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Impulsive energies are abundant throughout the natural and built environments, for
instance as stimulated by wind gusts, foot-steps, or vehicle–road interactions. In the
interest of maximizing the sustainability of society's technological developments, one idea
is to capture these high-amplitude and abrupt energies and convert them into usable

supplies. In this spirit, the considerable sensitivity to impulse-type events previously
uncovered for bistable oscillators has motivated recent experimental and numerical stu-
dies on the power generation performance of bistable vibration energy harvesters. To lead
to an effective and efficient predictive tool and design guide, this research develops a new
analytical approach to estimate the electroelastic response and power generation of a
bistable energy harvester when excited by an impulse. Comparison with values deter-
mined by direct simulation of the governing equations shows that the analytically pre-
dicted net converted energies are very accurate for a wide range of impulse strengths.
Extensive experimental investigations are undertaken to validate the analytical approach
and it is seen that the predicted estimates of the impulsive energy conversion are in
excellent agreement with the measurements, and the detailed structural dynamics are
correctly reproduced. As a result, the analytical approach represents a significant leap
forward in the understanding of how to effectively leverage bistable structures as energy
harvesting devices and introduces new means to elucidate the transient and far-from-
equilibrium dynamics of nonlinear systems more generally.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The conversion of ambient vibrations into a usable electric power resource has motivated a broad range of interests [1,2],
where one common goal is to leverage the converted energies to realize self-powered electronics that otherwise rely on less
sustainable powering methods. The characteristics of the vibration resources vary considerably, from strongly harmonic
motions like those induced by rotating machinery [3], to purely stochastic oscillations [4–7] like the heaving of ocean waves
k.
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[8,9], and transient vibrations like those resulting from moving vehicles on roadways [10,11]. Impulsive motions form an
important subset of the ambient, transient vibration resources: they are high-amplitude energies suddenly transmitted in
brief durations of time. Oscillations induced due to human activities are oftentimes impulsive: walking or running indivi-
duals cause shocks to their portable electronic devices [12,13], automobiles driven over traffic counters or speed bumps
induce local impulsive forces on the counters or road surface [14], and extensive research illustrates the impulsive nature of
forces exerted upon stairs due to human walking [15]. For the beneficial applications of energy harvesters in impulsive
excitation environments (e.g., charging electronics borne and jolted by jogging individuals, self-powered traffic monitoring
systems, to name a few), the deployment of a suitable vibration energy harvester is critical to maximize device sensitivity to
the impulsive excitations.

Recent research has shown that bistable energy harvesters are particularly sensitive to impulsive inputs [14,16–19]. Fig. 1
(a) and (b), respectively, show a prototypical bistable, piezoelectric energy harvester and its schematic model for oscillations
that strictly exhibit fundamental mode behaviors. In agreement with our experimental system described in Section 5, the
inducement of bistability illustrated in Fig. 1(a) is by mutual attractions between the ferromagnetic cantilever substrate and
a base-mounted magnet pair. Fig. 1(c) provides an exemplary representation of the vibrations of the bistable harvester when
excited by an impulse of initial relative velocity between the tip mass and the base. These numerically simulated results
illustrate that the transient oscillations of the bistable harvester are characterized by two distinct regimes: an initial phase of
snap-through oscillation where the inertial mass vibrates between the two stable equilibria, followed by a period of ring-
down-type intrawell vibrations at the end of which the bistable device returns to a resting position. The lower inset of Fig. 1
shows that the net converted energy (the integration of instantaneous electrical power in time) is more than an order of
magnitude greater for the few cycles of snap-through oscillation than that generated by the long-time intrawell dynamics.

This finding motivates the development of an accurate and efficient predictive tool to determine the power generation
performance resulting from the favorable snap-through oscillations induced due to impulsive excitations. Such a tool might
then inform and guide design and implementation of bistable vibration energy harvesters excited in impulsive motion
environments, so as to enhance device sensitivity to the properties of the anticipated impulsive vibration resource. The aim
of this research is to develop such a predictive strategy and thus design tool.

Numerical simulations, for example the Runge–Kutta algorithm-based approach used to generate the representative
results in Fig. 1, are one means to estimate the power generation of a bistable energy harvester excited by impulses.
However, these strategies are computationally-expensive. In other words, each simulation is an indicator of performance for
only one set of design parameters and one prescribed impulsive event. A predictive approach based upon an analytical
formulation of the impulsively-excited dynamics of a bistable energy harvester is preferred for the more generalized
character of the results and the ease in carrying out the computations of detailed and insightful parametric studies.

In fact, many researchers have devised analytical strategies to predict the transient dynamics of bistable oscillators in the
absence of electromechanical coupling. Lakrad and Belhaq [20] developed an approach to approximate the free, undamped
oscillations of bistable structures, and Yuste and Bejarano [21], Yuste [22], Cveticanin [23], and Al-Shudeifat [24] devised
different means to predict the transient, dissipative dynamics of bistable oscillators. Although lacking the inclusion of
electromechanical influences, these latter approaches are of importance to the current investigation in the broader dyna-
mical sense. On the other hand, these advancements have limitations since the predictions may be accurate for only a few
cycles of oscillation and may exhibit severe parameter sensitivity in the fidelity of the estimates.
Fig. 1. (a) A prototypical bistable, piezoelectric energy harvesters under impulsive excitation upon the relative motion between beam tip and base;
(b) schematic model of the bistable harvester in (a); and (c) an exemplary simulation of the bistable vibration energy harvester beam tip displacement and
transduced voltage induced by an impulsive input of relative velocity between the base and harvester beam tip.
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To surmount such challenges for the high-fidelity prediction of electromechanical dynamics exhibited by impulsively-
excited bistable energy harvesters, a promising idea is to harness a framework composed from the averaging method and
Jacobian elliptic functions [25]. Coppola and Rand [26,27] approximated the transient dynamics of monostable, nonlinear
oscillators using such tools, which was the tactic likewise employed by Belhaq and Lakrad [28]. Yet, for bistable oscillators,
the near-identity transformation underlying the classical averaging method [29] favors accurate predictions only in the
event that the bistable structure oscillates with small displacements near one of the two stable equilibria. In the current
interest of effective bistable energy harvester development for impulsive excitation environments, the prediction of the
large-amplitude, power-generating snap-through vibrations necessitates a new approach not inhibited by such restrictions.

The research presented in this paper tackles the aforementioned challenges by developing a new analytical approach for
predicting the transient dynamics of bistable vibration energy harvesters, both near- and far-from-equilibrium. To this end,
the Jacobian elliptic functions are employed in the averaging method that is enhanced by relaxing assumptions regarding
the degree of time-varying dynamic amplitudes. The following sections review the mathematical formulation of the bistable
harvester and the procedures undertaken to analytically predict the transient electromechanical dynamics as well as to
compute the average power generation achieved for a prescribed excitation impulse. The accuracy of the approach is
assessed, in a strict sense, by comparison with numerically simulated results which are considered to be the exact dynamics.
The analytical predictions are also validated through comparison with an extensive set of experimental findings. Finally, the
advancements of this research are summarized and future directions are highlighted.
2. Governing equations for the bistable vibration energy harvester

Similar to the cantilevered, piezoelectric energy harvesting beam illustrated in Fig. 1, the bistability of the cantilever is
assumed to be induced by applied axial compressive force mechanisms, such as geometric constraints or by repulsive or
attractive magnet pairs. In such events, it is well-established that the governing equations of motion are formulated
according to the primary generalized displacement and the voltage across an attached external (resistive) load. By such a
model formulation regarding the combined elastic and applied restoring force effects, the net restoring force approximation
for the structural dynamics includes negative linear and positive cubic stiffnesses [30–33]. The convention of considering
the external circuit as a purely resistive load follows the knowledge that the influence of more intricate power conditioning
stages may be sufficiently captured using the lumped resistance model [34]. Also, the absence of coupling to underlying,
exciting structural dynamics (such as a base structure to which the harvester is attached) is consistent with the assumptions
that the underlying structure is sufficiently massive with respect to the inertia of the harvester [1]. These equations of
motion are expressed using

m €xþd _x�k1xþk3x3þΓv¼ 0
Cp _vþv=R¼ Γ _x

x t ¼ 0 ¼ x0; _x t ¼ 0 ¼ _x0; v t ¼ 0 ¼ 0
������

8><
>: (1)

where x is the generalized displacement of the piezoelectric cantilever (here, indicating the relative motion between the
beam tip and the base to which it is clamped); v is the voltage across a load resistance R; m is the inertial mass; d is a
damping constant; ki i¼ 1; 3ð Þ are stiffness constants; Cp is the capacitance of the piezoelectric layers; and Γ is the elec-
tromechanical coupling constant. The structure exhibits one of two stable equilibria displacements x� ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffi
k1=k3

p
m, which

are here assumed to be symmetric about an unstable equilibrium x� ¼ 0 m. Assuming the piezoelectric cantilever is initially
at rest with configuration x� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k1=k3

p
m, the initial velocity _xjt ¼ 0 ¼ _x0 m:s�1 is chosen to reflect an impulsive excitation

according to the impulse-momentum theorem. After introduction of the following parameters

γ ¼ d=m; α¼ k1=m; β¼ k3=m; ρ¼ 1=RCp; θ¼ Γ=Cp; ε¼ Cp=m (2)

the governing equations are cast into a more general form [35]:

€xþγ _x�αxþβx3þεθv¼ 0
_vþρv¼ θ_x

xjt ¼ 0 ¼ x�; _xjt ¼ 0 ¼ _x0; vjt ¼ 0 ¼ 0

8><
>: (3)

Of note, ρ is the electromechanical time constant while θ may be described as a transduction or electromechanical
coupling constant. Finally, the linear natural frequency is calculated with respect to the linear oscillations around one of the
stable equilibria:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1=m

p
[29].
3. Analytical prediction of the conservative vibrations of a bistable oscillator

To analytically estimate the transient dynamics of bistable harvesters using Jacobian elliptic functions, it is essential to
determine the time-varying argument and modulus of the elliptic functions, which directly influence the time-varying
displacement and voltage amplitudes. In this section, the argument and modulus of the elliptic function are derived to be
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functions of the displacement amplitude in the conservative case. These relations become foundational in the predictions of
transient, electromechanical dynamics of bistable energy harvesters as developed in Section 4.

The Jacobian elliptic functions are known to exactly describe the snap-through and intrawell vibration responses of
unforced and undamped bistable oscillators [29,36], meaning that γ ¼ θ¼ 0. The generalized displacement is expressed
using

xi ¼ ζiMi0ep ωitþφi0; ki
� �¼ ζiMi0ep ui; kið Þ � ζiMi0epi; i¼ c; d (4)

where subscript i¼ c; d represents the dynamic regime such that c denotes snap-through and d indicates intrawell beha-
viors. ζi are functions described below. Mi0 are amplitudes of the generalized displacement. The functions epi are Jacobian
elliptic functions given by epc ¼ cn uc; kcð Þ � cnc for snap-through and epd ¼ dn ud; kdð Þ � dnd for intrawell oscillation. The
argument is ui ¼ωitþφi0 where ωi is the frequency, while the modulus is ki. In what follows, the argument and modulus of
the elliptic functions are distinct whether considering the snap-through or intrawell dynamic regimes. As such, the sub-
script c indicates that the argument uc and modulus kc are taken in the evaluations of snc, cnc, dnc, and Zc. Likewise, subscript
d denotes that the argument ud and modulus kd are employed to evaluate snd, cnd, dnd, and Zd in the intrawell regime. The
elliptic functions epi have period Ti given by Tc ¼ 4K kcð Þ and Td ¼ 2K kdð Þ, where K kið Þ is the complete elliptic integral of the
first kind [37]. These functions reduce to epc ¼ cn uc;0ð Þ ¼ cos ucð Þ and epd ¼ dn ud;0ð Þ ¼ 1 for the special case of a null
modulus. The first and second order derivatives of xi are, respectively,

_xi ¼
dxi

d epi
� �Ud epi

� �
dui

U
dui

dt
¼ ζiMi0ωiep0i (5a)

€xi ¼ ζiMi0ωi U
d ep0i
� �
dui

U
dui

dt
¼ ζiMi0ω

2
i ρi1epiþρi3ep

3
i

� �
(5b)

where ρc1 ¼ 2k2c �1; ρc3 ¼ �2k2c ; ρd1 ¼ 2�k2d; ρd3 ¼ �2. Substituting Eq. (5) into (3) with γ ¼ θ¼ 0 leads to the relations
between the instantaneous displacement amplitude Mi0 and ω2

i or ki. Note that for the conservative system lacking elec-
tromechanical coupling, the values of ω2

i and kiare constants. For intrawell vibration

ω2
d ¼ βM2

d0=2; k
2
d ¼ 2�2α= βM2

d0

� 	
(6)

while for snap-through vibration

ω2
c ¼ βM2

c0�α; k2c ¼ βM2
c0= 2 βM2

c0�α
� 	h i

(7)

Thus, for the undamped and uncoupled system, the intrawell and snap-through oscillations are given by, respectively,

xd ¼ ζdMd0 Udn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βM2

d0=2
q

U tþφd0; 2�2α= βM2
d0

� 	h i1=2
 �
(8a)

xc ¼ ζcMc0 Ucn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βM2

c0�α
q

Utþφc0; βM2
c0= 2 βM2

c0�α
� 	� 	h i1=2
 �

(8b)

The term ζc is always equal to unity. In contrast, ζd relates to the stable equilibrium around which the intrawell oscil-
lations occur:

ζd ¼
sgn x0½ �; if x0a0
sgn _x0½ �; if x0 ¼ 0

(
(9)

The initial displacement and velocity at the time t ¼ 0 satisfy x0 ¼ ζiMi0epiand _x0 ¼ ζiMi0ωiep0i, respectively. Consequently,
the initial amplitude and phase are determined from

Mi0 ¼ β�1=2 U αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α�βx20
� �2þ2β _x20

q
 �1=2

(10a)

ep0i φi0; ki
� �

=epi φi0; ki
� �¼ _x0= ωix0ð Þ (10b)

For the Jacobian elliptic function epi u; kð Þ, the modulus is constrained to 0rk2r1. By Eq. (8), for intrawell oscillations

this constraint leads to 1=2r α= βM2
d0

� 	
r1 while 0rα= βM2

c0

� 	
r1=2 results from application of the constraint in the

context of snap-through vibration. Using the developments above, the system Hamiltonian is expressed to determine the
instantaneous energy

Ei ¼ _x2i =2�αx2i =2þβx4i =4¼M2
i0 βM2

i0�2α
� 	

=4 (11)

According to the above constraints on α=βM2
i0, when the instantaneous system energy is negative, the bistable oscillator

(recalling that it is neither electromechanically coupled θ¼ 0 nor damped γ ¼ 0) undergoes intrawell oscillations. For
positive instantaneous system energy, snap-through vibrations occur. Therefore, once dissipative and electromechanically
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coupled dynamics are accounted for in the new analytical formulation derived below for the bistable energy harvester, the
critical condition βM2

i ¼ 2α denotes the boundary between the transient, decaying snap-through vibrations from the
intrawell oscillations which occur later in time, such as that transition shown in Fig. 1. Yet to predict such behaviors, a more
capable analytical framework is required than the developments [29,36] reviewed above.
4. Analytical formulation for the transient, damped dynamics and converted energy

Following the expressions established in Section 3, this section builds the analytical tools required to estimate the
transient dynamics and harvested power of impulsive-excited and damped bistable energy harvester. For the dissipative
system expressed using Eq. (3), the transient oscillations may exhibit periods of snap-through motions followed by intrawell
behaviors such as that illustrated from the numerical example of Fig. 1(c). This apparently implies that the dynamical
features of the system are transient in nature. To meet this obvious requirement, the amplitude Mi ¼Mi tð Þ and argument
ui ¼ Tiψ i tð Þ are assumed to be slowly varying in time (where Tiψ i is conceived to be a phase), while constraints on the
modulus as derived in Section 3 must still be met. Therefore, the transient vibrations satisfying Eq. (3) are expressed using

xi ¼ ζiMi tð Þepi ui; kið Þ ¼ ζiMi tð Þepi Tiψ i; ki
� �¼ ζiMi tð Þepi σiKiψ i; ki

� �� ζiMi tð Þepi; i¼ c; d (12a)

_xi ¼ ζiMiωiep0i (12b)

ω2
c ¼ βM2

c �α; ω2
d ¼ βM2

d=2; k
2
c ¼ βM2

c= 2 βM2
c �α

� 	h i
; k2d ¼ 2�2α= βM2

d

� 	
(12c)

Here, ui ¼ Tiψ i is used as the argument; Ti is the period of the Jacobian elliptic function epi and thus σc ¼ 4 and σd ¼ 2;
ζc � 1 and ζd ¼ 71 as defined in Section 3. Unlike the conservative and uncoupled system detailed in Section 3, in the case
of the damped and coupled platform, the values of ω2

i and k2i vary in time according to their dependence upon M2
i .

The rest of this section is structured as follows. In Section 4.1, the relation between the transduced voltage and the
structural dynamic response is established, which simplifies the governing equation formulation to facilitate the continuing
derivation. Through the connections found in Eq. (12c) between the elliptic function variables and the displacement
amplitude Mi, Section 4.2 derives an implicit expression of the vibration amplitude using the averaging method. The exact
expression of the amplitudes Mi are satisfactorily simplified in Section 4.3 to enable an integration of the equation that
yields a closed form expression. In Section 4.4, the instantaneous vibration frequency components are subsequently
determined from the time-varying displacement amplitudes. This information thereafter enables one to find the instan-
taneous trajectories of the harvester displacement, velocity, and voltage, according to the derivation and results given in
Section 4.5. The final step is given in Section 4.6 where the instantaneous electric power and net converted energy are
expressed according to the time-varying amplitudes Mi.

4.1. Transduced voltage coupling relation to the structural dynamic response

Apart from strongly coupled piezoelectric systems or those operating at frequencies close to the time constant of the
piezoelectric capacitance and attached electrical load [38,39], the primary influence of the piezoelectric and electrical
coupling upon the structural dynamics is a dissipative effect. Such a reduction of role is particularly relevant in the context
of utilizing structures which employ nonlinearities that reduce the net linear stiffnesses to small values [40], such as weak
bistability properties which are prime to be leveraged for energy harvesting from ambient impulses. Taking such factors into
account, the induced voltage is assumed to be proportional to the velocity vi ¼ Ai _xi; i¼ c; d. Here, Ai is a coefficient
determined as follows. The first order derivative of vi is

_vi ¼ _Ai _xi�Ai γ _xi�αxiþβx3i þεθvi
� �

(13)

Using these relations in the third equation of Eq. (3), one obtains

_Ai _xi ¼ εθA2
i � ρ�γð ÞAiþθ

h i
_xi�αAixiþβAix3i (14)

The method of averaging is then employed over one period of transient oscillation (i.e., a period of Ti with respect to
argument ui). In this way, the averaged variable is the smooth, local mean of the variable; hereafter this and related
averaged variables are referred to as “averaged instantaneous” variables. First, ep0i is multiplied to both sides of Eq. (14) and
the equation is averaged to yield

1
Ti

Z Ti

0

_Ai _xiep0idui ¼
1
Ti

Z Ti

0
ϵθA2

i � ρ�γð ÞAiþθ
h i

_xiep0i�αAixiep0iþβAix3i ep
0
i

� 	
dui: (15a)

According to the definitions in Eq. (12) and result that
R Ti
0 ep02i duia0 and

R Ti
0 epmi ep

0
idui ¼ 0; mAΖ [37], Eq. (15a) is

reduced to give

_Ai ¼ εθA2
i � ρ�γð ÞAiþθ: (15b)



R.L. Harne et al. / Journal of Sound and Vibration 373 (2016) 205–222210
Since Ai slowly varies, it is taken that _Ai ¼ 0 which leads to

Ai1 ¼
ρ�γ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ�γð Þ2�4εθ2

q
2εθ

; Ai2 ¼
ρ�γþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ�γð Þ2�4εθ2

q
2εθ

(16)

Based on Eq. (16), Ai is defined identically for both intrawell and snap-through vibrations. Moreover, according to Eq.
(15), an assessment of stability indicates that the smaller of the two roots in Eq. (16) is the stable root. Then, the voltage is
expressed by

vi ¼
ρ�γ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ�γð Þ2�4εθ2

q
2εθ

_xi (17)

To meet the assumptions inherent in the derived form of voltage in Eq. (17), it is apparent that ρ�γð Þ2Z4εθ2, which
indicates that either the time constant must be large ρc1ð Þ or the electromechanical coupling small θ51ð Þ. In either event,
the contexts described above for which it is appropriate to assume that the influence of the electromechanical components
is a dissipative effect correspond directly to such assumptions [41].

4.2. Deriving averaged governing equations

This section estimates the displacement amplitude Mi using the averaging method so as to facilitate the subsequent
determination of the relevant dynamical variables and time-varying parameters. Substituting Eq. (17) into (3), the original
electromechanically-coupled governing equation system is simplified to a conventional Duffing equation

€xþγ1 _x�αxþβx3 ¼ 0; xjt ¼ 0 ¼ x0; _xjt ¼ 0 ¼ _x0 (18)

where γ1 ¼ γþ ρ�γ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ�γð Þ2�4εθ2

q
 �
=2. From Eq. (12a), the first order derivatives of xi is

_xi ¼ ζi
dMi

dt
epiþσiMiψ iK

0
ik

0
iep

0
iþMik

0
i
∂epi
∂ki

� 
þζi

dψ i

dt
σiMiKiep

0
i (19)

where Uð Þ0 denotes the differentiation of the variables with respect to their respective argument. In other words

ep0i � ∂epi=∂ui; K
0
i � dKi=dki; k

0
i � dki=dMi; ω

0
i � dωi=dMi (20)

Comparing Eqs. (12b) and (19) one finds

dMi

dt
epiþσiMiψ iK

0
ik

0
iep

0
iþMik

0
i
∂epi
∂ki

� 
þdψ i

dt
σiMiKiep

0
i ¼Miωiep

0
i (21)

From Eq. (12b), the second order derivative of xi is

€xj ¼ ζi
dMi

dt
ωiþMiω

0
i

� �
ep0iþσiMiψ iωiK

0
ik

0
iep

00
i þMiωik

0
i
∂ep0i
∂ki

� 
þdψ i

dt
σiMiωiKiep00i

� �
(22)

Substituting Eqs. (12) and (22) into (18) one obtains

dMi

dt
ωiþMiω

0
i

� �
ep0iþσiMiψ iωiK

0
ik

0
iep

00
i þMiωik

0
i
∂ep0i
∂ki

� 
þdψ i

dt
σiMiωiKiep00i þγ1Miωiep0i�αMiepiþβM3

i ep
3
i ¼ 0 (23)

Combining Eqs. (21) and (23), dMi/dt and dψ i=dt are solved using the identities of Jacobian elliptic functions. For
intrawell vibration,

dMd=dt ¼ �γ1Mddn02
d =k

2
d (24a)

dψd

dt
¼ ωd

2Kd
þ γ1dn0

d

2Kdk
2
d

dnd�
2�k2d

k2d 1�k2d
� 	 Z ud; kdð Þdn0

dþdnd 1�dn2
d

� �� �8<
:

9=
; (24b)

For snap-through vibration,

dMc=dt ¼ �γ1Mccn02
c (25a)

dψ c

dt
¼ ωc

4Kc
þγ1cn0

c

4Kc
cnc�

1�2k2c
1�k2c

Z uc; kcð Þcn0
cþk2c cnc 1�cn2

c

� �� 	" #
(25b)

Z ui; kið Þ is the Jacobian Zeta function and is hereafter expressed simply by Zi, i¼ c; d. According to the assumption that the
amplitude Mi ¼Mi tð Þ and argument ui ¼ Tiψ i tð Þ slowly vary in time, the averaging method is applied to Eqs. (24a) and (25a)
over one cycle of the transient oscillations. Eq. (26a) is the averaged result for intrawell oscillations while Eq. (26b) results
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for snap-through vibrations.

_Md ¼ �γ1Md

2 k2d�1
� 	
3k2d

þ2�k2d
3k2d

U
Ed
Kd

2
4

3
5 (26a)

_Mc ¼ �γ1Mc
1�k2c
3k2c

þ2k2c �1

3k2c

Ec
Kc

" #
(26b)

where the amplitudes Mi are understood to be averaged instantaneous representations of the exact dynamics, and where Ki

and Ei denote the complete elliptic integrals of the first and second kinds with respect to the modulus ki.

4.3. Approximating the functional dependence of the averaged equations

Eqs. (26) are non-integrable and the right hand sides are implicit functions of Mi, which indicates that an alternative
means is needed to solve Eqs. (26). The means developed here is to first express Eqs. (26) using

_Mi ¼ �γ1Mif i k2i
� 	

; i¼ c; d (27a)

f c k2c
� 	

¼ 1�k2c
3k2c

þ2k2c �1

3k2c
U
Ec
Kc

; f d k2d
� 	

¼
2 k2d�1
� 	
3k2d

þ2�k2d
3k2d

U
Ed
Kd

(27b)

It is seen that f i k2i
� 	

depends only on k2i , which itself can be expressed in terms of a new variable defined by α=βM2
i by

way of the relations in Eqs. (6) and (7). As a result, one finds

k2d ¼ 2�2α= βM2
d

� 	
; 1=2rα=βM2

dr1 (28a)

k2c ¼ 1= 2 1�α=βM2
c

� 	h i
; 0rα=βM2

c r1=2 (28b)

Eq. (28) provides the connection between the new variable α=βM2
i and the function f i k2i

� 	
. Across the range of validity of

these expressions, it is found that both f d k2d
� 	

and f c k2c
� 	

are sufficiently smooth on a large range of the respective variables

α=βM2
i . Consequently, a second-order polynomial approximation is utilized to reconstruct the curvilinear dependence of

f i k2i
� 	

on α=βM2
i . The MATLAB curve-fitting toolbox is employed to this end. For intrawell oscillations, the polynomial fit is

taken across the range 0:55rα=βM2
dr1 which is found to be most amenable to fitting. Then,

f d k2d
� 	

� gd ¼ μU
α

βM2
d

 !nd

þυ (29)

where nd ¼ 2 is the order, and μ¼ �0:15011 and υ¼ 0:14714 are fitting coefficients, which yield a goodness-of-fit measure

of R2 ¼ 0:9987 across 0:55rα=βM2
dr1. Similarly, the suitable range for a second-order polynomial fit for individual poly-

nomial fit using f c k2c
� 	

is found to be 0:05rα=βM2
c r0:45. The function fit results in

f c k2c
� 	

� gc ¼ aU
α

βM2
c

 !nc

þb (30)

where nc ¼ 2, a¼ �0:785783, and b¼ 0:320508 which yields R2 ¼ 0:9962. The functions gi given in Eqs. (29) and (30)
provide the alternative means to integrate Eqs. (26), with best fitting accuracy – and thus anticipated accuracy of analytical

predictions – across the range of α=βM2
i for which the fits are obtained.

Substitution of gi into the appropriate form of Eq. (27), and integration of the equation provides for the analytical
prediction of the time-varying displacement amplitude as a function of system parameters and fitting coefficients. For
intrawell oscillations

Md tð Þ ¼ β�1=2 U
μ

υ
α2þβ2M4

d0

� 	
e�4υγt�μ

υ
α2

h i1=4
(31)

in which Md0 is the initial amplitude determined from Eq. (10a). For snap-through vibrations

Mc tð Þ ¼ β�1=2 U β2M4
c0þ

a
b
α2

� 	
e�4bγ1t�a

b
α2

h i1=4
(32)

where Mc0 is the initial amplitude likewise determined using Eq. (10a). Considering the criteria which demarcates intrawell
from snap-through behaviors, βM2

i ¼ 2α, the time at which the analytical predictions of decaying snap-through vibrations
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cease to meet constraints is

tend ¼ � ln 4þa=b
� �

α2 U β2M4
c0þα2a=b

� 	�1
� 

=4bγ1 (33)

Eqs. (31) and (32) are analytical approximations of the averaged instantaneous displacement amplitude, more often
described to be “envelopes” of the response. Although this information is sufficient with which to predict the instantaneous
converted electrical power and net converted energy, this research follows through on a fuller analytical development for
the prediction of time-dependent trajectories of the electromechanical dynamics, including the instantaneous frequency
spectrum.

4.4. Prediction of the instantaneous spectral information

The transient, nonlinear vibrations of the harvester possess time-varying response amplitudes that correspond to
changing spectral components. The transient frequency information is thus found in this subsection. Based upon the
assumptions described at the outset of Section 4, the arguments of the Jacobian elliptic functions, and hence frequencies, are
slowly varying in time. To predict the transient electromechanical dynamics of displacement xi and voltage vi, the time
dependence of the frequencies must be determined in addition to the transient amplitudes as derived in Eqs. (31) and (32).

For intrawell oscillations, the averaged instantaneous variable _ψd is found by averaging Eq. (24b) over one vibration
period 2Kd.

_ψd ¼
ωd

2Kd
þ 1
2Kd

Z 2Kd

0

γ1

2Kdk
2
d

dn0 dn� 2�k2d
k2d 1�k2d
� 	Udn 1�dn2� �2

4
3
5� 2�k2d

k2d 1�k2d
� 	Zddn02

8<
:

9=
;dud (34)

which simplifies to _ψd ¼ωd=2Kd following application of the identity
R 2Kd
0 Zddnsdud ¼ 0; s¼ 0;1;2;… [37]. Note that the

Jacobian elliptic function dn is able to be expressed by the Fourier series

dn ud; kdð Þ ¼ π
2Kd

þ2π
Kd

X1
j ¼ 1;2;3;…

qjd
1þq2jd

cos
jπ
Kd

ud


 �
; j¼ 1;2;3;… (35)

Eq. (35) reveals that intrawell oscillations are composed of even- and odd-order harmonic components, a finding in
agreement with established understanding on their spectral dependence [42]. The angular frequencies of the intrawell
vibration are

Ωd;j ¼
d
dt

jπ
Kd

ud


 �
¼ d
dt

jπ
Kd

Tdψd tð Þ

 �

; j¼ 1;2;3;… (36)

where j indicates the order of harmonic components; qd ¼ e�πK 0
d=Kd ; K 0

d ¼ K ldð Þ; and ld ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2d

q
. The averaged instantaneous

frequencies are therefore

Ωd;j ¼
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2Kd

Z 2Kd
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U2Kdψd
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dud ¼

1
2Kd

Z 2Kd

0
2jπψ ̇ddud ¼ 2jπU

ωd

2Kd
¼ jπωd
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(37a)

To distinguish Ωd;j and ωd, the prior corresponds to the lowest-order frequency of the dissipative and coupled vibration
when j¼ 1 while, as described in Section 3, ωd is the lowest-order oscillation frequency for the undamped and uncoupled
system. Then, recalling xd ¼ ζdMddn and Eq. (35), the amplitudes of the bistable harvester displacement corresponding to
the frequency components are

Yd;j ¼MddnjΩd;j
¼Md U

2π
Kd

U
qjd

1þq2jd
¼ 2πMd

Kd
U

qjd
1þq2jd

; j¼ 1;2;3;… (37b)

A comparable routine is undertaken to determine the transient spectral features in the context of snap-through vibra-
tions. In this event, the averaged instantaneous variable ψ c is derived by averaging Eq. (25b) over one period 4Kc

_ψ c ¼
ωc

4Kc
þ 1
4Kc

Z 4Kc

0

γ1cn0

4Kc
cn�1�2k2c

1�k2c
Uk2c cn 1�cn2� �" #

duc� 1
4Kc

Z 4Kc

0

γ1
4Kc

U
1�2k2c
1�k2c
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2
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duc (38)

which reduces similarly to _ψc ¼ ωc=4Kc. The Jacobian elliptic function cn may be expanded in the following Fourier series

cn uc; kcð Þ ¼ 2π
kcKc

X1
i ¼ 1;3;5;:::

qic
1þq2ic

cos
iπ
Kc

uc


 �
(39)

where qc ¼ e�πK 0
c=Kc ; K 0

c ¼ K lcð Þ; and lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2c

q
is the complementary modulus. Eq. (39) reveals that snap-through vibration

contains only the odd-order harmonic components, also in agreement with previous understood properties of bistable
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structures [35]. Then the angular frequency of each harmonic component is expressed as

Ωc;i ¼
d
dt

iπ
Kc

uc


 �
; i¼ 1;3;5;… (40)

The averaged instantaneous angular frequency is thus

Ωc;i ¼
1

4Kc

Z 4Kc

0

d
dt

iπ
Kc

U4Kcψ c


 �
duc ¼

iπωc

Kc
; i¼ 1;3;5;… (41)

Combining Eqs. (12a) and (39), the amplitude of displacement corresponding to each harmonic component is

Yc;i ¼MccnjΩc;i
¼Mc U

2π
kcKc

U
qic

1þq2ic
¼ 2πMc

kcKc
U

qic
1þq2ic

; i¼ 1;3;5;… (42)

4.5. Prediction of the instantaneous trajectories of response

With the time-varying spectral information available, the instantaneous trajectories of the displacement, velocity, and
voltage may be determined. The instantaneous displacement and velocity are given according to Eq. (12). To reconstruct the
trajectories in time, the transient argument ui ¼ σiKiψ i of the Jacobian elliptic function epi must be approximated. The
derivative of the argument ui is

_ui ¼
d
dt

σiKiψ i
� �¼ σiψ iK

0
ik

0
i
_MiþσiKi _ψ i (43)

Then the definition of K 0
i and derivative of k0i are expressed as

K 0
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2
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� 	
= kdMdð Þ (44)

For intrawell vibration, substituting Eq. (27) into (43) one obtains

_ud ¼ �2γ1ψd
Ed
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Substituting Eq. (31) into Eq. (43) and subsequently substituting the result into Eq. (45), the averaged instantaneous
argument _ud is

_ud ¼ �2γ1ψd
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Using the initial values defined in Section 4, ψd tð Þ and ud tð Þ are approximated on any time interval 0; t½ � by integrating Eqs.
(34) and (46)

ψd tð Þ ¼ ψd 0ð Þþ
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Using the same approach in the context of snap-through vibrations, Eqs. (32) and (44) are substituted into (43) to yield

_uc ¼ 4γ1ψ c
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The averaged instantaneous _uc is therefore

_uc ¼ 4γ1ψc
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Using the respective initial values, ψ c tð Þ and uc tð Þ are determined to be

ψ c tð Þ ¼ ψc 0ð Þþ
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Using Eqs. (47b) and (31) with Eq. (12), the displacement and velocity of the bistable harvester in the intrawell oscillation
regime may be reconstructed. For snap-through vibrations, Eqs. (50b) and (32) with Eq. (12) provide the corresponding
time-dependent trajectories. In both cases, Eq. (17) gives the link to the resulting transduced voltage in time. While the
predicted amplitudes of displacement, velocity, and voltage are analytical in nature, the prediction of the time-varying
trajectories of these responses is effectively both analytical and numerical according to Eqs. (47b) and (50b). In other words,
performance measures of the energy harvester tied strictly to the response amplitudes may be predicted analytically using
less computational expense than performance measures which require the full trajectories to be reconstructed.

4.6. Prediction of the instantaneous electrical power and net converted energy

Using the estimated dynamic response amplitudes, the instantaneous harvested power is evaluated in this subsection.
Recalling Eq. (17), the instantaneous power generated by the bistable energy harvester is thus

pi tð Þ ¼ v2i =R¼ ρ�γ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ�γð Þ2�4εθ2
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.
R; i¼ c; d (51)

Then, the averaged instantaneous powers over one period of intrawell or snap-through oscillation are found, respec-
tively, to be
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By Eq. (52), it is evident that the averaged, instantaneous power per cycle pi diminishes over time according to the
expressions for Mi. The net converted energy over a given time interval 0; t½ � is

ei tð Þ ¼
Z t

0
pi τð Þdτ (53)

While average power is a common measure of performance in examinations of persistently excited vibration energy
harvesting systems, its meaning is less effective when the dynamic behaviors are impulsive and decaying in nature. Thus,
the more meaningful measure employed here is the net energy converted over a prescribed time interval, Eq. (53).
5. Experimental system overview

The parameters utilized throughout the following analytical and numerical studies correspond to the experimental
system explored in this research. A bistable piezoelectric cantilever is considered, Fig. 2, where the design is similar to that
Fig. 2. Bistable piezoelectric cantilever with bistability induced due to the combination of elastic effects in the ferromagnetic beam and two magnets
positioned near to the beam tip and separated by distance Δ mm. Impulses are applied approximately at the beam position oppositely measured by the
laser interferometer.
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illustrated in Fig. 1. The spring steel cantilever (length 125 mm, width 12.7 mm, thickness 0.508 mm) is ferromagnetic, and
bistability is induced due to the combination of elastic and magnetic forces exerted at the beam tip. Thus, the primary
generalized displacement is the beam tip motion [43]. The magnets are spaced apart from each other, center-to-center, by a
distance Δ mm, while they are spaced approximately δ¼ 6:84 mm away from the cantilever tip, in the manner shown in the
inset of Fig. 2. A piezoelectric patch (Piezo Systems T110-A4E-602) of length 11.8 mm and width 12.7 mm is bonded to one
side of the beam surface using silver epoxy (MG Chemicals 8331) such that the patch is spaced from the cantilevered end by
19.8 mm. The asymmetric elastic influences of the bonded piezoelectric patch are found to be negligibly small in com-
parison to the effects induced by the magnets and are thus neglected in the following. According to the governing Eq. (1),
Table 1 presents the relevant system parameters that are identified via measurements (e.g., the damping constant by the
log-decrement method, or capacitance by multi-meter readout) or textbook relations (e.g., the equivalent mass of a can-
tilevered beam from Ref. [44]). Measurements during experimentation are acquired of the beam displacement and velocity
using a laser interferometer (Polytec OFV-534, OFV-5000) and of the transduced voltage across the load resistance R. Data is
collected via National Instruments hardware through a LabVIEW software interface. To apply impulses experimentally,
following an extensive evaluation of possible approaches it is seen that manual impacts by fingertip are the most repeatable
method. Moreover, with such impulses applied at the beam surface opposite that of the laser spot, this method is found to
minimize the possibility for multi-mode dynamics which would lead to discrepancies with the analytical and simulation
results that account for only one generalized displacement. The laser spot location was approximately positioned at two-
thirds of the beam length from the cantilevered end, such as that shown in Fig. 2.
6. Numerical validation of the analytical formulation

The fidelity of the analytical prediction approach developed here is best assessed in relation to the “exact” dynamics of
the system resulting from an impulsive excitation. The best comparison is therefore the direct simulation of the governing
Eq. (1), which is hereby considered to be “exact”. For the numerical integration of the Eq. (1), a tight tolerance is required
from the fourth-order Runge–Kutta algorithm to ensure that such exactness is obtained in simulation. Using the parameters
of the experimental system given in Table 1, the comparison of analytical and numerical results are taken across a sub-
stantial range of initial velocities, representative of a wide range of impulse strengths. Fig. 3 shows two representative cases
in which the initial displacement of the cantilever is at x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k1=k3

p
m at the time of impulse, t ¼ 0 s. In Fig. 3(a,b), results are

shown of the displacement and power, respectively, for an impulse-imposed initial velocity _x0 ¼ 0:2935 m=s, while (c,d)
show corresponding results for the initial velocity _x0 ¼ 0:2225 m=s. The solid curves denote the numerical simulation tra-
jectories, dotted curves correspond to analytically-predicted instantaneous averaged quantities, and dashed curves corre-
spond to the analytically-reconstructed trajectories.

Considering the instantaneous averaged quantities (dotted curves) in Fig. 3(a and c), it is apparent that the analytically
predicted displacement amplitudes correctly track the envelopes of the numerical trajectories. The instantaneous averaged
powers in Fig. 3(b,d) likewise capture the mean behavior of the numerical power trajectories. In the case shown in Fig. 3(b),
a small, positive relative error (þ 0.290%) in the net converted energy during the snap-through oscillations is produced for
the initial velocity _x¼ 0:2935 m=s, while a more substantial underprediction of the power generation (�6.50%) is given by
the analysis when the initial velocity is smaller, _x¼ 0:2225 m=s, as shown in Fig. 3(d). Indeed, in the limiting case that the
initial velocity is at the threshold of activating snap-through oscillations according to the criterion given in Section 3, the
error of the net converted energy for this dynamic regime increases to larger negative values, Fig. 3(a). This is because in the
limiting case that the initial velocities are gradually reduced so that snap-through behaviors are barely triggered, this

corresponds to the trend that α= βM2
c0

� 	
-1=2 which is beyond the range for which the polynomial fit of the function

f c k2c 3α=βM2
c

� 	
is made.

In terms of the instantaneous displacement trajectories predicted by the analysis, dashed curves in Fig. 3(a,c), excellent
agreement with the numerical results is obtained for the snap-through vibration regime. For the analysis, this prediction
ceases at the time when the constraint on α=βM2

c tð Þ is crossed. At the time just prior to the end of the snap-through dynamics
analytical prediction, identified in Fig. 3 as the point in time where the corresponding amplitude prediction ceases, the
integrand argument in Eq. (50b) increases asymptotically. Based upon the exact time resolution (or time step) at which
the analytical trajectories are generated, this asymptotic trend may lead to a sudden jump in the trajectories prediction. Both of
the cases in Fig. 3(a) and (c) show such a jump in the displacement due to high resolution of time series employed. The values
of the numerical simulations which correspond to the final prediction time for the analytical snap-through trajectories are
Table 1
Experimental system parameters used throughout all following analyses and numerical simulations.

Mass, m [g] Damping, d [N.s/m] Stiffness, k1 [N/m] Stiffness, k3 [N/m3]
1.48 6.76�10�3 10.2 1.16�106

Piezoelectric coupling, Γ [N/V] Capacitance, Cp [F] Resistance, R [Ohm]
0.0422�10�3 8.00�10�9 99.5�103



Fig. 3. Comparison of numerical simulation results with analytical predictions. In all sub-figs, the initial displacements of the assessments are taken as the
positive stable equilibria. In (a,b) the initial velocity is _x¼ 0:2935 m=s, while in (c,d) the initial velocity is _x¼ 0:2225 m=s. In (a,c) are shown the dis-
placement trajectories while in (b,d) are shown the corresponding electrical powers across the load resistance. In (b) the analytical estimation of the net
converted energy during snap-through is 1.038 mJ while the numerical counterpart is 1.035 mJ. In (d) the analytical estimation of the net converted energy
during snap-through is 0.3296 mJ while the numerical counterpart is 0.3525 mJ.
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then employed as initial values for the analysis, at which point the analytical formulation predicts the resulting intrawell
oscillations that occur in the final'ring-down' phase of the impulse-excited dynamics. The instantaneous trajectories as pre-
dicted by the analysis are in good agreement overall but have a noticeable phase error. This phase error results because the
intrawell predictions likewise begin in a regime of the parameter α=βM2

d0 outside of which the polynomial fit is made for the
function f d k2d3α=βM2

d

� 	
. Such phase error is not seen if the initial velocities are well within the constraints for the intrawell

dynamic regime. On the other hand, this latter case corresponds to a weakly nonlinear, decaying oscillation which is suitably
predicted using a variety of analytical predictions strategies [26,28,24], not simply the new analytical approach devised here.

Finally, Fig. 4(a) shows that for larger initial velocities (greater impulse strengths), the relative error of the net converted
energy predictions for snap-through vibrations becomes relatively convergent to approximately 2% of overprediction with
respect to the numerical simulation findings. The example in Fig. 4(b) indicates why this trend occurs. It is seen that the
analytical voltage trajectory begins with a finite value which is not the case for the simulated trajectory. Based upon the
voltage relation defined in Eq. (17), the proportionality of voltage to velocity (which is finite at the initial time) indicates that
there will be an error in the net converted energy at early times. Of course, for increasing initial velocities, such absolute
error will grow. On the other hand, the overall time span of snap-through dynamics increases for larger initial velocities, and
across the long-time span of evaluation there is excellent agreement between the analytical predictions of voltage and the
numerical results. These two effects counterbalance each other, such that the progressively increasing absolute error at early
times is offset by an overall accurate prediction for the increasing times of evaluation. Thus, the relative error obtains a
convergent-like property as shown in Fig. 4(a) for larger initial velocities.

The results of Figs. 3 and 4 reveal that the analytical approach created in this research leads to faithful reconstruction of
the time-varying response amplitudes determined through numerical simulations. Moreover, the analytical predictions of
the net converted energy during the snap-through regime – the more desirable energy harvesting dynamic, as evident in
Fig. 1 – lead to an overall good agreement with simulations as shown in Fig. 4(a). Yet to fully validate the benefit of this new
analytical tool, a rigorous experimental study is undertaken.
7. Experimental validation of the analytical formulation

To put the analytical approach to useful practice, the energy conversion predictions must be sufficiently accurate with
respect to that seen in experimental systems so as to facilitate the effective development and deployment of bistable energy
harvesters in impulsive environments. Additionally, the approach must be accurate across a wide range of operational
conditions, namely impulse strengths corresponding to different initial velocities. To lend such comprehensive validation of
the analytical tool, a large amount of data is obtained using the experimental system described in Section 5. The experi-
ments are conducted in the shortest possible duration of laboratory time to ensure that testing conditions do not
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substantially change during the data acquisition period. Impulses are applied to the cantilever over 1800 times; of this
number, over 83% are of sufficient strength to trigger snap-through vibrations for a portion of the overall recording of
transient, decaying oscillations. Before beginning a new trial, the vibrations are allowed to decay until the displacement
readout approaches the noise threshold. Five different magnet spacing distances Δ, as illustrated in Fig. 2, are employed,
each of which produce different values of the stiffnesses k1 and k3 [43], and thus different stable equilibria locations and
linear natural frequencies, given in Table 2. (The analytical and numerical results of Section 6 are obtained for the para-
meters k1 and k3 corresponding to Δ¼ 37:4 mm). By carrying out experiments using a wide range of magnet spacing dis-
tance, the intent is to assess the robustness of the predictions to important design parameter changes that tailor the bistable
harvester dynamic sensitivities. It is seen that the harvester beam tip velocity almost instantaneously increases from a near-
stationary state to a large, finite value upon application of the impulse; consequently, the peak, sudden initial velocity
resulting from the impulse is determined to be the energy harvester initial velocity value used in the corresponding ana-
lytical comparison of a given experiment.

Fig. 5 compares the analytical and experimental results for a case of intrawell oscillations with Δ¼ 37:4 mm, showing
(a) the displacement trajectories in time, (b) the voltage trajectories, and finally (c) the time–frequency distribution of the
displacement. This example case is one in which snap-through dynamics occur initially, prior to the intrawell oscillations
shown in Fig. 5. Small phase differences between the analytical and experimental findings are evident in Fig. 5(a and b),
although the nonlinear oscillations are reconstructed by the analytical approach to an overall high degree of fidelity. The
spectral distribution of the displacement response, as plotted in Fig. 5(c), indicates that the lowest three Fourier series com-
ponents are in very good agreement between measurements and predictions. While the time–frequency analytical predictions
are shown directly, the displacement measurements are processed using short-time Fast Fourier transforms (SFFT), and the
underlying contour plot presents the result in a decibel scale in reference to a 1 mm amplitude. Due to the SFFT algorithm, not
all of the time–frequency features may be extracted, namely at initial and final times where insufficient data is available in the
sampling window. For intrawell oscillations, the lowest-order Fourier component is related to the non-zero equilibrium
position, and thus leads to a constant Fourier coefficient at zero frequency. The second- and third-order Fourier coefficients
Table 2
Experimental system magnet spacing distances, Δ, and corresponding stable equilibria locations

ffiffiffiffiffiffiffiffiffiffiffiffi
k1=k3

p
and linear natural frequencies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k1=m

p
=2π.

Δ [mm] 35.2 36.2 37.4 38.7 40.0ffiffiffiffiffiffiffiffiffiffiffiffi
k1=k3

p
[mm] 1.919 2.490 2.968 3.076 3.100ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k1=m
p

=2π [Hz] 14.80 17.44 18.70 17.39 13.98

Fig. 4. (a) Relative error between the analytical prediction and simulated result of the net converted energy during snap-through oscillations. The square,
diamond, and triangle symbols denote the corresponding example cases given in Fig. 3(a,b), Fig. 3(c,d), and Fig. 4(b), respectively. (b) Comparison of
numerical simulation results with analytical predictions for the initial displacement x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k1=k3

p
m and initial velocity of _x0 ¼ 0:903 m=s. The inset shows

the discrepancy in trajectory results at the initial time.
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predicted analytically show a gradually increasing trend in time, a feature likewise observed in the post-processed mea-
surement. Such behavior is recognized to be due to the reduced influence of dynamic softening which occurs for larger-
amplitude oscillations in bistable structures when confined to one local well of potential energy [45].

The good agreement in the example case of Fig. 5 between the predictions and measurements of both instantaneous
trajectories and overall response amplitudes is an indication that the net converted energy during the intrawell oscillation
regime is likewise in agreement. In fact, as Fig. 6 shows, for each magnet spacing distance Δ employed in the study, the
analytical prediction is found to be an accurate predictor of the converted energy measured across a substantial range of
initial velocities. In the plots, the solid curves denote the analytical results while data points are the measurements. In some
cases, measurements are obtained using greater initial velocities than the analysis predicts are possible for the intrawell
oscillation regime; in other words, the analytical constraint for intrawell oscillation is violated according to the initial
velocity at which the corresponding experiment occurs. The most likely source of this discrepancy is the high sensitivity
observed in terms of system parameter identification leading to the stiffness coefficients k1 and k3 which are identified
experimentally using the stable equilibria locations and the local linear natural frequencies. These stiffness coefficients
thereafter relate to the coefficients α and β that define the constraint on α=βM2

d0. Overall, however, the analytical approach
accurately predicts the actual converted energy from the impulsive excitation in the intrawell oscillation regime.

As Fig. 1(c) illustrates, the snap-through dynamics are much preferred in the utilization of bistable structures for energy
harvesting purposes due to the substantially greater energy conversion possible from the large-amplitude vibrations.
Thus, for its most productive implementation, the analytical approach must be able to faithfully predict the anticipated
energy conversion performance of the snap-through dynamics in the experimental system. Fig. 7 presents one repre-
sentative case of the time dependence of displacement and voltage snap-through trajectories and the spectral diffusion as
predicted analytically and measured in experiment. Overall, there is an exceptionally good agreement between the
dynamic behaviors. A particularly accurate reconstruction is generated in the displacement trajectories in time, Fig. 7(a).
Fig. 5. Comparison of analytically predicted and measured intrawell oscillations following an impulse imposed initial velocity. (a) Displacement trajec-
tories, (b) voltage trajectories, and (c) the time–frequency distribution of the primary spectral components.



Fig. 7. Comparison of analytically predicted and measured snap-through vibrations following an impulse imposed initial velocity. (a) Displacement tra-
jectories, (b) voltage trajectories, and (c) the time–frequency distribution of the primary spectral components.

Fig. 6. Comparison of the net converted energies for the intrawell oscillation regime as predicted analytically (curves) and measured experimentally
(points). The magnet spacing distance Δ varies from (a) 35.2 mm, (b) 36.2 mm, (c) 37.4 mm, (d) 38.7 mm, and finally to (e) 40.0 mm.
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The voltage measurements in Fig. 7(b) show evidence of possible multi-mode oscillations or system asymmetry, although
the asymmetric-like influences decay in significance over time, which leads to progressively greater agreement with the
symmetric oscillations that are analytically predicted. On the other hand, the discrepancy in such symmetry at early times
leads to a relative phase lead in the analytical predictions of voltage at later times, Fig. 7(b). Fig. 8 shows that this
becomes manifest as a mild warping and planar rotation of the trajectories in phase space when comparing the
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measurements to predictions. In Fig. 7(c), it is seen that the spectral distribution of the displacement in time is accurately
reconstructed by the analytical approach. The lowest-order harmonic gradually approaches a vanishing point since the
snap-through oscillations undergo a significant slowing down prior to the bifurcation in the global dynamic behaviors
that results in intrawell oscillations [46]. Unfortunately, the peak reduction in the spectral components in time, such as
that around time t ¼ 0:83 s, cannot be effectively post-processed using the SFFT because the windowed computation
requires a finite number of samples across which to compute reliable data.

Fig. 9 presents a comprehensive assessment of the net converted energies realized by the snap-through dynamics as
predicted by the analytical approach (curves) and measured in the experiments (points) for each case of magnet spacing
distance Δ considered. The insets show the limiting initial velocities at which snap-through is triggered, which is essential
information to reproduce by the analysis to enable its successful utilization for bistable harvester development. Indeed, as
seen in each inset of Fig. 9 the predictions accurately identify the initial velocities that are necessary to induce the snap-
through vibration in the experimental systems. Moreover, considering each sub-figure in full, the analytical results faithfully
estimate the measured net converted energies and also correctly reproduce the particular dependence of energy on the
variation of impulse strength (initial velocity). The impulses accounted for by the data of Fig. 9 represent the activation of
snap-through dynamics lasting only one up to nearly 20 cycles of transient vibration. Considering the range of initial
velocities shown in Fig. 9, the corresponding range of initial impulse energies, 	 _x20, varies by two orders of magnitude.
Within this range, the analytical tool provides a high degree of accuracy towards predicting the converted energy, lending
strong support and validation to the analytical development and its utilization for bistable energy harvesters in practice.
8. Conclusions

The prevalence of impulsive energies in environments where the energy capture and conversion may facilitate self-
powered electronic systems is strong motivation to investigate effective vibration energy harvesting devices which are
Fig. 9. Comparison of the net converted energies for the snap-through vibration regime as predicted analytically (curves) and measured experimentally
(points). The magnet spacing distance Δ varies from (a) 35.2 mm, (b) 36.2 mm, (c) 37.4 mm, (d) 38.7 mm, and finally to (e) 40.0 mm.

Fig. 8. Phase space comparison of the impulse-excited response shown in Fig. 7. At left are measurements, at right the analytical predictions. The triangles
denote the point in the phase space of the initial impulse while the circles denote the end of the snap-through regime.
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particularly sensitive to such excitation. While previous studies have shown that bistable energy harvesters may be ben-
eficial in these environments, an efficient and accurate analytical tool to guide their development and deployment has yet to
be created, largely due to the strongly nonlinear and transient nature of the system dynamics. This study addresses this
critical need by the development of an analytical approach that faithfully predicts the transient electrodynamic behaviors of
impulsively excited bistable energy harvesters. The analytical method is found to provide an accurate indication of the net
energy conversion in the snap-through dynamic regime when compared to results obtained through direct simulation of
the governing equations. Small overpredictions occur at high initial velocities (high impulse energies) while the approach
underpredicts the energy conversion potential of bistable harvesters for very low initial velocities which are only slightly
sufficient to trigger the favorable snap-through dynamics. An extensive experimental validation is conducted to examine the
accuracy of the analytical predictions across a large range of practical bistable harvester designs and exciting impulse
strengths. The fidelity of the analytical results is verified from the excellent agreement with the measured data, both in
terms of the transient dynamical trajectories as well as the net energy conversion for a given exciting impulse. From the
rigorous numerical and experimental validations, the analytical approach provides a solid foundation upon which to
develop optimal bistable energy harvesters for impulsive excitation environments. Moreover, the new analytical develop-
ment more broadly elucidates the relative susceptibilities of bistable structures to impulse-like excitations, such as those
that may result from blasts, impacts, or shocks.
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