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a b s t r a c t

Predictions of multistable structural dynamics are paramount to the development and
deployment of air vehicles operating under extreme loading conditions. Although time-
stepping numerical techniques may capture the multi-physics interactions that occur in
these environments, the generalized insight on parameters that predominantly govern the
system behaviors may remain clouded while a large computational expense may be
incurred to obtain response predictions. Alternatively, analytical methods may be
employed to streamline the prediction process, yet current theoretical approaches do not
facilitate such opportunity for multistable structures. Although a recently developed
analytical formulation has enabled the prediction of near- and far-from-equilibrium re-
sponses for a simplified multistable structure, the preliminary formulation does not illu-
minate the underlying aspects of modal response and intricate nonlinear coupling
manifest in myriad multistable systems. This research rectifies these limitations by a broad
expansion of the analytical framework that empowers a new modal perspective of mul-
tistable structural dynamics and enables the study of such dynamic systems governed by
reduced order models. This new modal analysis indicates that the characteristic frequency
response of a single degree-of-freedom Duffing oscillator is preserved in the fundamental
equivalent nonlinear mode of a multistable structure. The new analytical formulation is
also shown to accurately predict the near- and far-from-equilibrium dynamics of equation
systems containing global nonlinear coupling consistent with reduced order models. The
advancements achieved in this work contribute to the suite of techniques available to
researchers to characterize the near-to- and far-from equilibrium behaviors of nonlinear
dynamic systems consisting of many degrees-of-freedom.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

From sub-orbit flight initiatives [1], to supersonic passenger jets [2], to hypersonic air vehicles [3]: applications abound for
high-performance aerospace vehicles operating in extreme environments. Yet, the full realization of such air vehicles is
impeded due to the combined thermo-mechanical-acoustical loading of high velocity flight regimes [4] that may stress
slender aerostructural components into states of multistability, termed skin-buckling [5]. Once deformed, structural panels
may exhibit a large-amplitude, snap-through dynamic response that can accelerate structural damage measures, lower
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fatigue life, and amplify the chances of catastrophic failure [6,7]. To surmount these challenges, recent works by Miller and
McNamara [8] and Culler and McNamara [9,10] have advanced simulation of the complex fluid-thermal-structural coupling
present for multistable panels in hypersonic flow. Miller et al. [11] gave particular attention to simulate the snap-through
phenomenon in a multi-physics load environment. The computational demands encountered in such time-step simula-
tion-based studies have provided motivation for the development of reduced order models (ROMs). ROMs decrease the
dimension of the equation system thus lowering computational time, while prediction fidelity is balanced in the process.
ROM-based characterizations of multistable structures have been reported by Wiebe and Spottswood [12], Mignolet et al.
[13], and Matney et al. [14]. These numerical investigations have delivered new knowledge on the dynamic responses of
multistable structures in extreme operating environments. Yet, the insight on such nonlinear structural behavior remains
limited through the undertaking of case studies by simulation methods alone.

Analytical methods that approximately solve the governing equations of motion of nonlinear systemsmay greatly enhance
the understanding revealed on the system response by way of meaningful simplifying assumptions [15]. Perturbation
techniques can uncover the nonlinear, frequency-dependent displacement amplitudes of intrawell oscillations up to an
arbitrary order of the small perturbation parameter ε [16]. Alternative forms of the standard perturbation technique, such as
parameter-expanding methods [17,18] and homotopy perturbation [17,19], may be used to study any nonlinear dynamical
equation [18]. Yet the utilization of higher orders of the expansion parameter ε and determining the appropriate parameter
expansion challenges the use of perturbation techniques for complex systems of coupled nonlinear equations [20]. In fact,
many analytical investigations on the topic of multistable structural dynamics have given attention to bistable systems due to
the relative simplicity of the theoretical formulations by virtue of the single degree-of-freedom (DOF). The narrower attention
to bistable structures is also encouraged due to the wide range of applications from energy harvesting [21,22], to vibration
control [23], to sensing [24]. The relative simplicity of the theoretical formulations for such single-DOF systems makes it
possible to derive closed-from predictions of the strongly nonlinear responses of bistable oscillators [24].

Such straightforward analytical solution is often not possible for larger dimensional nonlinear systems [24]. As a result, a
variety of methods have been employed to study multi-DOF nonlinear systems. Ritz methods utilizing quadratic polynomials
of strain and deflection were shown by Mattioni et al. [25] to characterize the nonlinear deflections of multistable composite
plates. Pirrera et al. [26] demonstrated that higher-order polynomials may be used to describe multi-event snap-through
phenomena for such multistable composite structures. Describing function theory, propelled by Tanrikulu et al. [27], Chong
and Imregun [28], Elizalde and Imregun [29], and Kalaycıo�glu and €Ozgüven [30], has delivered understanding on the steady-
state, forced response that exacerbates the nonlinear resonant displacements of multi-DOF structures. While the formula-
tions may require the system to exhibit symmetric nonlinearities [27] or may require an assumption of well-separated modes
of vibration [28,31], a notable limitation of these methods is the assumption of input-output similarity. This prevents one
from characterizing the co-existence of large amplitude snap-through dynamics and low amplitude oscillation around non-
zero equilibria that may occur for multistable structures [11]. Alternatively, principles of equivalent linearization [32] have
been used to characterize such near-to- and far-from-equilibrium responses of structures subjected to stochastic or harmonic
excitations [33e35]. These methods rely on the formation and convergence of an equivalent linear stiffness matrix that
enables the linearized equations to be solved via more conventional methods of analysis. To this end, Harne and Goodpaster
[36] recently introduced an experimentally validated analytical formulation based on harmonic linearization [32] capable of
predicting the steady-state dynamics of a built-up multistable structure. In contrast to methods based on describing function
theory, both near-to- and far-from-equilibrium dynamic behaviors are able to be uncovered. The formulation [36] is also
distinct from other equivalent linearization techniques by virtue of the implicit calculation of equivalent stiffness matrix
terms in the process of obtaining the coupled, nonlinear algebraic equations to be solved for system response prediction. On
the other hand, the nascent formulation lacks the means to shed insight on modal characteristics of multistable structures
that may be contrasted to those of traditional linear dynamic systems. In addition, the extensibility of the formulation to
characterize nonlinear systems represented by conventional ROM equations [13] has not been established. As a result, the
knowledge on multistable structural dynamics manifest in myriad nonlinear systems, and their contrast to established linear
systems, remains lacking.

This research aims to rectify these limitations via a comprehensive research undertaking. First, a new construct of the
analysis [36] solution algorithms is fashioned, which becomes necessary to facilitate the new complement to conventional
modal analysis [37]. Then, this unique modal formulation is leveraged to shed light on steady-state dynamics of multistable
structures as they contrast with those modal behaviors of linear systems. Next, the analysis is significantly broadened to
provision the study of multistable structures whose dynamic behaviors are governed by ROM-type equation systems. With
these advancements, the clarity of the predictions is rigorously compared with those results obtained through the traditional
time-stepping based simulations.

The remainder of this paper is organized as follows. In the next section, the preliminary analytical formulation is sum-
marized. Then, the necessary advancements to the formulation established here are detailed. These improvements are then
utilized to study qualitative characteristics of far-from-equilibrium dynamics in a modal perspective. The framework is then
extended to accommodate nonlinearities and structural coupling manifest in ROM-based multistable structure models, and
the efficacy and efficiency of the analytical predictions are characterized. A final section summarizes the achievements made
and new understanding created through this research.
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2. Analytical modeling: framework composition and new advancements

2.1. Example cases for analysis

In this research, two systems are examined in detail that exemplify the advancements made to the analysis of multistable
structures subjected to harmonic loads. The two systems are shown schematically in Fig.1. The first is analogous to the system
studied in Ref. [36] and is shown in Fig. 1(a), which depicts three masses, coupled together via linear springs. Each mass has
local viscous damping and nonlinear stiffness, which consists of negative linear and positive cubic stiffnesses. These local
nonlinearities result in amultistable structural configurationwith equilibria that are symmetric about x� ¼ 0, and correspond
to linearly coupled Duffing oscillators [38]. Eachmass is subjected to an excitation force of the form fi ¼ Fi cosðutþ fiÞ, where
the amplitude and phase of each excitation force may vary, but the frequency of the excitations is assumed to be the same
across all DOF. The second system examined in this research is shown in Fig. 1(b). The system is a clamped-clamped beam
similar to that studied via ROM simulation in Ref. [39]. The beam is subjected to a spatially uniform pressure distribution that
harmonically varies in time by pðtÞ ¼ P0 cosðutÞ. The beam is perfectly flat when originally clamped before a thermal stress is
introduced that leads the beam to buckle in a symmetric, bistable configuration.

2.2. Mathematical background of analytical framework

For completeness, a brief summary of the analytical framework by Harne and Goodpaster [36] is provided here. The
formulation and algorithmic enhancements first undertaken in this research building upon this preliminary analytical
framework empower the significant new knowledge gained through the subsequent sections via studies of modal charac-
teristics and ROM-based compositions of multistable structures. To survey the preliminary framework [36], the general form
of the governing equations of an n-DOF nonlinear dynamical system such as that shown in Fig. 1(a) is written in matrix form
as (1).

Mx
:: þ Cx

: þ Kx þ NðxÞ ¼ F (1)
The mass matrix, damping matrix, and linear stiffness matrix are given by (2).

M ¼ diag½mi�;C ¼ diag½ci�;Kih ¼
8<:
Xn
h¼1

kih; i ¼ h

�kih; ish

(2)
The generalized coordinates of each DOF and the corresponding generalized forces are denoted by (3).
Fig. 1. Structural systems studied in this research. (a) Schematic of 3-DOF systemwith local nonlinearities, global linear coupling, and time-harmonic generalized
excitation forces. (b) Schematic of clamped-clamped beam, thermomechanically stressed and subjected to a spatially uniform, time-harmonic pressure
distribution.
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x ¼ ½x1; x2;/; xn�T ; F ¼ ½f1; f2;/; fn�T (3)
The nonlinearities acting on the ith DOF for the system considered in Fig. 1(a) are expressed in (4).

NðxÞi ¼ �kiipixi þ kNLiix
3
i (4)
In (4), the negative stiffness that is introduced by the non-dimensional loading parameter pi is treated as a form of
nonlinearity. Clearly, the nonlinearities in this system are local to each generalized DOF, as seen by their inclusion in the
grounded springs of Fig. 1(a). This is a simplification of the more general case where nonlinear coupling exists between all
DOF that will be examined in Sec. 2.6 of this work. Yet, the assumption of local nonlinear stiffness influences utilized in this
Sec. 2.2 provides a baseline for a model formulation [36] that delivers first insight on the steady-state dynamic behaviors of a
representative multistable structure.

In general, the static equilibria of the system x� are non-zero and are determined by solving (5).

Kx� þ Nðx�Þ ¼ 0 (5)

�
By applying a linearized Taylor's series expansion of (1) around a set of static equilibria x , the linear response of the
system is governed by (6).

Mx
:: þ Cx

: þ fKþ KLgx ¼ F (6)
In (6), the amendment to the linear stiffness matrix is derived to be (7).

KL ¼ diag
h
� kiipi þ 3kNLiix

*2
i

i
(7)

jut jut
The linear, forced, steady-state response x ¼ Xe is then solved under the assumption of harmonic excitation F ¼ fe ,
where j ¼

ffiffiffiffiffiffiffi
�1

p
. It is understood that the actual system response in time is the real component of x. Note that in general, f and

X may be complex such that the input forces and response dynamics, respectively, may oscillate out-of-phase.
The nonlinear forced response is found by utilizing procedures of stochastic or harmonic linearization [32]. This procedure

yields an equivalent system in the form of (8).

Mx
:: þ Cx

: þ fKþ Kegx ¼ F (8)
The components of the equivalent linear stiffness matrix ðKeÞih are computed from (9).

ðKeÞih ¼ 〈gihwih〉

〈w2
ih〉

;Ni ¼
Xn
h¼1

gihðwihÞ;wih ¼
�
xi � xh

xi
; ish
; i ¼ h

(9)
The 〈〉 brackets in (9) denote the mathematical expectation. Following Spanos and Iwan [40], the expectation for a
deterministic system of equations subjected to harmonic excitation is defined as a time average over one period of the
excitation. To calculate the entries of Ke, one assumes the response to be of the form (10).

x ¼ qþ rejut (10)

where the biases q are real and the response amplitudes r are complex. For the nonlinearities given by (4), Ke is found to be

(11).

Ke ¼ diag
�
� kiipi þ kNLii

�
3q2i þ

3
4
r2i

��
(11)
Note that Ke is diagonal because the nonlinearities are local to each DOF. Substituting the assumed solution (10) into the
equivalent nonlinear governing Eq. (8), one obtains a system of equations to be simultaneously solved. After substituting (10)
into (1), the Eq. (12) is obtained by the integration of Eq. (1) over a period 2p=u of the harmonic forcing. Eq. (13) is the
equation of coefficients and parameters dependent upon a time-harmonic variation of ejut .�

Kþ diag
�
� kiipi þ kNLii

�
q2i þ

3
2
r2i

���
q ¼ 0 (12)
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n
� u2Mþ juCþ K

o
rþ Keðq; rÞr ¼ F (13)
Solving (12) and (13) yields the complex response amplitude and bias of the dynamic response of each generalized co-
ordinate. While equivalent linear stiffness methods have been investigated previously in the context of nonlinear structural
dynamics, the method utilized in this work, relying on an assumed harmonic solution (10), is unique with respect to previous
approaches that derive the equivalent stiffness matrix via a series of proscribed static displacements [34]. This analysis
calculates the equivalent linear stiffness matrix (11) implicitly during the solution procedure and facilitates both monostable
and multistable structural dynamic response predictions for harmonic excitations. Utilizing this procedure, Harne and
Goodpaster [36] have previously shown that analytical predictions of both near-to- and far-from- equilibrium dynamics agree
qualitatively and quantitatively with numerical simulation and experimental measurements.

Yet, to greatly enhance the predictive capabilities of this analytical approach, a normalization scheme is required before
the solution to Eqs. (12) and (13) should be attempted.

2.3. Normalization approach

The first technical undertaking in this research is to normalize (12) and (13). The normalization scheme is inspired by
traditional modal analysis principles [37] that motivate a comparable new perspective on the equivalent modal responses of
multistable structures. First, a coordinate transformation (14) is introduced.

z ¼ M1=2x (14)
Then, (14) is substituted into (1) and the equation system is pre-multiplied by M�1=2 to yield (15),

z
:: þ Cz

: þ KzþNðzÞ ¼ F (15)

�1=2 �1=2 �1=2 �1=2 �1=2 �1=2 �1=2
where C ¼ M CM , K ¼ M KM , NðzÞ ¼ M NðM zÞ, and F ¼ M F. For a large class of problems in
structural dynamics, K is symmetric, thus enabling the solution to the eigenvalue problem for the undamped, linear system
given by (16) [37].

z
:: þ 	Kþ KL



z ¼ 0 (16)
In (16), KL ¼ M�1=2KLM
�1=2 is the mass-normalized amendment to the linear stiffness matrix (7). To normalize the length

dimension of the system, a composite term is identified (17),

x0 ¼ xc þ x*max (17)

where xc is a characteristic length such as a thickness or span of the structure, and x*max is the largest amplitude of a symmetric

stable equilibria pair spanning ½�x*max; x
*
max� for the ith generalized coordinate that exhibits this peak-to-peak range of stat-

ically stable configurations. The definition of a characteristic length employed in (17) is uniquely required for multistable
structures since the possibility for non-zero entries of x� encourages accounting for both system characteristics of the
statically deformed configuration and system geometry in the normalization.

The fundamental eigenfrequency of (16) is defined to be l0 such that the fundamental natural frequency of the system is

u0 ¼
ffiffiffiffiffi
l0

p
. For this definition of u0, the set of stable equilibria containing x*max from (17) is used when calculating KL from (7).

Once u0 is selected, a normalized time t is introduced (18).

t ¼ u0t (18)
This normalized time t also leads to the definition of a normalized excitation frequency (19).

bu ¼ u

u0
(19)
This selection of the fundamental natural frequency u0 and normalized excitation frequency bu yields displacement re-
sponses with the lowest order resonance near bu ¼ 1.

The normalized, generalized coordinates of the system are given by (20).
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y ¼ 1
x0

z (20)
Substituting (18) and (20) into (15) yields the normalized governing equations of motion (21).

y00 þ bCy0 þ bKy þ bNðyÞ ¼ bF (21)

0 dðÞ
In (21), ðÞ ¼ dt and the normalized matrices and vectors of (21) are as follows.

�bC�
ij
¼ 1

u0

jffiffiffiffiffiffiffiffiffiffiffiffiffi
miimjj

p ;j ¼
�Xn

j¼1
cij

�cij

; i ¼ j
; isj

(22)

� � 1 4
�Xn

k ; i ¼ j
bK
ij
¼

u2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
miimjj

p ;4 ¼ j¼1 ij

�kij ; isj
(23)

� � 1
 

k p x2k
!
bN

i
¼

u0
� ii i

mii
yi þ 0 NLii

m2
ii

y3i (24)

�b� fi
F
i
¼

x0u2
0
ffiffiffiffiffiffiffi
mii

p (25)
The normalized system of Eq. (21) is then expressed as the equivalent linear system (26), following established harmonic
or stochastic linearization techniques [32,41].

y00 þ bCy0 þ�bK þ bKe

�
y ¼ bF (26)
The assumed response solution to the system of Eq. (26) is (27).

y ¼ bq þ brejbut (27)
In (27), bq and br denote the normalized response biases (real) and amplitudes (complex), respectively. Substituting the

assumed solution (27) into (9), the elements of the normalized equivalent linear stiffness matrix bKe are calculated to be (28).

bKe ¼ diag

 
� kiipi
u2
0mii

þ x20kNLii
u2
0m

2
ii

�
3bq2i þ 3

4
br2i �
!

(28)
The assumed solution (27) is then substituted into (21) and an integration is taken over one period of harmonic forcing.

The result is (29), while (30) is the equation of coefficients dependent upon ejbut obtained by substituting (27) into (26).(bK þ diag

 
� kiipi
u2
0mii

þ x20kNLii
u2
0m

2
ii

�bq2i þ 3
2
br2i �
!)bq ¼ 0 (29)

n
� bu2Iþ jbubC þ bKobr þ bK ðbq; brÞbr ¼ bF (30)
e
Together, (29) and (30) form a coupled set of nonlinear algebraic equations that are simultaneously solved to predict the
forced, displacement response of the normalized structural system governed by (21).

2.4. Initial guess algorithm enhancements

In addition to normalization, the algorithm to select initial guesses for solutions is significantly enhanced in this research
to obtain more complete analytical response predictions. The solution procedure employed in Ref. [36] requires the use of a
conventional numerical algorithm to determine the response amplitudes r and biases q for a given set of system parameters
and excitation conditions. The numerical solver utilized in Ref. [36] uses a nonlinear least squares cost function minimization
technique to solve the system of equations. The seeding of accurate initial guesses is essential to the completeness and ef-
ficiency of the solution procedure because (i) seeding near the linear responsemay result in predictions for a small proportion
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of the nonlinear dynamics, and (ii) seeding too far away from an actual solution may dramatically increase time required to
converge via the algorithm. Thus, a strategic initial guess procedure is required to leverage the full capability of the analytical
predictions.

In this research, the enhanced initial guess algorithm that is established is described as follows and depicted in the
flowchart of Fig. 2. At each increment of an excitation parameter sweep, such as for the first frequency in an analytical
'frequency sweep', the derived algebraic equations are solved a number of times utilizing different initial guesses. For the first
solution attempt in any sequence of solution-finding, the initial guess response amplitudes r are chosen to be perturbations
away from the underlying linear response by a constantmultiplier and small randomvalue. The assumed biases q are set to be
the corresponding static equilibria. In this way, an initial knowledge of the linearized system is strongly desirable to facilitate
the efficient prediction of near-to-equilibrium dynamic responses, which may or may not be nonlinear. After the initial guess
and solution procedure for the first parameter sweep increment and then the subsequent set of solution predictions, 25% of
the initial guesses are the result of the previous parameter sweep increment as the initial condition for the current solution
attempt. This proportion is allocated since it is likely that the solution to the algebraic equations using a small increment
change will not be dramatically different than the previous iteration using a slightly different parameter increment. Such an
approach inherently accounts for hysteretic effects observed for parameter changes associated with increasing or decreasing
values. In other words, parameter sweeps utilizing both increasing and decreasing parameter values ensure the hysteresis is
thoroughly characterized in regimes where coexisting behaviors are prevalent.

To aid in the prediction of snap-through responses, another 25% of initial guesses utilize generalized coordinate ampli-
tudes r that are random perturbations away from one-half the span of a set of static equilibria, while the biases q are set to
zero. The real and imaginary components of the response amplitude guesses are arbitrarily assigned to account for multiple
snap-through states that may exhibit different phases of oscillation. This selection is based on the knowledge that snap-
through occurs between static equilibria, so it is anticipated that the amplitude of the response will be close to one-half
the peak distance between stable equilibria. For a system with symmetric sets of static equilibria, such as in Fig. 1(a), it is
anticipated that the biases of snap-through responses will be zero due to the symmetry inherent to the interwell dynamics.
Additionally, the magnitude of the predicted response amplitudes r are compared to the amplitude of the underlying linear
response after each parameter sweep iteration to determine if any snap-through responses are calculated. If no snap-through
dynamics are predicted for a set number of consecutive frequency increments, the analysis stops utilizing the snap-through
initial guess seeding in order to increase the speed of the analytical response prediction. This check is depicted in the bottom
half of Fig. 2, and is based on the a priori knowledge that snap-through of symmetric structural systems is a non-resonant
Fig. 2. Flowchart depicting enhanced algorithm used to seed initial guesses when solving the nonlinear algebraic equations derived by analysis to robustly
predict all coexistent dynamic responses.
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phenomenon that originates at low frequencies. The remaining initial guesses – either 50% or 75% of the total employed,
depending onwhether the algorithm is looking for snap-through responses – are chosen as random perturbations away from
the underlying linear response.

The algorithm articulated in this Sec. 2.4 is designed to facilitate efficient predictions for parameter sweeps of symmetric
structural systems. Alterations to the algorithmmay be made to further enhance the versatility of the approach. For example,
if the nonlinear dynamic responses are sought for only a single set of forcing parameters, the solution procedure should utilize
both linear and snap-through initial guess conditions in order to identify all potential near-to- and far-from-equilibrium
dynamics. The algorithm can also be enhanced for structures that are expected to exhibit interwell oscillations for param-
eter values that are not at extremes of the parameter range, such as asymmetric Duffing oscillators [42]. This may be
accomplished by periodically utilizing snap-through initial guesses at every nth parameter increment, where n is a set integer.
When snap-through dynamics are predicted for the first time, snap-through initial guesses should then be utilized at every
parameter increment until the cut-off frequency criteria are met. Performing such a sweep with both increasing and
decreasing parameter values would ensure complete analytical dynamic predictions.

2.5. Equivalent nonlinear modal response

In addition to dynamic response predictions, the system described by (1) is scrutinized in this research from a modal
perspective relevant for multistable structures. The equivalent linear stiffness matrix (11) contributes to the equivalent linear
system response via (8). Thus, conventional modal analysis procedures [37] may be utilized to illuminate a new modal
interpretation of the multistable dynamic system behavior, thus permitting comparison to other linear and nonlinear modal
interpretations [43].

To this end, an equivalent modal coordinate is introduced using (31).

v ¼ ~P
�1

M�1=2x (31)
The matrix of equivalent eigenvectors ~P is computed from the matrix (32).

~K ¼ M�1=2fKþ KegM�1=2 (32)
The corresponding eigenvalues of ~K are collected in a diagonal matrix ~L. Substitution of (31) into (8) leads to (33).

€v þ ~Q _v þ ~Lv ¼ ~F (33)
where

~Q ¼ diagð2ziuiÞ (34)

~L ¼ diag
�
u2
�

(35)
i

~F ¼ PTM�1=2F (36)
In (34)e(36), zi and ui are the damping ratio and angular natural frequency, respectively, of the ith equivalent mode. The
study of the eigenvectors ~P, eigenvalues ~L, and equivalent nonlinear modal coordinates v aids in understanding the un-
derlying dynamic response of multistable structures. Consequently, this research investigates the characteristics of the
equivalent nonlinear modal responses and their corresponding eigenvectors to uncover unique insight into the dynamics of
multistable structures. The completeness of the analytical response predictions is necessary to capitalize on the assessment of
such newly formulated equivalent nonlinear modes. Indeed, the complete analytical predictions are facilitated by the
normalization scheme of Sec. 2.3 and the algorithmic enhancements articulated in Sec. 2.4.

2.6. Generalization of the analytical framework to global nonlinearities

While the local nonlinearities expressed by (4) have practical justifications [44,45], it has been shown that aerostructural
systems can be modeled using reduced order models (ROMs) that account for coupling among DOFs according to products of
generalized coordinate responses [13,46]. In Ref. [39], such a ROM was formulated for a thermomechanically loaded beam
that may be warped into a post-buckled state via thermal stresses. This induces multistability for the various modes of vi-
bration caused by harmonic forced response. In this ROM, the equation of motion for the ith generalized coordinate is (37)
[39].
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ðMÞij €yj þ ðCÞij _yj þ ðKÞijyj � DT
�
Kð1Þ

�
ij
yj þ

�
Kð2Þ

�
ijk
yjyk þ

�
Kð3Þ

�
ijkl

yjykyl ¼ fi (37)
In (37), the repeated subscript index indicates a repeated summation over all n DOF. The determination of ROMs in the
form of (37) requires the identification of the linear and nonlinear stiffnesses that are induced by the elastic and thermal

stresses acting on the system. The coefficients ðKð1ÞÞij are associated with linear stiffnesses resulting from the mean thermal
load, expressed as a temperature differenceDT with respect to a reference temperature. The temperature differenceDT in (37)

acts in an analogous way to the load parameter p in (7) because for increasing positive values of DT the matrix entries ðKð1ÞÞij,
which are primarily positive, may cause a net negative linear stiffness when combinedwith the counterpart terms of ðKÞij. The
ðKð2ÞÞijk and ðKð3ÞÞijkl are quadratic and cubic stiffness coefficients, respectively, and are associated with thermal and elastic
stresses.

Clearly, the nonlinearities in (37) represent a more complete and complex nonlinear interaction among the n generalized
coordinates than the local nonlinear forces acting in (1). Therefore, a more general approach to the linearization method of
the analytical framework must be employed. In particular, (9), used previously to derive the effective stiffness matrix Ke, is
primarily valid if the DOF are coupled in chain-like configurations, similar to the system schematic shown in Fig. 1(a). Yet, for
the ROM system (37), global nonlinear coupling among the generalized coordinates via products of the responses prevents
the adoption of (9). A general outcome of stochastic linearization [32] demonstrates that the equivalent linear stiffness matrix
entries ðKeÞih relating the ith and hth generalized coordinates are given by (38).

ðKeÞih ¼ 〈
vNi

vxh
〉 (38)
In (38), Ni is the nonlinearity acting on the ith DOF. Applying (38) to the governing equations of the ROM (37) yields the
linearized Eq. (39).
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In (39), the components of the equivalent linear, quadratic, and cubic stiffness matrices are given by (40).
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To calculate the entries of (40), an assumed solution of the form of (41) is introduced as before.

y ¼ qþ rejut (41)
Applying (41) to (40), the entries of the equivalent stiffness matrices are as follows.�
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In (42), djk is the Kronecker delta function. After the substitution of (41) into (37), the Eq. (45) is then obtained by inte-

grating (37) over one period of the harmonic excitation force. The Eq. (46) is the coefficient of parameters dependent upon ejut

after substituting the assumed solution (41) into the equivalent governing Eq. (39).n
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e e e
In (45), the ith component of the vectors kð2Þ and kð3Þ are given by (47) and (48), respectively.
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Solving (45) and (46) simultaneously results in the offsets q and complex response amplitudes r. Once these response
predictions are made for the system in (37), the physical displacement wðx; tÞ is reconstructed from the n generalized co-
ordinates yðtÞ (41) and basis functions jðxÞ via (49).

wðx; tÞ ¼
Xn
i¼1

yiðtÞjiðxÞ (49)
3. Local nonlinearities and global linear coupling

Building from the previous analytical framework [36] described in Sec 2.2, this research establishes comprehensive and
significant advancements to the method via the normalization (Sec. 2.3), strategic initial guess procedure (Sec. 2.4), equiv-
alent modal examination approach (Sec. 2.5), and extension to a broader class of nonlinearities manifest in myriad ROMs (Sec.
2.6). In this Sec. 3, the aim is to assess the success of these new technical contributions to the analytical framework in the
context of the lumped-parameter multistable system schematically shown in Fig. 1(a). Sec. 4 examines comparable aspects
pertaining to general ROMs, like the model of the post-buckled beam shown in Fig. 1(b).

3.1. Assessment of analytical framework advancements

The efficacy and completeness of the enhanced analytical framework and strategic initial guess procedure are first
assessedwith attention to the system shown schematically in Fig.1(a) having local nonlinearities and global linear coupling. A
set of structural and excitation parameters are chosen to represent a lightly damped multistable structural system, similar to
the experimental beam structure examined in Ref. [36]. These parameters are provided in the Appendix. Fig. 3 compares the
generalized displacement amplitudes jrj of the analytical predictions using the original dimensioned formulation Fig. 3(aec),
and using the normalized formulation Fig. 3(def). At each frequency parameter, the nonlinear algebraic Eqs. (29) and (30) are
solved with 96 different sets of initial guesses, chosen via the algorithm discussed in Sec. 2.4. The results generated by
employing the normalized analysis are reconstructed back to the generalized coordinates via (14) and (19). In Fig. 3, the
simulation results used to verify the efficacy of the analytical procedure of Sec. 2 are obtained through a fourth-order Runge-
Kutta numerical integration of the governing Eq. (1), and are shown by the dot data points in Fig. 3. This simulation technique
is employed since it is efficient and stable for a large variety of nonlinear equation systems [47] and is widely utilized in
Fig. 3. Frequency response amplitudes of a representative structural configurationwith local nonlinearities. (aec) Results of simulation and dimensioned analysis
for increasing excitation amplitudes. (def) Results of simulation and normalized analysis for increasing excitation amplitudes.
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numerical computations of structural systems [48,49]. At each excitation frequency, the numerical integration is undertaken
with 52 sets of displacement and velocity initial conditions that are randomly generated. With the aim to ensure that the
simulation yields steady-state dynamic responses comparable to the analysis, the governing Eq. (1) are numerically inte-
grated over 250 excitation periods and a fast Fourier transform (FFT) is taken over the last 50 excitation periods to produce the
simulation data points in Fig. 3. To ensure accuracy of the simulations, 1024 time steps per excitation period are utilized in the
numerical integration.

The columns of Fig. 3 show the evolution of the generalized displacement amplitudes with respect to increasing force
amplitudes. Here, a denotes a scaling factor that is uniformly applied to the amplitudes of the excitation forces acting on each
DOF. For a ¼ 1, the analysis agrees well with simulation regardless of the use of the normalization as shown in Fig. 3(a). The
slight softening effect of a lowering of the first resonant peak at 10.5 Hz in Fig. 3(a, d) is reconstructed by all methods of
solving the governing Eq. (1). For greater harmonic excitation force amplitudes via scaling parameter a ¼ 5, as shown in
Fig. 3(b) and (e), the completeness of the dimensioned analytical predictions diminishes. Such degradation is seen in Fig. 3(b)
where coexistent low amplitude intrawell and large amplitude snap-through dynamics, around 5e8Hz and at 5 Hz,
respectively, are predicted and identified by simulation. Yet, the dimensioned analysis fails to predict responses near the
fundamental resonance near 10 Hz in Fig. 3(b).

By contrast, the normalized analysis seen in Fig. 3(e) more completely uncovers the snap-through displacement behaviors
around 5e8 Hz in Fig. 3(e) and the trends of the softening intrawell oscillation amplitudes around 10 Hz. In fact, Fig. 3(e)
exemplifies the utility of this analytical technique over other methods of multi-DOF nonlinear dynamical analysis. While the
nonlinear broadening of the resonant frequency exhibited around 10Hz is comparable to the nonlinear trends studied in
detail via describing function theory, e.g. Ref. [27e30], the high-amplitude snap-through dynamics predicted in Fig. 3(e) have
no such analogue. Considering these trends, the numerical results only predict snap-through dynamics around 5Hz in
Fig. 3(b,e), while both dimensioned and normalized analyses forecast interwell responses in the frequency bandwidth of
5e8 Hz. The discrepancy may be due to the single-harmonic assumption of the analysis, and provides evidence that the
analytical formulations described in Sec. 2.2 and 2.3 yield conservative estimates of the displacement amplitude and fre-
quency bandwidth of snap-through dynamics regimes.

Considering a still higher amplitude of the excitation forces a ¼ 10, Fig. 3(c) reveals that the dimensioned analysis fails to
predict a large proportion of the snap-through responses near 5e12Hz that are otherwise uncovered by the normalized
analytical formulation solution, Fig. 3(f). Although the simulation results do not likewise identify as broad of a bandwidth of
the large amplitude snap-through displacements, the analysis of bistable and multistable structures is known to provide
conservative estimates [24,45] on thresholds of excitation conditions that may induce large amplitudes of displacement
should perturbations act on the system. Overall, from the exemplary comparison of results in Fig. 3, it is evident that pre-
dictions of the generalized displacements by the original analysis are inferior in completeness when compared to the
normalized analytical formulation. These enhancements are also further promoted by the strategic initial guess procedure
that more effectively selects the initial vectors of q and r used in the least squaresminimization of the nonlinear algebraic Eqs.
(29) and (30). While the effects of the enhancements are not independently investigated, several conclusions may be inferred
from these results.

Regardless of the normalization and initial guess enhancements, the analytical framework more rapidly generates pre-
dictions of the generalized coordinate forced response when compared to the direct simulation approach. The times required
for the normalized analyses of Fig. 3(def) are 3.48, 3.67, and 2.77ms per attempt to calculate a solution, respectively,
compared to 826, 701, and 659ms per attempt for the simulation results of Fig. 3(def). Thus, the normalized analytical results
are 237,191, and 238 times faster than the comparative simulation baselines. The reported times have units of ms per attempt,
which accounts for the difference between the number of solution attempts used in the analysis and simulation results of
Fig. 3. A portion of the decreased computational time can be attributed to the single-harmonic and steady-state assumptions
used in the analysis of Sec. 2.3. Comparatively, the numerical integration of the governing equations captures all harmonics in
the response, including chaotic regimes. The inclusion of each additional harmonic to be considered would result in an
additional N nonlinear algebraic equations that couple with Eqs. (29) and (30), where N is the number of DOF. While the
inclusion of other-order harmonics may increase computational times, an advantage may be that the inclusion of additional
harmonics, such as the order 1/2 subharmonic, may illuminate additional bifurcation behaviors such as the period-doubling
bifurcation that precedes chaos [50].

In addition to an enhanced ability to obtain accurate solutions from the derived algebraic equations utilizing similar at-
tempts and numerical convergence criteria, the normalized analysis produces results approximately twice as fast as the
dimensioned analysis and two orders of magnitude faster than simulation. All together, these results illustrate the efficacy of
the new analytical framework improvements to deliver accurate predictions of highly nonlinear, far-from-equilibrium re-
sponses. The complete response predictions of the normalized framework will be harnessed in Sec. 3.2 for sake of illumi-
nating the new modal formulation of multistable structural dynamics.

The analytical predictions calculate a complex response amplitude ri and offset qi for the ith generalized coordinate, so that
a time series of the analytical result may be reconstructed. Fig. 4 shows the contrast between the reconstructed analytical
time series of generalized displacements as solid curves and the simulated results as dash-dot curves when the excitation
frequency is 7.5 Hz and excitation amplitude scaling factor is a ¼ 5. The time series responses shown in Fig. 4(a) are the
intrawell dynamics that coexist with the snap-through dynamics, which are shown in Fig. 4(b) for the same excitation



Fig. 4. Analytical and numerical time series at 7.5 Hz for a¼ 5. (a) Intrawell dynamic responses. (b) Snap-through dynamic responses.
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conditions. The analytical and simulated results are in good agreement. The errors between the analytical and simulated
values of the RMS displacements for the intrawell oscillations in Fig. 4(a) are 0.20%, 0.060%, and 0.097%, respectively, for the
first, second, and third generalized coordinates. The snap-through dynamics in Fig. 4(b) reconstructed by the analysis exhibit
greater RMS error respecting the simulations. The RMS errors are 15%, 33%, and 30%, respectively, for the generalized co-
ordinates. The errors grow for the case of snap-through oscillations due to the presence of higher-order harmonics. On the
other hand, the errors in the peak-to-peak amplitudes of generalized displacement are much less: 21%, 2.7%, and 7.5%. Due to
the higher-order harmonics captured through simulation, the largest RMS and peak-to-peak amplitude errors do not occur for
the same DOF. From the perspective of the structural dynamics of air vehicles operating in extreme environments, a primary
danger associated with the onset of snap-through oscillations for a multistable structure is fatigue damage [51], which is
characterized by the difference between maximum and minimum stresses [52]. Thus, the peak-to-peak amplitude error may
be more important than RMS error when contrasting the numerical simulation to the analytical approximation. In this light,
the greater accuracy of the analytical peak-to-peak amplitude predictionswhen compared to the exact simulation results may
be helpful to informing design and deployment decisions in the context of sonic fatigue of aerostructural systems.
3.2. Equivalent nonlinear modes

The normalized and enhanced analytical formulation facilitates the investigation of the concept of equivalent nonlinear
modes (ENMs) established in Sec. 2.5. The analytical predictions used for the following ENM reconstruction are obtained from
the three cases examined in Fig. 3(def). The frequency response of the ENM generalized coordinates v are displayed in
Fig. 5(a) when the excitation amplitude scaling factor is a ¼ 1. The corresponding mode shapes of this system may be
investigated by examining the eigenvectors of ~K from (26) on the surface of the unit sphere in ℝ3 due to their normalized unit
amplitudes. Thesemode shapes induced for a ¼ 1 are shown as a parametric plot in Fig. 5(b) where the changing parameter is
Fig. 5. Analytical results. (a) ENMs corresponding to a¼ 1. (b) Characteristic eigenvectors corresponding to orthogonal mode shapes. The eigenvector corre-
sponding to the first (second/third) eigenfrequency is red (green/blue). (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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the excitation frequency. The eigenvector corresponding to the first (second, third) eigenfrequency of ~K is denoted by red
circles (green squares, blue triangles).

One feature of ENMs that distinguishes them from linear modes is that, even for quasi-linear responses, the modal co-
ordinates are coupled, such that each mode is more responsive at all resonant frequencies of system [43], which violates the
assumption of well-separated modes in Refs. [28,31]. In Fig. 5(a), this is evident by the response amplitudes of ENMs 2 and 3,
denoted by green and blue, respectively, that rise considerably to contribute near the first resonance frequency 10.5 Hz. The
ENM amplitudes of modes 2 and 3 specifically increase by nearly two orders of magnitude very close to the resonant fre-
quency, emphasizing the coupled nature of ENMs that is distinct from linear normal modes. Yet, the eigenvectors of ~K dis-
played in Fig. 5(b) remain essentially fixed revealing that for such low excitation amplitudes, themode shapes of a multistable
structure are independent of the frequency at which the structure is excited.

The frequency response of the ENMs are displayed in Fig. 6(a) for the case of increased excitation amplitude scaling factor
to a ¼ 5, whose reconstructed generalized displacements are shown in Fig. 3(e). The lowest order ENM in Fig. 6(a) exhibits
nonlinear resonant softening around 10.5 Hz to a more severe extent than the case with a ¼ 1. Likewise, the higher-order
ENMs increase in contribution by over an order of magnitude to the collective nonlinear modal response near the lowest
order resonant frequency. Thus, it is observed that all three ENMs contribute to the nonlinear intrawell dynamics near the
fundamental linear resonance. The nonlinear softening trends exhibited are tracked by dark gray lines with filled circle
terminations. The eigenvector translations of such nonlinear softening are manifest by deviations from the underlying linear
mode shapes. Fig. 6(b) maps this frequency dependent deviation for the ENM eigenvectors associated with the dark gray lines
with circular terminations.

At this higher excitation amplitude with scaling factor a ¼ 5, snap-through dynamics are observed from 5 to 8 Hz in the
physical domain, Fig. 3(e), resulting in corresponding snap-through responses in the modal domain, denoted in Fig. 6(a) by
light gray arrows. Unlike in the physical domain, in which the snap-through dynamics for each DOF are on the same order of
magnitude of displacement, the snap-through responses of ENMs 2 and 3 are approximately two orders of magnitude less in
amplitude than ENM1. This closely correlates snap-through dynamics with a “lowest order” response associatedwith the first
ENM. In contrast to nonlinear intrawell dynamics that exhibit large contributions from all three ENMs, high-amplitude
interwell regimes are observed to primarily oscillate in the fundamental ENM. This explains why the higher-order ENMs
have larger displacement amplitudes during the nonlinear intrawell dynamic than during snap-through. In fact, considering
Fig. 6(a), the overall trends of the first ENM frequency response are analogous to the frequency response of a single-DOF,
bistable Duffing oscillator [24]. This is a compelling result, because it reveals for the first time that the characteristic bista-
ble Duffing oscillator frequency response is still preserved in multistable structures albeit via the fundamental equivalent
normal mode. The snap-through responses of the ENMs are also uniquely identified by the eigenvectors of ~K, denoted by light
gray arrows in Fig. 6(b). Looking closely in Fig. 6(cee), the snap-through eigenvectors are seen to be highly frequency-
dependent by way of changing ENM contributions with each change in the excitation frequency, observed by the light
gray arrow indicators.
Fig. 6. Analytical results. (a) ENMs corresponding to a¼ 5. (b) Characteristic eigenvectors corresponding to orthogonal mode shapes. The eigenvector corre-
sponding to the first (second/third) eigenfrequency is red (green/blue). Intrawell nonlinear dynamics denoted by dark gray indicators. Progression of snap-
through indicated by light gray arrows. (cee) Frequency dependence of 1st/2nd/3rd snap-through eigenvectors, respectively. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of this article.)
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The trends observed in Fig. 6 with the presence of coexisting intrawell and snap-through oscillations are exacerbated
when the excitation amplitude scaling factor is further increased to a ¼ 10. At this high excitation amplitude, the analysis no
longer predicts intrawell dynamics near the first resonant peak at 10.5 Hz, and the more predominant, low frequency snap-
through dynamics persist across amuch broader frequency bandwidth. As a result, the intrawell ENM eigenvectors aremostly
independent of excitation frequency, Fig. 7(b). On the other hand, the severely nonlinear snap-through responses exhibit
pronounced frequency dependence in the eigenvector space Fig. 7(b). The light gray arrows in Fig. 7(b) relate the frequency
dependence of the snap-through ENM eigenvectors that is more clearly evident in Fig. 7(cee).

By adopting a new equivalent normal mode lens to scrutinize the dynamic response of multistable structures, the ex-
aminations of this section reveal several underlying aspects of multistability. The snap-through dynamics of the physical
domain response lead to a lowest order ENM associated strictly with the large-amplitude snap-through response and small
contribution from higher order ENMs. The eigenvectors of ~K corresponding to such snap-through behaviors exhibit strong
frequency dependence and are inherently “far from” the eigenvectors associatedwith the intrawell ENMs. The latter intrawell
eigenvectors, in turn, are closely alignedwith themode shapes of the underlying linear response byway of amostly frequency
independent property. In addition, the lowest order ENM of themultistable structure has a qualitative parallel to a single-DOF
bistable Duffing oscillator, which suggests an intrinsic connection between high- and low-dimensional multistable structures
with the single-DOF building block of a bistable structure [24]. These are new insights illuminated by the normalized and
enhanced analytical formulation established in this research.
4. Global nonlinearities for ROM modal equations

The analytical method established previously [36] is amenable to investigate structural systems containing nonlinearities
local to each DOF. In Sec. 3, it is shown that the normalization scheme (Sec. 2.3) and enhanced solution algorithm (Sec. 2.4)
produce complete sets of analytical predictions two orders of magnitude faster than numerical integration of the governing
Eq. (1), while a modal interpretation of the equivalent structural system (8) provides unique insights into high-dimensional
multistable structural dynamics (Sec. 2.5). An additional aim of this research is to formulate a newmodeling framework that
encompasses global nonlinearities typically encountered in reduced order models (ROMs) of multi-physics structural sys-
tems. Using the analytical framework extension described in Sec 2.6, this Sec. 4 examines the fidelity of analytical predictions
for the clamped-clamped beam shown in Fig. 1(b) whose nonlinear system model is formulated by a 4-mode ROM.
4.1. Mode shapes of clamped-clamped beam

The four, lowest order identified mode shapes of the clamped-clamped, thermomechanically loaded beam depicted in
Fig. 1(b) are shown in Fig. 8. These modes are used to fashion a 4-mode ROM created via the implicit condensation method
described in Ref. [53]. This ROM is used in this research to examine the capability for the newly developed analytical
Fig. 7. Analytical results. (a) ENMs corresponding to a¼ 10. (b) Characteristic eigenvectors corresponding to orthogonal mode shapes. The eigenvector corre-
sponding to the first (second/third) eigenfrequency is red (green/blue). Progression of snap-through indicated by light gray arrows. (cee) Frequency dependence
of 1st/2nd/3rd snap-through eigenvectors, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)



Fig. 8. First four mode shapes of clamped-clamped beam, modeled using a ROM-based system of equations.
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framework of Sec. 2.6 to accurately predict the nonlinear response of a multistable structure governed by a ROM-based
system of equations, thus greatly broadening the applicability of the analytical formulation as originally fashioned in
Ref. [36]. The ROM-based system examined here marks a departure from previous analytical studies of multi-DOF nonlinear
structures, which typically investigate systems with a small number of nonlinear elements [28,30,36].

4.2. Dynamic response prediction of clamped-clamped beam

Fig. 9 depicts the modal displacements and reconstructed displacement amplitudes for three excitation amplitudes in the
frequency range around the lowest order resonance. The columns of Fig. 9 correspond to distinct excitation forces according
to the amplitude scaling factor a that takes on a unit value in the column of Fig. 9(a,d). The modal forces applied to each DOF
for a ¼ 1 correspond to a spatially uniform distributed load of 10mPa. The results presented in Fig. 9 are generated for the use
of the thermal load parameter DT ¼ 4�C, which is sufficient to buckle the clamped-clamped beam. The reconstructed
displacement amplitudes given in the bottom row of Fig. 9 are generated for a location along the beam that is 40% from the
clamped end at x ¼ 0. At each frequency considered in Fig. 9, the analytical formulation is operated 96 times to identify the
potential steady-state responses with high confidence. Numerical simulation facilitates a direct comparison of the
displacement amplitudes predicted by the analysis, via an approximate solution to the governing equations, to the dynamic
responses captured by directly numerically integrating the ROMs, and is therefore a valuable approach to verify the efficacy of
Fig. 9. Analytical and numerical frequency responses of a representative ROM with global nonlinear coupling around the first resonant peak. (aec) Modal re-
sponses. (def) Reconstructed responses 40% from clamped beam end x¼ 0.
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the analytical modeling efforts of Sec. 2.6. The simulations are generated via fourth-order Runge-Kutta numerical integration
of the governing Eq. (37) over 250 excitation periods using 1024 time steps per excitation period. An FFT is then performed
over the last 50 excitation periods to yield the response amplitudes shown by the simulation results of Fig. 9 as the dot data
points. At each excitation frequency considered, the simulation is performed with 8 randomly generated sets of initial
conditions.

Fig. 9(a,d) show the modal and reconstructed responses for a ¼ 1, respectively. Due to the relatively low amplitude of the
excitation, a slight nonlinear softening of the resonant peak is predicted by both analysis (open markers) and simulation
(dots). The modal and reconstructed analytical results (shapes) agree very well with simulation (dots), which do not ulti-
mately deviate greatly from the underlying linear predictions (dash curves). For the case of a ¼ 5 shown in Fig. 9(b,e), the
modal and reconstructed displacements demonstrate increased softening of the first resonance and emergence of large
amplitude snap-through displacements for frequencies less than around 22Hz. There is relatively good agreement in modal
and reconstructed spaces between the numerical simulations and analytical predictions, despite such severe nonlinearity
that richly couples the generalized coordinates of the 4-mode ROM.

Considering the higher forcing amplitude of a ¼ 10, the modal and reconstructed responses are shown in Fig. 9(c,f),
respectively. The onset of aperiodic oscillations of the clamped-clamped and thermomechanically loaded beam is evident in
the simulation results (dots) that occur in the bandwidth 20e35Hz yet do not obtain consistent steady-state amplitudes of
displacement. Giving attention to the steady-state behaviors, the analytical predictions of snap-through response are in close
agreement with simulations. Likewise, analytical results for the lower amplitude intrawell oscillations at frequencies less than
around 50Hz are in good agreement with the numerical simulation. Yet, deviations between analytical and numerical results
occur from 50 to 70Hz in Fig. 9(f). For these excitation frequencies, the simulation predicts subharmonic oscillations at 1/3
and 1/2 orders in the frequency bands between 50-60 Hz and 60e70Hz, respectively. The analysis, established on the
assumption of a single periodic oscillation at the same frequency of the excitation, cannot predict the aperiodic or sub-
harmonic oscillations and thus identifies no such behaviors in the nonlinear equation solution procedures. On the other hand,
for the aperiodic simulation results with lowamplitude in the frequency range around 20e35Hz, the analysis indeed does not
predict steady-state low amplitude behaviors, which is partial support to the presence of other-periodic motions. Moreover,
the analysis predicts the snap-through dynamic regime with high fidelity, which is critical in many contexts of aerostructural
systems operating in extreme environments.

In fact, the extended analytical framework achieves the response predictions for this 4-mode ROM using over two orders
of magnitude less time than the simulations. The computational times for the analysis of the three cases shown in Fig. 9(aec)
are 0.0211, 0.0602, and 0.0573 s per attempt, respectively, which are 659, 231, and 227 times faster than the comparative
simulation baselines. Thus, the analytical method originally proposed in Ref. [36] is broadly extended in this research to
accurately model complex, coupled nonlinearities typical of myriad ROMs using a fraction of the computational time of
numerical simulation.

The reconstruction of modal responses into the physical domain facilitates comparison to the exact time series generated
via simulation. A comparison is made in Fig. 10 between coexistent (a) intrawell and (b) snap-through dynamic responses for
a ¼ 10 at 21.6 Hz whose amplitudes are shown in Fig. 9(f). In Fig. 10, analytical results are denoted by solid blue curves while
simulations are shown as red dash-dot curves. Higher-order harmonics are present in both intrawell and snap-through
simulation responses, which leads to deviations in the shape of the simulated waveform with respect to the analytically
predicted, single-harmonic response. Yet, the error between analysis and simulation remains low, specifically yielding RMS
error of 0.13% and 7.3% for the intrawell and snap-through cases, respectively. In addition, the RMS error for peak-to-peak
snap-through response is just 12%, thus yielding relatively accurate information for fatigue life predictions [52].

The newly established analytical framework is also observed to be well suited to predict higher order mode responses for
the ROM. Fig. 11 depicts the (a) modal response and (b) reconstructed physical response near the second resonance at 360 Hz.
Fig. 10. Analytical and numerical time series at 21.6 Hz for a¼ 10, reconstructed responses 40% from clamped beam end x¼ 0. (a) Intrawell dynamic responses.
(b) Snap-through dynamic responses.



Fig. 11. Analytical and numerical frequency responses of a representative ROM with global nonlinear coupling around the second resonant peak. (a) Modal
responses. (b) Reconstructed responses 40% from clamped beam end x¼ 0.
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The excitation amplitude scaling factor is greatly increased to a ¼ 250 to more prominently trigger clear deviation from the
underlying linear oscillations. The results of Fig. 11 plainly show that both modal and reconstructed displacements are
accurately predicted by the analysis when compared to the more time-consuming simulations. Interestingly, both methods
yield a cusp-like feature in the displacement amplitudes at a frequency slightly less than the second resonant frequency. The
analysis captures this unique nonlinear dynamic well, in addition to the coexistent dynamic behavior and hardening reso-
nance features suggested by simulation.

5. Conclusions

This research builds from an analytical framework to greatly enhance the capability to probe and characterize the har-
monic forced dynamics of multistable structures. The enhancement encompasses four efforts: (i) normalization of the
governing equations of motion, (ii) strategic initial guess seeding, (iii) establishment of an equivalent modal domain for new
interpretation of the dynamic behaviors, and (iv) creation of an analytical formulation amenable to common nonlinearities
and coupling manifest in myriad reduced order models (ROMs). For the case consisting of a three-DOF lumped parameter
system with local nonlinearities and linear global coupling, the normalization and algorithmic enhancements lead to com-
plete analytical predictions that uniquely facilitate the examination of coupled Duffing oscillators in the modal domain. The
formulation of these equivalent nonlinear modes uncovers parallels between single-DOF bistable structures and the
equivalent modal dynamics of multistable structures that warrant continued investigation for further deep, underlying ties.
The utilization of the newly developed analysis for ROMs reveals the rich nonlinear response manifest in such systems that is
previously inaccessible by other analytical techniques for nonlinearmulti-DOF systems. By the establishment of the analytical
formulation amenable to awide variety of structural nonlinearities, this research delivers a predictive tool that may aid in the
design and development of aerostructures operating in extreme, multi-physics loading environments where combinations of
near-to- and far-from-equilibrium behaviors may be induced.
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Appendix

The complete set of structural and excitation parameters for the system examined in Fig. 1(a) are presented in Table 1 for
reference.
Table 1
Parameters for the discrete system of Fig. 1(a).

Parameter Value Parameter Value Parameter Value

m1 15.0 g m2 15.0 g m3 15.0 g
c1 98.0mN s/m c2 9.88mN s/m c3 60.4mN s/m
p1 1.56 p2 0.969 p3 0.772
kNL11 116MN/m3 kNL22 33.0MN/m3 kNL33 55.2MN/m3

k11 192 N/m k22 24.8 N/m k33 287 N/m
k12 59.9 N/m k13 29.4 N/m k23 47.4 N/m
F1 0.200mN F2 0.200mN F3 0.200mN
f1 0 rad f2 0 rad f3 0 rad
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