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Axial Suspension Compliance
and Compression for Enhancing
Performance of a Nonlinear
Vibration Energy Harvesting
Beam System
Developing energy harvesting platforms that are strongly sensitive to the low and dif-
fused frequency spectra of common environmental vibration sources is a research objec-
tive receiving great recent attention. It has been found that utilizing designs and
incorporating structural influences that induce small values of linear stiffness may con-
siderably enhance the power generation capabilities of energy harvesting systems. This
research examines these two factors in new light toward the development of a
biologically-inspired energy harvesting beam platform that exploits axial compressive
effects and compliant suspensions. Through theory and experiments, it is found that the
strategic exploitation of such characteristics promotes dramatic improvements in the
average power that may be generated for the same excitation conditions. Examining the
origin of these performance enhancements, it is seen that large compliance in the com-
pressed axial suspensions facilitates a favorable redistribution of dynamic energy, which
thereby enables greater bending of the harvester beam and increased electromechanical
transduction. [DOI: 10.1115/1.4031412]

1 Introduction

The low and diffused frequency spectra of many common envi-
ronmental vibration sources have recently focused research atten-
tion toward the development of energy harvesting device designs
that are especially sensitive to such excitations. With the increased
sensitivity come dynamic displacements of greater amplitude,
which corresponds to increased power generation for many elec-
tromechanical transduction mechanisms. As such advancements
are enabled, the conversion of the environmental vibrations into
electrical power gradually becomes a more appealing and viable
supply strategy for the ever-proliferating variety of low-power
microelectronics in our world than the use of disposable batteries
or direct line transmission [1]. While linear dynamics-based
energy harvesting platforms may set theoretical performance lim-
its [2], their numerous practical concerns—such as excessively
large stroke motions at low frequencies and narrow bandwidths of
operation—have encouraged researchers to explore performance
enhancement approaches. These include multi degrees-of-freedom
(DOF) structures [3,4], frequency conversion methodologies
[5,6], and the deliberate incorporation of nonlinear designs and
dynamics [7], each of which provides means to overcome the
challenges of linear harvester platforms.

Among the numerous performance enhancement concepts, non-
linearities that induce small values of linear stiffness have been
found to provide some of the most encompassing performance
and operational benefits [2]. Green et al. [8] have shown that
Duffing-type monostable nonlinearities favorably reduce the
potential for damaging and large stroke motions as well as
enhance the broadband response characteristics for energy

harvesting from common, ambient vibration resources. Leaden-
ham and Erturk [9] explored a device architecture that resulted in
substantial bandwidth enhancement at low excitation levels by
virtue of the large, nonlinear stretching capabilities in the M-
shaped design. Meimukhin et al. [10] concluded that bistable
Duffing nonlinearities are of particular benefit when bandlimited
stochastic excitation levels are just sufficient to induce cross-well
dynamic behaviors. This result agrees with the findings by Zhao
and Erturk [11] regarding similar architectures under white noise
excitation. Cao et al. [12] showed that variably inclined magnetic
forces were a promising means to enhance the sensitivity of piezo-
electric energy harvesters by means of a versatile restoring force
tuning. The advancements are too many to adequately survey
here; readers interested in greater details on the nonlinear energy
harvesting developments that leverage small values of linear stiff-
ness are referred to recent reviews [2,13].

The use of multiple dynamic elements in nonlinear energy har-
vesters has also been found to significantly enhance energy con-
version capabilities. Tang and Yang [14] introduced a nonlinear
piezoelectric harvester having an additional magnetic oscillator
that led to enhanced peak power and broadened frequency sensi-
tivity. Wu et al. [15] closely examined a 2DOF bistable energy
harvesting architecture to exemplify that power density can also
be magnified when integrating nonlinearity and multimodality.
Recent findings by Chen and Jiang [16] analytically and numeri-
cally illustrated that 1:2 internal resonance in 2DOF energy har-
vesters may be a promising opportunity for enhanced performance
under harmonic and stochastic excitations. Collectively, the
results show that additional dynamic elements and an intelligent
incorporation of nonlinearities leading to small linear stiffness
values can provide a dramatic enhancement in the effectiveness of
vibration energy harvesting systems.

These observations motivate this research to further investigate
the strategic utilization of nonlinearities and additional elements
to make traditional vibration energy harvesting platforms more
sensitive to the low frequency and diffused spectra typical of
ambient vibrations. Toward this end, a phenomenon found in
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nature provides inspiration to this investigation, as discussed in
the following paragraphs.

The wing motor mechanism in the fly (order Diptera) is recog-
nized to be axially compressed such that the transverse motions
connecting the motor to the wing are nonlinear and able to be
magnified by modulation of the motor characteristics [17,18]. The
mechanism is similar in construction and constraints to a simply
supported beam that is axially compressed near to the elastic stabil-
ity limit, which is the transition between mono- and bi-stability
[19]. A schematic of the Dipteran wing motor is given in Fig. 1(a),
as adapted and redrawn from Refs. [20,21]. The wing motor com-
pression features are manipulated via supporting musculature, geo-
metric factors, and inherent elasticities to induce large changes in
the aerodynamic flapping force (flapping motions) without substan-
tial variation in the level of input energy [18,21,22].

The flapping motion amplification that Diptera achieved by tai-
loring features of the wing motor suspension encourages this
research to closely explore comparable architectural factors for
vibration energy harvester enhancement. Building upon the wing
motor inspiration, this investigation examines the influences of
compressed axial suspension characteristics on the behaviors of
an energy harvesting beam compressed near the elastic stability
limit. The schematic model of the energy harvesting platform con-
sidered here is provided in Fig. 1(b), where the axial supporting ele-
ments (found at both ends of the central moving motor components
in Diptera) are collected to one side of the simply supported piezo-
electric beam. Rather than the conventional approach that directly
compresses a beam simple support end to induce the nonlinearity,
this investigation evaluates the strategic influences on the energy
harvesting system performance effected by compressing the axial
suspension spring which thereafter compresses the beam.

Section 2 introduces the experimental platform developed to
examine the roles of axial suspension and compression on the
energy harvesting system. Then, a model is derived to character-
ize the electromechanical dynamics in consequence to harmonic
base acceleration. Numerical and analytical model solutions are
realized and the theoretical predictions are compared to corre-
sponding experimental measurements. The influences on the
energy harvesting beam dynamics for changing axial suspension
characteristics are explored in detail. Finally, a discussion is pro-
vided to elucidate the origin of the observed dynamical

sensitivities that result from the variation in axial suspension and
compression properties.

2 Experimental Platform Overview

A proof-of-concept experimental platform is fabricated in the
laboratory to realize the energy harvesting system depicted in
Fig. 1(b). The platform is shown in Fig. 2 and is centered around a
simply supported spring steel beam. Several components are uti-
lized to achieve the desired boundary conditions. The simply sup-
ported boundary conditions are realized by clamping small
lengths of the spring steel beam ends into rotational guides which
revolve on axles in low-friction bearings (McMaster-Carr,
8600N3). One of the simple supports is suspended axially using a
pair of beams, which possess clamped–sliding boundary condi-
tions; Fig. 2(c) illustrates the deformation characteristics of the
suspension beams. Together, the suspension beams represent the
equivalent one-dimensional axial spring that provides a net equiv-
alent axial stiffness kd . This stiffness is determined according to
the assumptions of small deflection for each suspension beam
which leads to the relation ks ¼ 12EsIs=L3

s [23] such that collec-
tively kd ¼ 2ks, and where Is ¼ hst

3
s=12. One end of each suspen-

sion beam is connected to the base of the system via a locked
translational bearing, see Fig. 2(b). The opposite simple support
boundary is able to glide on a free translation bearing and is com-
pressed by distance D using a micrometer (Starrett 261). This
compressive force acts on the simply supported beam as well as
on the axial suspension spring. Once the compression distance D
is set, the micrometer is locked using the built-in lock nut. Piezo-
electric PVDF (Images Co., PZ-06) is bonded to both surfaces of
the spring steel, simply supported beam near the center. By the
arrangement and bonding, the piezoelectric layers are connected
in series for maximum transduction, and the resulting electrical
output generated by straining the beam and piezoelectric layers is
fed to an external load resistance to evaluate the voltage and
power generation performance of the system using the conven-
tional assumption that a more complex electrical load is primarily
resistive in effect. Finally, both of the boundary conditions of the
beam—the suspension beam ends and the boundary which is com-
pressed by the micrometer—are attached to an electrodynamic
shaker (APS Dynamics 400) that provides for the base accelera-
tion excitation considered here. The data acquired from experi-
ments consists of the voltage v̂ðtÞ across the external load
resistance R, the displacement and velocity of the beam center
point— wðL=2; tÞ and _wðL=2; tÞ, respectively—via a laser interfer-
ometer (Polytec OFV 3001 S, OFV 303), and an accelerometer
(PCB 352 C33) attached to the shaker.

A set of experiments are first conducted to provide motivating
evidence that verifies the strategic importance of the axial suspen-
sion and compression characteristics in tailoring the overall dy-
namics of the energy harvesting system. To vary the equivalent
stiffness of the axial suspension spring, the two supporting
clamped–sliding beam lengths Ls are adjusted by the same
amount, which influences the stiffness kd according to the expres-
sion given in the previous paragraph. Figure 2(c) clarifies the
strategy undertaken to change the length of a suspension beam to
effect the desired deviation in equivalent suspension stiffness: the
mounts to which they attach provide for multiple attachment
points that may be selected among to vary the length Ls. Figure 3
presents the measured absolute value of the instantaneous voltage
across a 5.0 MX load resistance when the system is excited with
mean base acceleration of 3.43 m s�2 from 6 to 49 Hz, slowly
sweeping at a rate of 0.112 Hz s�1. The data sets are obtained with
a constant applied axial force on the beams, such that the ratio of
the applied compressive force kdD is 4% greater than the Euler
buckling load Pcr of the underlying simply supported beam. For
each case of the suspension spring stiffness, the figure provides
different shading hue to indicate the distinct data set; in addition,
for such shading hue, a darker shading indicates the measurements
obtained for an increasing sweep in the excitation frequency

Fig. 1 (a) Schematic side view of a fly adapted and redrawn
from Refs. [20,21], illustrating in the inset the wing motor mech-
anism and its flexibility via more lightly shaded elements and
arrows indicating axial motion directions. (b) Biologically-
inspired energy harvesting architecture explored in this study
that incorporates dynamic axial suspension.
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whereas the respective lighter shading indicates the corresponding
decreasing frequency sweep results. For a given suspension stiff-
ness, these different sweep trajectories closely overlap for a sub-
stantial bandwidth of frequencies.

The trends in Fig. 3 give clear evidence that softer axial suspen-
sion stiffness leads to larger amplitudes in the transduced voltage
across a wide range of excitation frequencies; as a result, the aver-
age power dissipated across the resistive load increases. Dynamic
hysteresis is evident for each case of the suspension stiffness,
shown by the differences in voltage amplitudes effected for
upward and downward frequency sweeps. Such hysteresis is a
common phenomenon for nonlinear dynamic systems and is here

induced by the axial compressive force on the beam which is large
enough such that it nearly or does in fact induce bistability,
depending on the suspension stiffness kd. For the cases kd ¼ 337
and 2370 kN m�1, the energy harvesters are monostable (label M
in Fig. 3) due to the applied compressive axial force, whereas the
cases of kd ¼ 42.1 and 99.8 kN m�1 are statically and dynamically
bistable (label B). The data show that the amplification of the volt-
age for softer axial suspension stiffnesses is particularly evident at
lower frequencies of excitation, which is favorable in light of the
typical low frequency spectra of common ambient vibrations. All
together, the measurements presented in Fig. 3 suggest that a sub-
stantial sensitivity is able to be leveraged in the axially suspended

Fig. 3 Increasing and decreasing excitation frequency measurements for four cases of sus-
pension spring stiffness using a mean base acceleration amplitude of 3.43 m s22 and preload
ratio of 1.04

Fig. 2 Experimental, proof-of-concept energy harvester to examine the influence of axial sus-
pension and compression characteristics. The equivalent axial suspension spring is realized by
a pair of suspension beams whose lengths Ls are changed to govern the effective one-
dimensional spring stiffness kd. The system is compressed by distance D using the micrometer.
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energy harvesting system for voltage (and hence power) generation
enhancement, which motivates the remainder of this research.

Finally, although the average powers obtained by the platforms
evaluated in Fig. 3 are only on the order of a few hundred nanowatts,
it is recognized that load impedance matching to the piezoelectric
PVDF layers and/or the utilization of more strongly coupled piezo-
electric materials may improve these power quantities. Yet, rather
than focus on such features that lead to optimal designs, this study
examines the roles that the axial suspension and compression charac-
teristics play toward enhancing the overall power generation capabil-
ities of the energy harvesting beam system. These roles are reflective
of the performance potential specifically enabled by such characteris-
tics whether they are exploited on the current proof-of-concept plat-
form or when using a harvester device having impedance matched
load and/or strongly coupled piezoceramic layers.

3 Model Framework and Solution Methods

3.1 Governing Equations of Motion. To develop such a the-
oretical understanding of the sensitivities induced in consequence
to the dynamic axial suspension features, the equations of motion
of the energy harvesting system are derived using energy principles
[24]. The simply supported beam undergoes transverse/bending and
axial deflections wðx; tÞ and uðx; tÞ, respectively. The bending cur-
vature of the beam is expressed by w ¼ wxxð1� w2

xÞ
�1=2

, where
subscript x indicates a spatial partial derivative and the curvature
expression takes into account large deflections [25]. According to
experimental observations, the modeling neglects the effects of
transverse shearing, beam and piezoelectric rotary inertia, and
beam and piezoelectric axial inertia. Due to the practical imple-
mentation of simply supported beam boundary conditions, point
masses having moments of inertia mar2

a are considered to be
located at the beam ends. The piezoelectric layers are assumed to
be perfectly bonded to the beam. As shown in Fig. 1(b), the energy
harvesting beam is excited by harmonic motions of its surrounding
frame €aðtÞ ¼ Aa cos Xt, where Aa is the acceleration amplitude and
X=2p is the excitation frequency in Hz. A body force sðxÞ acts
along the length of the beam, which may represent gravitational
effects depending on the harvester configuration; body force influ-
ences on the piezoelectric layers are presumed to be comparatively
insubstantial. Taking into account the above assumptions, the
Lagrangian of the system is expressed, L ¼ T þWe � U, where T
are the kinetic, We are the electrical and electromechanical, and U
are the potential energies [26].

T ¼ 1
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The operators ð�Þ and ðÞx indicate differentiation with respect to
time t and beam length coordinate x, respectively. Other parame-
ters are as follows, where subscript b indicates the term is related
to the beam while subscript p indicates the term refers of the pie-
zoelectric layers: volumetric densities qb;p; areas Ab;p; widths hb;p;
thicknesses tb;p; beam natural length Lb; beginning and ending
piezoelectric PVDF material positions along the beam length l1;2;
centroid of the piezoelectric layers from the beam midplane �tp;
piezoelectric material permittivity at constant strain e33; piezo-
electric bending constant e31; flux linkage k̂ such that

_̂k ¼ v̂ is the
voltage across the electrodes; radius ra of the rotational mass ma;
Young’s moduli Eb;p; and moments of inertia Ib;p.

A dissipation function, D, is introduced to include the effects of
the primary mechanical and electrical damping phenomena

D ¼ 1

2
cb

ðLb

0

_w2dxþ 1

2

1

R

� �
_̂k

2
(3)

where cb is the viscous damping per beam length.
The transverse and axial beam motions are expanded as a sum-

mation of trial functions [27]

u x; tð Þ ¼
X1
n¼1

f̂ n tð Þan xð Þ ¼
X1
n¼1

f̂ n tð Þ cn;1xþ cn;2 sin
2npx

Lb
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(4)

w x; tð Þ ¼
X1
n¼1

ĝn tð Þ/n xð Þ ¼
X1
n¼1

ĝn tð Þsin
npx

Lb
(5)

According to the frequencies of excitation considered here as well
as the shape of the beam deflections induced in the experimenta-
tion, it is safely assumed that only the fundamental mode
responses contribute to the overall displacement dynamics in the
energy harvesting beam

u x; tð Þ ¼ f̂1xþ f̂2 sin
2px

Lb
(6)

w x; tð Þ ¼ ĝ sin
px

Lb
(7)

The generalized coordinates of the system are thus
q ¼ ½f̂1; f̂2; ĝ; k̂�T. In other words, the four coordinates include the
two for axial motions of the beam ðf̂1; f̂2Þ, one for beam bending
ðĝÞ, and a final coordinate for the flux linkage ðk̂Þ across the load
resistance R. Applying Lagrange’s equations,

@

@t

@L

@ _qi

� �
þ @D

@ _qi

� @L

@qi
¼ 0 (8)

leads to the governing equations for the generalized mechanical
and electrical coordinates of the energy harvesting system. By
this approach, it is found that the coordinates f̂ 1 and f̂ 2 are able
to be expressed directly in terms of the bending generalized
coordinate ĝ.

f̂1 ¼ �
kdD
EbAb

� �
1

jþ 1
� 1

4

p
Lb

� �2 1

jþ 1
ĝ2 (9)

f̂2 ¼ �
1

8

p
Lb

� �
ĝ2 (10)

where the axial stiffness ratio is defined as the ratio between the
axial suspension spring stiffness kd and the beam axial stiffness

j ¼ kdLb

EbAb
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Then, continued use of Lagrange’s equations leads to

C�p
€̂k þ 1

R
_̂k ¼ �h� _̂g � h�NL

_̂g3 (12)

where the coefficients with superscript * are specified in the
Appendix. The capacitance of the piezoelectric layers is C�p, while
the linear and nonlinear electromechanical coupling terms are h�

and h�NL, respectively. Using the relationship that the time rate of
change of flux linkage is the voltage across the load:

_̂k ¼ v̂,
Eq. (12) is rewritten to be

C�p
_̂v þ 1

R
v̂ ¼ �h� _̂g � h�NL

_̂g
3

(13)

Then, Lagrange’s equations are applied to the bending generalized
coordinate ĝ. Following the adoption of nondimensional beam
displacement g ¼ ĝ=Lb, voltage v ¼ v̂ðC�p=h

�LbÞ and time
s ¼ x0t, where x0 is the uncompressed beam fundamental natural
frequency, the nonlinear electromechanical terms are then
neglected, and finally a series of simplifications leads to the
coupled, nonlinear governing Eqs. (14) and (15) for the energy
harvesting system

g00 þ gg0 þ 1� kdD
Pcr

1

jþ 1

� �
gþ bþ c

j
jþ 1

� �
g3

¼ �hþ hvþ z cos xs

(14)

v0 þ av ¼ �g0 (15)

where the operator ðÞ0 indicates differentiation with respect to
nondimensional time s. The following coefficients are defined:

x ¼ X
x0

; x2
0 ¼

K�

M�
; Pcr ¼

K�

K�p
; g ¼ C�

M�x0

; b ¼ F�1L2
b

K�

(16)

c¼ F�2L2
b

K�
; h¼ H�

K�Lb
; z¼�Z�Aa

K�Lb
; a¼ 1

RC�px0

; h¼ h�ð Þ2

C�pK�

(17)

In Eqs. (14) and (15), the term kdD=Pcr is the axial preload ra-
tio, defined as the ratio of axial compressive force (realized by
displacing the axial suspension spring a distance D) to the funda-
mental Euler buckling force Pcr.

3.2 Approximate Analytical Solution to the Governing
Equations. The oscillations of the mechanical and electrical dis-
placements are assumed to primarily be proportional to the same
frequency as the base acceleration excitation. This assumption is
strongly borne out in the experimentation conducted here, accord-
ing to the system design parameters considered. As a result, the
periodic motions of the system are approximated by fundamental
Fourier series expansions for each nondimensional generalized
coordinate in Eqs. (14) and (15).

gðsÞ ¼ cðsÞ þ aðsÞsin xsþ bðsÞcos xs (19)

vðsÞ ¼ mðsÞsin xsþ nðsÞcos xs (20)

The coefficient cðsÞ is necessary in the event that the energy har-
vesting beam is compressed to a degree that induces bistability, in
which case a nonzero mean displacement of oscillation may be
obtained for certain excitations. The time dependence of the coef-
ficients is necessary in order to predict the stability of the periodic

orbits obtained via this approximate analytical solution method.
Additional terms are defined

r2ðsÞ ¼ a2ðsÞ þ b2ðsÞ (21)

A ¼ 1� kdD
Pcr

1

jþ 1
(22)

B ¼ bþ c
j

jþ 1
(23)

Then, the assumed solution forms in Eqs. (19) and (20) are substi-
tuted into Eqs. (14) and (15). Higher-order harmonics are
neglected, the coefficients are assumed to vary slowly but finite in
time, and the resulting harmonic coefficient terms are collected to
yield the following modulation equations:

�gc0 ¼ Aþ B c2 þ 3

2
r2

� �� �
cþ h (24)

�ga0 þ 2xb0 ¼ A� x2 þ B 3c2 þ 3

4
r2

� �� �
a� gxb� hm (25)

�2xa0 � gb0 � z ¼ gxaþ A� x2 þ B 3c2 þ 3

4
r2

� �� �
b� hn

(26)

�a0 � m0 ¼ �xbþ am� xn (27)

�b0 � n0 ¼ xaþ xmþ an (28)

which may be compactly expressed by defining x ¼
½c; a; b; m; n�T such that

Px0 ¼ Gxþ h½1; 0; 0; 0; 0�T (29)

where the matrices P and G are determined accordingly. The alge-
braic modulation Eqs. (24)–(28) are then sequentially solved, with
the results successively substituted into each other. By summing and
squaring the two final equations which cannot otherwise be reduced
further, this process yields a sixth-order response polynomial in terms
of the energy harvester displacement amplitude r (or third-order in
terms of r2 when h ¼ 0). Finally, all of the coefficients in x may be
solved for in terms of the displacement amplitude r to reconstruct the
analytically predicted solution for time dependence upon the bending
and voltage generalized coordinates via Eqs. (19) and (20).

The roots of the polynomial in r are mathematical solutions but
not necessarily physically meaningful since they may not be
dynamics that are able to be observed in experimentation. Thus,
the stability of each resulting solution set x� stemming from a root
r is evaluated. In this work, stability is determined by linearizing
the system response around the solution and classifying the
eigenvalue components of the resulting Jacobian matrix
J ¼ ½dðP�1GÞ=dx�jx¼x� . Stable predicted solutions yield eigenval-
ues having negative real components [28].

For a given set of system and excitation parameters, the stable
solutions (the coefficients x�) are then used to calculate the beam
deflections wðx; tÞ and uðx; tÞ and the transduced voltage v̂ðtÞ
across the load resistance R. Consequently, the average power is
quantified by P ¼ jv̂j2=2R.

3.3 Numerical Solution of the Governing Equations. To
supplement the approximate analytical solutions, the governing
Eqs. (14) and (15) are solved by numerical integration based on a
fourth-order Runge–Kutta algorithm using MATLAB. The numerical
integrations are conducted for 2000 periods of excitation for any
given excitation frequency considered; this time span is chosen to
ensure that steady-state behaviors are fully developed. For a given
set of system and excitation parameters, the numerical evaluations
are conducted 20 times using randomly selected initial conditions
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(displacement, velocity, and voltage) for each run, so as to sample
a broad range of the initial condition space and uncover all possi-
ble steady-state oscillation forms. Finally, with such data sets, the
fast Fourier transforms of the displacement, velocity, and voltage
are taken over the last 50% of the time series; then, the spectral
amplitudes proportional to the excitation frequency X are kept
since these are the corresponding dynamic features which are rep-
resented via the analytical Fourier series approximations in Eqs.
(19) and (20). This is likewise the data processing method
employed in experimentation to extract the measured dynamic
contributions proportional to the excitation frequency.

4 Roles of Axial Suspension Stiffness and

Compression Characteristics on Voltage Generation

Through a series of analytical, numerical, and experimental
studies, this section examines the roles played by the axial suspen-
sion properties and compression features toward tailoring the
dynamical behaviors which lead to favorable voltage transduction
from the energy harvesting platform. The parameters used in the
model for numerical and analytical results are given in Table 1
and are identified experimentally with the exception of permittiv-
ity e33 and the piezoelectric material thickness tp, which are
taken from the manufacturer specifications. The loss factor g is
dynamically identified from experiments of driven, steady-state
vibration [29] while the beam is uncompressed. Due to the align-
ment of the platform during experimentation, there are no body
forces to account for, which prescribes sðxÞ ¼ 0 in the model.
According to the suspension stiffnesses as given in Table 1,
the corresponding axial stiffness ratios are j � kdLb=EbAb

¼ ½0:0053; 0:0126; 0:0426; 0:300�.
To compare the energy harvesting beams with compliant axial

simple supports under study and a beam having fixed axial sup-
ports, one of the platforms is experimentally evaluated with the
suspending beams/springs removed such that the simple support
of this beam end is fixed to the locked translational bearing, so as
to prevent axial motions. Since the opposing end of this harvester
beam is axially compressed using the micrometer, ideally this
case should effect an axial stiffness ratio of j ¼ 1 so that one
could refer to this harvester design as the “conventional” simply
supported and axially compressed platform. However, it is found
that there exists considerable deviation in the measurements
acquired using this axially “fixed–fixed” design with the analytical
predictions obtained using j ¼ 1. Upon inspection, the discrep-
ancy is identified to be the fact that the experimentally vibrating
beam may axially stretch away from the micrometer tip since this
beam end is not constrained to maintain axial contact with the mi-
crometer tip so as to satisfy the ideal boundary condition of the
related axial force kdD. Through iterative comparisons, it is found
that the measurements using the axially fixed–fixed harvester
beam are in greater agreement to analytical predictions using an
axial stiffness ratio j ¼ 0:300. Therefore, although this experi-
mental design does not realize the ideal axially fixed–fixed bound-
ary conditions, hereafter the case of j ¼ 0:300 will be referred to
as the conventional case since it represents the set of boundary
conditions that most closely approximate the beam supports that
have no compliant suspensions.

All designs employing axial suspensions may suffer from the
possibility that the beams may dynamically stretch away from the
micrometer tip. This is because it is difficult to enforce the ideal

boundary condition of an applied axial force kdD that accommo-
dates axial motions satisfying assumptions of the Euler–Bernoulli
beam theory. But the concern is most relevant for the axially
fixed–fixed design where all of the system axial compliance is
concentrated in the beam elasticity itself. Once additional axial
compliance is introduced by the axial suspension, the concern of
the beam translating away from the micrometer tip is drastically
reduced, as is evident in the experiments. Thus, unlike the conven-
tional axially fixed–fixed case, it is found that there is no need to
compensate the parameter identification for the cases
j ¼ ½0:0053; 0:0126; 0:0426�, which are computed exactly from
the definition of j with respect to the system designs.

For frequency sweep experiments, the base acceleration ampli-
tude Aa is found to slightly vary over the course of exciting the
structure from 6 to 49 Hz, and then returning to 6 Hz. As a result,
the exact measured base acceleration amplitudes are used as input
to the analytical and numerical modeling, and the mean value of
the amplitude �Aa is reported here. As a final note before the fol-
lowing studies, because of the relations among the linear stiffness
term in Eq. (14), a preload ratio kdD=Pcr value greater than unity
may not necessarily induce bistability, as is the case for the ideal
simply supported beam. Consequently, to differentiate the dynam-
ical behaviors according to the static structural properties, the
plots of analytical and experimental results presented below
denote that the underlying energy harvesting beam is monostable
when the curves are dotted, whereas the solid curves indicate the
beam is compressed to a degree that induces bistability.

4.1 Voltage Transduction Achieved Using Moderate Axial
Compressive Force. When the preload ratio kdD=Pcr is 0.70, all
of the harvester designs examined here are monostable. Figure
4(a) plots the experimentally measured amplitudes of voltage

Table 1 Identified experimental system parameters

Lb (mm) hb;p (mm) tb (mm) Eb (GPa) qb (kg m�3)
147 12.7 0.508 180 8000

l1;2 (mm) tp (mm) Ep (GPa) qp (kg m�3) kdð1�4Þ (kN m�1)
54.4, 92.5 0.0286 1.80 1800 42.1, 99.8, 337, 2370

e33 (F m�1) e31 (C m�2) R (MX) mar2
a (kg m2) g

110� 10�12 0.017 5.0 8.125� 10�7 0.0367
Fig. 4 Voltage across load resistance for preload ratio of 0.70
and mean base acceleration level 3.43 m s22: (a) experimental
measurements and (b) analytical and numerical results
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across the load resistance, corresponding to the spectral compo-
nent proportional to the excitation frequency. Figure 4(b) presents
the corresponding analytical and numerical results using curves
and symbols, respectively, when the mean amplitude of base
acceleration is 3.43 m s�2 and the frequency is slowly swept up/
down at a rate of 0.112 Hz s�1 in the range of 6–49 Hz. The
increasing shading darkness of curves or data points represents
decreasing axial spring stiffness, characterized via the axial stiff-
ness ratio j. The results indicate that the platforms having pro-
gressively decreasing axial suspension stiffness lead to gradually
enhanced levels of peak voltage amplitude. The analytical and nu-
merical results are in good agreement to such trends with respect
to the measurements. The effect of the softer suspension stiff-
nesses is an enhanced sensitivity of the devices to the lower fre-
quency excitations, thus providing considerable amplification of
the voltage when compared to the stiffer suspension designs. For
example, according to the measurements, using the most compli-
ant design having j ¼ 0:0053 leads to 20 times greater voltage
amplitude than the conventional simply supported platform of
j ¼ 0:300 at an excitation frequency of 25 Hz. In other words, the
strategic exploitation of the compliant axial boundary enhances
the average power generation by 400 times while the excitation
conditions remain the same. Such a result has clear analogy to the
manipulation by Diptera of wing motor suspension characteristics
so as to obtain greater amplitudes of flapping force without sub-
stantial deviation in the input energy level.

4.2 Influences of Suspension Stiffness and Increased Axial
Compressive Force. The qualitative behaviors and performance
of the energy harvesters change significantly when the axial com-
pressive force is increased. Figure 5 shows the results of increas-
ing the preload ratio to 1.04 for all of the designs considered here.
Based upon the axial stiffness ratios, only the cases of j¼ 0.0053
and 0.0126 (respectively, kd ¼ 42.1 and 99.8 kN m�1) are stati-
cally bistable, evident via the solid curve line styles in Fig. 5. For
such an axial compressive force, the platform using j¼ 0.0426 is
only marginally monostable, since the preload ratios to induce
bistability are kdD=Pcr > 1.0426.

Although the same overall influence is observed in Fig. 5
regarding the enhancement of voltage output that results from the
decrease in axial suspension stiffness as was evident in Fig. 4, the
magnification of voltage amplitude is seen to be more pronounced
at low frequencies in Fig. 5 due to the greater preload ratio of
1.04. This characteristic is particularly apparent via the analytical
and numerical results in Fig. 5(b). Experimentally, it is found that
additional friction forces due to the simple support bearings—not
accounted for in the model—increase damping phenomena at low
excitation frequencies, which has the effect of potentially inhibi-
ting the large amplitude harvester dynamics. That factor aside, the
measurements still show that> 70 times enhancement in average
power may be leveraged at 14.5 Hz by replacing a conventional
axial simple support design ðj ¼ 0:300Þ with the most axially
compliant design examined here ðj ¼ 0:0053Þ.

When the frequency of excitation is fixed at 16 Hz, the influ-
ence of change in base acceleration amplitude is uncovered in
Fig. 6. Experimentally, the amplitude of the base acceleration is
slowly varied at a rate of 0.092 m s�3 from 0 m s�2 to 6 m s�2.
This excitation frequency is one at which an apparent discrepancy
appears between the voltage amplitudes measured experimentally
with respect to those determined by the model (see Fig. 5), due to
the friction forces in the simple support bearings. Nevertheless,
both the measurements of Fig. 6(a) and model predictions in
Fig. 6(b) agree that the voltage enhancement resulting from
reduced axial suspension stiffness is a benefit that can be lever-
aged across a broad range of base acceleration amplitudes. At the
same time, the results of Figs. 4–6 collectively reveal an addi-
tional influence of importance. Whether for preload ratio of 0.70
or 1.04, the figures show that an increased likelihood of triggering
coexisting dynamics is also a consequence of the softer

suspensions. In other words, due to the degree of axial compres-
sive forces, the energy harvesters exhibit considerable nonlinear-
ity in the dynamical behaviors, which becomes manifest as an
initial condition-dependent steady-state oscillation. Coexisting dy-
namics, which have the parallel consequence of inducing coexist-
ing voltage magnitudes and powers, are a particular drawback to
the exploitation of nonlinearity in energy harvesting platforms
[2,13]: one dynamic tends to be of substantially greater benefit
than the other. As a result, the valuable utilization of these nonli-
nearities requires careful attention to system design and imple-
mentation so that the potential for adverse coexisting dynamics is
minimized according to anticipated operating conditions.

Figure 7(a) presents phase portraits in the plane of voltage
across the load resistance and the energy harvesting beam center
point bending displacement, using the measurements taken at
16 Hz and base acceleration amplitude of 2.17 m s�2. As shown in
Fig. 6(a), two coexisting dynamics occur for the platform when
the axial stiffness ratio is 0.0053. Since the harvester platform is
bistable under this preload ratio of 1.04, either an intrawell or
snap-through steady-state dynamic is possible, based upon the ini-
tial conditions of displacement and velocity. The intrawell dynam-
ics are those which oscillate around a stable equilibrium of
displacement, whereas the snap-through motions are energetic
behaviors that cross the unstable, near-central equilibrium twice
per cycle of oscillation [30]. The results of Fig. 7(a) reveal that
more than an 18 times difference in average power exists between
the regimes, where the favorable steady-state dynamic for energy
harvesting is the snap-through regime. Although methods have
been explored to “escape” the undesirable intrawell oscillation
[31], the proposed interventions have so far required energy input
to perturb the energy harvester from an otherwise stable, dynamic
steady-state. Thus, intelligent implementation of such nonlinear

Fig. 5 Voltage across load resistance for preload ratio of 1.04
and mean base acceleration level 3.43 m s22: (a) experimental
measurements and (b) analytical and numerical results
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devices for their improved energy harvesting potential dictates
that the structures be operated under excitation conditions which
do not promote the coexisting regimes.

Figures 8(a) and 8(b) show measured and predicted voltage
amplitudes, respectively, when the platforms are excited at a fre-
quency of 26 Hz across a varying range of base acceleration
amplitudes. Among the findings, the increased likelihood for
coexisting dynamics is seen in Fig. 8, even for the platform having
an axial stiffness ratio of 0.0426 which is marginally monostable.
For the bistable architectures, j¼ 0.0126 and 0.0053, the potential
for coexisting intrawell and snap-through dynamics is more likely
across a large range of base acceleration amplitudes than was the
case found at the excitation frequency of 16 Hz in Fig. 6. Despite
such a trend, computations taken from the phase trajectories in
Fig. 7(b) indicate that with base acceleration amplitude at 3.99 m
s�2 and frequency 26 Hz, the advantage of achieving the snap-
through dynamic for the softest case of axial suspension,
j¼ 0.0053, is more than a 28 times enhancement in average
power. Clearly, a tradeoff exists between obtaining greater aver-
age powers using softer axial suspensions and an increased poten-
tial for activating the undesired intrawell oscillations. Effective
utilization of the axial suspension and compression features there-
fore must carefully consider the excitation environment with
respect to the device design.

5 Origin of Performance Enhancement by Softer,

Axially Compressed Suspensions

The theme of the discoveries in Secs. 2 and 4 is that the com-
pression of the simply supported energy harvesting beams and the
utilization of more compliant axial suspension stiffness leads to

dramatic improvement of the average power generation, particu-
larly at lower frequencies of harmonic excitation. Yet, the find-
ings themselves do not explain the origin of such enhancements.
To look more deeply into the source of the performance benefits,
Fig. 9 plots the percentage contributions of the three primary
potential energy resources using results which are obtained by
the analytical model for a base acceleration amplitude of 1.50 m
s�2, frequency of 18.25 Hz, and axial compressive preload ratio
of 1.04. Recall that under such compressive forces, the device
design with the least compliant axial suspension stiffness
(j¼ 0.300) remains monostable whereas the device using the
most compliant axial stiffness (j¼ 0.0053) is statically bistable.
For these two device designs, Fig. 9 shows that the conventional
simply supported energy harvester (having the least compliant
axial stiffness) exhibits a nearly equivalent distribution of poten-
tial energy manifest as stretching the beam axially as in bending
the beam. Yet, it is bending of the energy harvesting beam that
has far more influence toward the overall transduced voltage by
the applied PVDF piezoelectric layers. Considering the data for
the most compliant axial suspension stiffness (j¼ 0.0053), Fig. 9
indicates that the beam bending potential energy is considerably
increased while the axial stretching of the beam is almost elimi-
nated. In other words, the greater suspension compliance pro-
motes beam bending at the expense of beam axial stretching,
which thereafter has the effect of more readily activating snap-
through. The origin of the performance enhancement is therefore
the redistribution of potential energy among the primary contrib-
utors, achieved using the strategic selection of the axial compres-
sive force and the axial suspension spring stiffness, which are
characterized using the preload ratio and axial stiffness ratio,
respectively.

Fig. 6 Voltage across load resistance for preload ratio of 1.04
and excitation frequency of 16 Hz: (a) experimental measure-
ments and (b) analytical and numerical results

Fig. 7 Experimentally measured phase plane trajectories of
voltage and beam center bending displacement for preload ra-
tio of 1.04 for the harvester platform configurations exhibiting
coexisting dynamic regimes. (a) Base acceleration amplitude of
2.17 m s22 and frequency of 16 Hz. (b) Base acceleration ampli-
tude of 3.99 m s22 and frequency of 26 Hz. Average power differ-
ences are quoted for the various pairs of coexisting dynamics.
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6 Conclusions

This research shows that leveraging additional axial compliance
and nonlinearities can lead to significant improvement in the
effectiveness of vibration energy harvesting beam systems and
that uncovering the origin of the enhancements may guide designs
best suited to the available vibration resources. A simply sup-
ported energy harvesting beam, axially compressed on one end
and suspended by an axial spring on the other, is developed
according to a biologically inspired structural concept. When
compared to the conventional design that employs axially fixed

simple supports, the new harvester architecture is found to enable
a substantial increase in average power generation across a wide
range of excitation frequencies and amplitudes. The soft, compli-
ant axial supports favorably distribute the dynamic storage and
release of potential energy among the various primary contribu-
tors, thus maximizing the bending of the beam which is the princi-
pal source of the net electromechanical transduction. By these
insights, the utilization of compressed axial suspensions may
more readily enhance the performance of energy harvesting beam
systems under the challenging excitation spectra typical of envi-
ronmental vibrations.
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Appendix

In the following, the subscript notations b and p continue to
denote the beam and piezoelectric layers, respectively. Addition-
ally, the moments of inertia are Ib;p ¼ hb;pt3

b;p=12.

M� ¼ 1

2
qbAbLb þ 2qpAp

ðl2

l1

/2dxþ mar2
a
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where it is assumed that the body forces sðxÞ result from gravita-
tional influences having acceleration of G

Z� ¼ 2

p
qbAbLb þ 2qpAp

ðl2

l1

/dx (A8)
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Ap
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