light gray dashed line and end-
point. Before the bifurcation, Fig. 3(a) shows that all three beams
have similar amplitudes, while beam 3 oscillates almost 180 deg
out of phase with beams 1 and 2. After the bifurcation, Fig. 3(b)
shows that the amplitudes of the beams increase by 25%, 432%,
and 127%, respectively. This is evident by the change in velocity
response amplitude at the bifurcation occurring at 20.25 Hz in Fig.
2(a). There also appears to be a cascading effect in the beam
responses, since each lags the previous beam in the series by
approximately 90 deg seen in Fig. 3(b). This phenomenon is well
known to occur for coupled oscillators when viscous damping is
present, which underscores the fact that damping may be the pri-
mary energy management mechanism near intrawell bifurcations.

Looking more deeply into the spectral signatures of such
dynamic bifurcations, Fig. 4 assesses the frequency content of the
dynamics for the frequency up sweep from 14.5 to 22 Hz and fre-
quency down sweep from 22 to 14.5 Hz. In Fig. 4, the amplitude
of the short time Fourier transforms (SFFTs) of the beam accelera-
tion measurements is shown in a logarithmic scale for ease of vis-
ualizing the contributions from other harmonics of the excitation

Fig. 2 Frequency sweep conducted at an excitation amplitude of 2.84 m/s2. (a) Velocity amplitude response of all three
beams with respect to excitation frequency. (b) and (c) Impedance measures for beams 1–3 with increasing and decreasing
excitation frequency, respectively. Dashed lines with circular endpoints indicate transitions between distinct low-amplitude
dynamic regimes. Light (dark) gray lines indicate increasing (decreasing) excitation frequency during bifurcation
transitions.
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frequency as the experiment progresses. The excitation frequency
is shown in Fig. 4 as a light dashed line. Since each beam
responds at the same frequency as the harmonic driving force, the
lowest dark line in the plots of Fig. 2 simultaneously corresponds
to the excitation frequency and the fundamental harmonic of each
beam response. Because the beams are seen to exhibit notable
nonlinearity in the frequency response of Fig. 2(a), the spectral
response in Fig. 4 confirms the existence of higher-order harmon-
ics through the frequency sweep experiment, although at almost
an order of magnitude or more less in amplitude than the funda-
mental. The point in the measurements at which the intrawell
bifurcations occur is denoted in Fig. 4 with arrows above each
plot.

Observing the plots in Fig. 4, it is seen that when the beams
undergo intrawell bifurcations, denoted by the arrows above each
plot, there is a temporarily large spillover of energy into higher-
order harmonics. This is evident, for example, by the increase in
the amplitude response level of the second harmonic of beam 2
from 23 dB to 31 dB as it undergoes the bifurcation at approxi-
mately 120 s, Fig. 4(b). Indeed, it is well known that multistable
systems may exhibit higher-order harmonics on the same order of
magnitude to that of the fundamental response [30]. It is con-
firmed here that such multiharmonic behavior becomes more
greatly manifest at the onset of intrawell bifurcations.

The response amplitudes of the higher-order harmonics are also
seen to increase starting around 200 s in Figs. 4(a)–4(c). This is
particularly evident in beam 3 as it approaches the bifurcation at
approximately 280 s in Fig. 4(c), corresponding to the bifurcation
occurring at 15 Hz in Fig. 2(a). Such diffusion of input energy
into higher-order harmonics may be one mechanism by which
oscillators of a built-up, dynamic system manage injected energy
when they may not effectively transfer the energy to neighboring
oscillators or sufficiently dissipate it via damping mechanisms.
On the other hand, in many instances, the amplitudes of the
higher-order harmonics are one to two orders of magnitude

smaller than the fundamental components. Indeed, higher-order
harmonics are often excluded from analytical formulations due to
the assumption that multiharmonic behavior is negligible [20].
Yet, the evidence presented here indicates that higher-order har-
monics may be utilized as an indicator of highly nonlinear behav-
ior, such as dynamic bifurcations, and should not be neglected in
all instances.

3.2 Roles of Snap-Through on the Impedance and Spectral
Metrics of Bifurcations. A subsequent experiment considers an
increased excitation amplitude of 6.63 m/s2. This amplitude of
harmonic base acceleration is selected because it is found to
induce snap-through dynamics for all three beams in certain
ranges of the excitation frequency bandwidth. As seen in
Fig. 5(a), the high-amplitude snap-through dynamic regime is
prevalent at excitation frequencies of 10–14 Hz before the system
transitions into a low amplitude response similar to that examined
in Fig. 2(a). During the transition, a region of aperiodic response
is observed from 14 to 17 Hz and has been excluded from Fig.
5(a) due to the attention in this research on steady-state dynamics
pertinent to impedance metrics. As denoted by the gray dashed
lines with endpoints in Figs. 5(b) and 5(c), the transition from
snap-through to intrawell responses (and vice versa) corresponds
to a vanishing reactance for both drive-point and transfer impe-
dances. It is found that the vanishing reactance trend occurs
regardless of whether the excitation frequency increases or
decreases through the bifurcation. Indeed, this trend is also con-
sistent with the intrawell bifurcations observed at higher excita-
tion frequencies, which are denoted in Fig. 5 by gray dashed lines
with endpoints with colors corresponding to the sweep direction.
All together, the data establish the finding that bifurcations in the
dynamic responses of each beam under frequency sweep excita-
tion conditions correspond to vanishing drive-point and transfer
reactances. Consequently, vanishing reactance, which is indicative

Fig. 3 Time series comparison (a) before and (b) after the dynamic bifurcation occurring at approximately
20.25 Hz with increasing excitation frequency

Fig. 4 (a)–(c) Short time Fourier transform of beam accelerations across the duration of the frequency sweep for beams 1–3,
where the fundamental frequency responses are shown in Fig. 3. Arrows above each plot indicate locations of dynamic bifurca-
tions. The excitation frequency is denoted via light dashed lines.
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of the inability to manage energy exchange locally at each DOF,
results in the bifurcations. Such impedance change occurs regard-
less of whether the impedance is drive-point or transfer, and
regardless whether the bifurcation event occurs between two intra-
well states or between snap-through and intrawell dynamics.

The time series of beam accelerations (a) during and (b) after
the snap-through dynamics with increasing excitation frequency,
denoted by the light gray dashed line near 15–6 Hz in Fig. 5(a),
are compared in Fig. 6. It is clear by examining the time domain
response in Fig. 6(a) that higher-order harmonics significantly
contribute to the snap-through oscillations for the multistable

structure. Here in Fig. 6(a), it is seen that all beams are approxi-
mately in-phase, despite the existence of other-order harmonics.
On the other hand, the intrawell responses in Fig. 6(b) are primar-
ily sinusoidal at the drive frequency for beams 1 and 3, which
oscillate around 180 deg out of phase with approximately the
same amplitude, while beam 2 remains stationary by comparison.

Although the presence of other-order harmonics is clear from
the time series of Fig. 6, the quantification of these contributions
is made in Fig. 7. The frequency content of the short time Fourier
transforms of the beam acceleration measurements in the band-
width of 10–22 Hz are plotted in Fig. 7. Similar to Fig. 5, the

Fig. 5 Frequency sweep conducted at an excitation amplitude of 6.63 m/s2. (a) Velocity
amplitude response of all three beams with respect to excitation frequency. (b) and (c)
Impedance measures for beams 1–3 with increasing and decreasing excitation frequency,
respectively. Dashed lines with circular endpoints indicate dynamic bifurcations. Light
(dark) gray lines indicate increasing (decreasing) excitation frequency during bifurcation
transitions.

Fig. 6 Time series comparison (a) before and (b) after the transition from high-amplitude snap-through response to low
amplitude intrawell response occurring at approximately 15 Hz

Fig. 7 (a)–(c) Frequency content of dynamic response across the duration of the experimental frequency sweep for beams
1–3. Arrows above each plot indicate intrawell dynamic bifurcations, while regions of snap-through and aperiodic response
are denoted by dashed and dotted boxes, respectively. The excitation frequency is denoted via dashed lines.

Journal of Vibration and Acoustics OCTOBER 2018, Vol. 140 / 051009-5



excitation frequency is shown in Fig. 7 as dashed green lines. By
examining the snap-through regions in Fig. 7, identified by blue
dashed boxes, it is observed that snap-through dynamics exhibit a
substantial spillover of energy into higher-order harmonics. In
addition, a large broadband spillover into the frequencies between
harmonics is evident during snap-through, in contrast to the intra-
well regimes that have frequency content mostly restricted to only
harmonics of the input base acceleration frequency. An exception
to this is seen in the intrawell bifurcations denoted in Fig. 7 by the
arrows above each plot, which also exhibit broadband frequency
content of a greater level than the low excitation amplitude case
examined in Sec. 3.1. This indicates that intrawell bifurcations
exhibit an increase in frequency spillover effects for larger excita-
tion amplitudes, while snap-through regimes exhibit persistent
broadband frequency spillover. Thus, one may differentiate
between interwell and intrawell responses by monitoring the fre-
quency content of the dynamic responses of the members of a
multistable structure. As indicated here, broadband frequency
spillover characterizes interwell dynamics while, as noted in Sec.
3.1, frequency spillover to higher-order harmonics denotes a near-
ness to bifurcations when the prior dynamic state of the system is
an intrawell regime.

3.3 Variation of the Energy Management as Harmonic
Excitation Amplitude Changes. While the previous research
efforts have examined the dynamic response of multistable struc-
tures subjected to harmonic excitation with slowly varying drive
frequency [22], this research offers a first look into the impedance
change trends resulting from excitation force having constant fre-
quency and varying amplitude. Here, the experimental platform is
excited at frequency 11 Hz. This is chosen based on the likelihood
of inducing coexistent dynamics where bifurcations are manifest.
Figure 8(a) examines the velocity amplitude frequency response
at the fundamental harmonic of the base acceleration input, while
(b) displays the impedance of beams 1 (right) and 2 (left). Note
that due to the low amplitude dynamics of beam 3 without any
large dynamic bifurcations throughout this experiment, as seen in
Fig. 8(a), the impedance of beam 3 exhibits no discernable trends
and is omitted.

Insight into the bifurcations of beams 1 and 2 with respect to
impedance metrics may clearly be drawn. By comparing the
velocity amplitude of beams 1–3 in Fig. 8(a) with respect to
Fig. 5(a) at 11 Hz, it is observed that the response of beam 1 in
Fig. 8(a) corresponds with a snap-through dynamic, while those
of beams 2 and 3 are intrawell responses. The impedance trends
of beam 2 indicate that the transfer reactance vanishes during
dynamic bifurcations, shown by dashed lines with circular

endpoints in Fig. 8(b), similar to the trends observed in the har-
monic frequency sweep conditions. On the other hand, the drive-
point resistance of beam 1 is seen to vanish during the transition
between low and high amplitude responses. This contrasts with
the vanishing reactance observed during excitation frequency
sweeps. The vanishing resistance for beam 1 suggests that the
bifurcations shown by dashed lines with circular endpoints in
Fig. 8(b) are due to the inability of this DOF to transfer energy
away or otherwise dissipate energy via damping mechanisms. The
remaining internal exchange between potential and kinetic energy
is insufficient to maintain the stability of the current steady-state
dynamic. This reveals that driven members of a multistable struc-
ture may exhibit different primary energy management mecha-
nisms depending on the varied excitation parameters.

The effects of higher-order harmonics are apparent when exam-
ining the short time Fourier transforms of the beam accelerations
in Fig. 9. Note that because this experiment is conducted with a
constant excitation frequency, the fundamental response fre-
quency of each beam does not change, resulting in horizontal lines
for all the harmonics of each beam. The large response amplitude
of the second harmonic of beams 2 and 3 with respect to the fun-
damental harmonic, seen in Figs. 9(b) and 9(c) from the initial
time to around 80 s, exemplifies multiharmonic diffusion. The
response acceleration levels of the fundamental and second har-
monics for beam 2 (3) around 80 s are 22 and 30 dB (10 and 26
dB), respectively. One also notes that the low-to-high amplitude
bifurcations are characterized by the sudden onset of broadband
frequency content, as seen in Fig. 9 at approximately 80 s and
identified by the arrows shown above the plots. After such events,
increased higher-order harmonic contributions are observed until
the beam responses return to the low amplitude regime around
time 570 s. At the initial bifurcation around 80 s as seen in
Fig. 9(a), the third harmonic amplitude of beam 1 increases to
40 dB during snap-through, which is on the same order of magni-
tude as the fundamental harmonic (38 dB), while both the third
and first harmonics are larger than the second harmonic (31 dB).

In contrast, the responses of beams 2 and 3 have large fre-
quency content at each of the lowest three harmonics after the
bifurcation, as shown in Fig. 9(b) and 9(c), respectively. For
example, soon after the bifurcation around 80 s, the first, second,
and third harmonic acceleration levels of beam 2 (3) are 31, 27,
and 31 dB (23, 22, and 23 dB), respectively, revealing the rela-
tively equal contributions from the harmonics to the total acceler-
ation response. It is also observed that higher amplitude responses
exhibit greater broadband frequency spillover, as exemplified by
comparing the signal-to-noise ratios of 25 and 29 for beams 1 and
2, also noted in Fig. 9. These signal-to-noise ratios are computed
by the ratio of the response acceleration level at 11 Hz to the

Fig. 8 Experimental amplitude sweep conducted at an excitation frequency of 11 Hz. (a) Velocity amplitude response of all
three beams with respect to excitation amplitude. (b) Impedance measures for beams 1 (right) and 2 (left). Dashed lines with
circular endpoints indicate dynamic bifurcations. Light (dark) gray markers indicate increasing (decreasing) excitation
amplitude during bifurcation transitions.
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background levels of frequencies surrounding 11 Hz at 300 s. The
results indicate that snap-through dynamics are characterized pri-
marily by the first and third harmonics and relatively large
amounts of broadband frequency spillover. This contrasts with
intrawell responses that may have more equitable contributions
from the lowest three harmonics but have much lower broadband
energy spillover than snap-through cases in agreement with the
previously noted trends [31,32].

4 Empirical Identification of Dynamic Bifurcations

and Dynamic Regimes

These experimental results may inspire practical methods to
forecast dynamic bifurcations according to the impedance and
spectral characteristics of postbuckled structural components. For
instance, velocity transducers may be placed at points on the mul-
tistable structure, while force transducers are placed at locations
of known energy input, such as a bolted connection to adjacent
structural members. In fact, any displacement or acceleration
transducer may be used, provided the measurements are trans-
formed into velocity data via the appropriate frequency domain
differentiation or integration. The SFFTs of acquired data trans-
form the signals from time to frequency domain. Then, the trans-
formed measurements are used to calculate impedance. As such,
the updated impedance metrics may be monitored for vanishing
reactance or resistance. This research reveals that dynamic bifur-
cations may be forecast by the vanishing components of imped-
ance, whether the measurement is of a drive-point or transfer
impedance.

The SFFTs may concurrently be assessed for the spectral signa-
tures of bifurcations. The evidence of energy spillover into
higher-order harmonics or into frequencies surrounding the funda-
mental harmonic may be used to predict the onset of dynamic
bifurcations from the response SFFTs, although this is not an
absolute predictor as noted in Sec. 3.1. Yet, the spectral content of
dynamic responses conclusively distinguishes between interwell
and intrawell dynamic regimes. These methods may provide new
tools to predict the onset of dynamic bifurcations and identify the
dynamic regime of structures containing postbuckled constituents.

5 Conclusions

This research experimentally investigates the dynamic bifurca-
tions of an archetypal multistable structure subjected to harmonic
excitation frequency and amplitude sweeps. Specifically, meas-
ures of mechanical impedance and spectral content of the dynamic
responses are examined. It is found that bifurcations of both
drive-point and transfer oscillators undergoing excitation fre-
quency sweeps correspond to vanishing mechanical reactance.
When driven by excitation amplitude sweeps, the transfer react-
ance and the drive-point resistance vanish during bifurcations.

This difference between observed trends for drive-point impedan-
ces indicates that the chosen variable excitation parameter leads
to a difference in the evolution of the energy management mecha-
nisms of the driven oscillator. A method to predict these bifurca-
tions using real time measured structural responses and forces is
proposed. It is generally observed that intrawell responses exhibit
significant contributions from all three of the lowest-order har-
monics. In contrast, snap-through dynamics exhibit large first and
third harmonic orders in the response measurements and a larger
extent of persistent broadband frequency spillover than intrawell
regimes. Thus, monitoring the spectral content of structural sys-
tems may be used to determine the dynamic regime of the struc-
ture, thereby complementing the insight from the impedance
metrics.
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