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a b s t r a c t

Bifurcation-based mass sensing provides for dramatically enhanced detection sensitivity
and less performance deterioration due to measurement noise as compared to frequency
shift-based methods. Recent bifurcation-based mass sensing studies have employed
directly excited nonlinear oscillators to induce critical jump events, but the approaches

induce adverse nonlinear phenomena by prolonged excitation near the bifurcation, and
are limited in the number and versatility of jump events. In this work, an alternative
sensor architecture and method for mass sensing are presented to address these concerns.
The architecture is based upon the coupling of a host linear structure to a small bistable
inclusion. It is shown that the sensor enables unique functionality including means for
passive mass quantification and direct adjustment of bifurcation sweeping rate for reliable
detection and enhanced robustness to noise. Deterministic, stochastic, and non-stationary
analyses demonstrate the operational principles and sensitivities of the method while
experiments with proof-of-concept samples corroborate analytical results and give clear
evidence of the advantages of the new approach.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Micro/nanoelectromechanical systems (M/NEMS) have proliferated as low-cost and high-performance sensors across a
broad range of applications, including magnetic field detection, gyroscopic orientation, and biological, chemical, and atomic
mass monitoring [1,2]. The latter field has received dramatic research attention due to analytical and experimental
demonstration that these systems may probe to quantum scales, indicating that mass/force detection ability of micro- and
nanomechanical sensors is useful for day-to-day applications (e.g. mercury detection [3]) as well as for fundamental physics
exploration [4–6].

A common protocol for microscale mass sensing is a derived translation between mass adsorbed upon the resonating
sensor and a detectable change in the fundamental mode natural frequency [1–6]. Although this is a useful approach,
researchers continue to tackle with the inherently nonlinear dynamics of resonators on these scales which makes an
expression between accumulated mass and natural frequency shift less straightforward than ideally obtained with linearity [1].
While some have investigated methods to offset one nonlinearity by another (e.g. introducing softening Duffing effects to
counteract hardening Duffing behaviors [7,8]), recent research has developed alternative sensing approaches based upon the
inherent nonlinear dynamics of MEMS. These latter studies harness nonlinear bifurcation phenomena which serve as dramatic
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amplitude-based sensing measures, following a methodology earlier developed for the Josephson junction or bifurcation
amplifier [9].

One significant benefit of bifurcation-based sensing is that the metric of change is an unmistakable jump or drop in
sensor response amplitude once the bifurcation is crossed. The techniques are much less susceptible to damping than
frequency shift-based approaches because bifurcations may be activated regardless of damping so long as the excitation
level exceeds a critical threshold. While frequency shift-based sensing sensitivity is highly influenced by various noise forms
and limited by hardware resolution capability, bifurcation-based sensing sensitivity and resolution is theoretically
constrained only by thermomechanical noise and Brownian motion [9–11], which is an enticing potential for the mass/
force sensing field. For MEMS, bifurcations associated with parametric resonance [12–15], dynamic pull-in [16], and the
saddle-node of a softening Duffing oscillator [17] have demonstrated significant mass sensing sensitivity enhancement.
Additional benefits include substantially less deterioration of detection performance due to measurement noise than
frequency shift-based approaches [12,18,19] and some bifurcation-based approaches offer reduced implementation
complexity by eliminating phase-tracking hardware [16,17].

There have been two primary protocols demonstrated for bifurcation-based microscale mass sensing. Both employ the
foundational idea that mass accumulation affects bifurcation conditions. In the first, an excitation frequency sweep towards
a bifurcation frequency is conducted and the frequency which triggers the jump event is determined; repeating the process
yields a time-variation of the shift due to added mass. A bifurcation analysis of Mathieu0s equation for the parametric
resonator provides an expression of jumping frequency as a function of system parameters: thus, specific change in the
frequency denotes a quantity of adsorbed mass [13]. While the success of this approach is less susceptible to measurement
noise and damping than frequency shift-based sensing methods [12,14,18], the technique is still vulnerable to early or
delayed jump events [20,21] and requires a collection of active control and tracking hardware. The second protocol is a
passive technique that employs a constant frequency excitation just below the bifurcation, allowing for mass adsorption to
reduce the critical frequency and induce the jump [16,17]; thus, the second approach detects a threshold. Because mass
adsorption may be very slow, the challenges to reliably utilize this technique are tied to the intrinsic phenomena associated
with prolonged excitation near bifurcation, including noise-induced transitions [20] and period-doubling cascades [22–24].
Finally, while additional bifurcations due to super- and subharmonics have been demonstrated [16], no bifurcation-based
mass sensing works have yet explored means by which to sequentially employ such phenomena to determine the mass
adsorbed in the time span between consecutive jumps, thereby achieving mass quantification without excess control and
tracking hardware. Therefore, of the remaining challenges in the area of bifurcation-based mass sensing, some key issues
are: utilizing bifurcations to passively quantify mass adsorption over time without need for active hardware; avoiding
prolonged excitation near the bifurcation frequency which may induce strongly nonlinear phenomena and inhibit reliable
detection; and a degree of sensor adaptability to changing testing conditions which may help optimize sweeping through
bifurcations for reliable jump event activation and hence mass detection.

To address these concerns, this work presents an alternative bifurcation-based sensing protocol and sensor architecture
which conceptually combines frequency shift- and bifurcation-based detection techniques. In the following sections, the
operational principle and system architecture are described. Analytical treatment of the system is conducted and validated
by experiments to demonstrate the detection strategy and sensor versatility and to initially evaluate noise sensitivities.
Further experimental examples verify the successful utilization of the approach and a summary discussion is provided to
review the advancements offered by the new bifurcation-based mass sensing system.

2. Architecture and operational principle detail

2.1. Bistable sensor component and capabilities

In contrast to the past bifurcation-based sensor architectures, the sensor in this study utilizes a statically and dynamically
bistable element. Bistable MEMS enable broad functionality and as a result have been the focus a wide body of recent
research. Numerous studies have explored their application as switches [25,26], valves or actuators [27,28], and non-volatile
memory [29,30]. The nonlinearities of bistable MEMS have been probed in detail regarding electrostatic actuation
dependence [31,32], imperfections and deviations from ideal fabrication [33–35], and snap through activation [36,37].

A key advantage of bistable elements for bifurcation-based mass sensing is exemplified by evaluating a characteristic
steady-state response amplitude to excitation level profile, two examples of which are shown in Fig. 1 as computed from the
derivations of the authors0 earlier investigation [38]. For given normalized excitation frequency ω, the level of harmonic
excitation h may lead to either small amplitude (intrawell or single-well) or highly energetic (interwell or cross-well)
responses. With the bistable element initially oscillating around a stable equilibrium, for example point A in Fig. 1(a),
gradually increased excitation level will lead to triggering a bifurcation that induces the energetic interwell response, the B
to C jump which represents a significant increase in steady-state response amplitude. Once the bistable element is captured
in the interwell response, reduction of excitation level follows a hysteretic trajectory such that the energetic response is
sustained down to the critical point E. At this point, further decrease in excitation level activates the E to F bifurcation
downwards in amplitude. When excited at a different steady-state excitation frequency, Fig. 1(b), several hysteretic
trajectories are observed because three unique dynamics may be induced: a low amplitude intrawell, a higher amplitude
intrawell, and energetic interwell responses.



Fig. 1. Bistable element displacement response amplitude r dependency upon excitation level h, computed from Ref. [38] with γ¼0.02 and β¼1.
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In the prior study [38], the authors derived closed form expressions for the critical set of system parameters leading to
these jumps. In a mass sensing context, the critical parameter set may be expressed in terms of changing sensor mass. While
a single bifurcation is sufficient for threshold detection, to extend the practical utility of the sensor by quantifying mass
adsorption over time at least two jumps must be activated and the difference computed between the two critical masses.
The externally-controlled bifurcation-based sensing approaches, using parametric resonators, meet this necessity by
repeatedly activating the same bifurcation using excitation frequency sweeps into the progressively decreasing critical
jumping frequency [12–14]. This methodology will in fact be used in Section 4 as one demonstration of the proof-of-concept
test sample for the proposed sensing methodology. Yet the inherent availability of at least two jumps, as observed in Fig. 1(a),
indicates that mass quantification may be achieved passively using a constant frequency of excitation, so long as the influence
of adsorbed mass leads to an increasing and then decreasing change in excitation level. Unfortunately, direct mass
accumulation upon a bistable oscillator does not play a role in changing its excitation conditions. As a result, the sensor
architecture developed in this research is designed in such a way that mass adsorption leads to an effective change in
excitation level for the bistable element despite potentially utilizing constant excitation conditions.
2.2. Two degrees-of-freedom sensor architecture

This requirement will be shown to be satisfied by a two degrees-of-freedom (DOF) sensor architecture. In its most
essential form, the sensor may be composed of an excited primary linear structure having a small bistable inclusion attached
to its free end (or generalized displacement coordinate). In the proof-of-concept sample as shown in Fig. 2, this architecture
is realized via two coupled beams: a small inset beam is located at the primary beam free end and buckled through the
repulsive interaction of magnets. To ensure that only the inset beam is deflected by the magnetic interaction, the inset is
machined with reduced thickness, approximately 480 μm as compared to host beam thickness 1180 μm. This fabrication
detail is evident in Fig. 2 (c,d) which also demonstrate the two post-buckled stable states of the small inset beam. The proof-
of-concept sample includes a recessed track that allows tailoring of the bistability by modifying the repulsive magnet gap
which is related to the axial buckling load. As shown in Fig. 2(b,e), the host beam is cantilevered from an excitation source;
in this way, the primary structure is a cantilevered beam while the inset bistable beam is cantilevered from the end of the
host beam opposite to the excitation. For consistency, throughout the remainder of this work, term “sensor” will denote the
complete coupled linear-bistable system. Additionally, the linear member of the proof-of-concept system will be referred to
as the host beam, whereas remarks about any potential coupled linear-bistable system will refer to this element as the host
structure, since the underlying resonator need not be a beam.



Fig. 2. Proof-of-concept photograph details. (a) Host beam with inset beam, showing fabrication details prior to magnet attachment. (b) System
cantilevered from shaker for testing. (c) and (d) Buckled states of inset bistable beam due to magnetic repulsion. Schematic of modeling coordinates
(e) before and (f) after coordinate transformation for bistable beam inclusion. (g) Lumped parameter equivalent model.
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2.3. Sensor operational strategy

Although the sensor may be employed using controlled excitation sweeps that repeatedly activate the bifurcation to
quantify mass accumulation over time, as will be demonstrated in Section 4, the sensor architecture also empowers a unique
mass sensing strategy that integrates the advantages of frequency shift-based and bifurcation-based methods. If the bistable
inclusion constitutes a small amount of the total sensor mass and has a linear natural frequency sufficiently greater than the
host structure, then the two DOF sensor steady-state response around the fundamental mode is effectively identical to a
single DOF system response. Therefore, the linear dynamics of the sensor around its fundamental mode are equivalently
expressed by the response-to-excitation transfer function magnitude of a driven, damped harmonic oscillator [39]:

H¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�ω2Þ2þð2ζωÞ2

q
(1)

where the normalized excitation frequency ω¼Ω/Ω1 is the ratio of the excitation to the natural frequencies, and damping
ratio is ζ¼ b=2

ffiffiffiffiffiffiffi
km

p
. From the perspective of the small bistable inclusion, the influence of the host structure around the

fundamental mode is that of a variable gain excitation source, such that the excitation level h in Fig. 1 is related to amplitude
H, with maximum gain when the excitation frequency aligns with the fundamental mode, ω¼1. In the vibration energy
harvesting research community, this design concept has been described as a “dynamic magnifier” for small energy harvester
systems attached to larger resonant sub-structures [40,41].

For the sensor architecture, these influences are utilized to passively induce an excitation level sweep for the bistable
inclusion so as to activate two bifurcations in sequence for mass quantification. In this way, the normalized excitation
frequency ω changes because the fundamental natural frequency is reduced due to adsorbed mass, despite excitation
conditions remaining constant. An illustration of this utility is provided in Fig. 3 to assist in the following description of the
passive sweeping strategy. Fig. 3 illustrates the progressive reduction in frequency of a fundamental mode response, H, due
to increased modal mass (thus as both Ω1 and ζ decrease proportional to m�1/2). For a comparable sensor, this would
represent adsorbed mass on the host structure since the host is presumed to represent the bulk of the net sensor mass. Fig. 3
also highlights representative points from Fig. 1(a) with respect to a constant excitation frequency, Ω.

Thus, the two DOF sensor architecture may be excited at constant frequency Ω initially less than the fundamental natural
frequency Ω1 prior to mass accumulation, such that the normalized excitation frequency ωo1, and at constant excitation
level such that the bistable inclusion is initially in low amplitude intrawell oscillations, like point A in Fig. 1(a) which is
depicted by point An in Fig. 3. Therefore, the influence of mass adsorption upon the much larger host structure reduces the
fundamental mode frequency. Eventually, a critical excitation level working upon the bistable inclusion is reached which
induces the first bifurcation, like the B–C jump in Fig. 1(a) and shown as Bn–Cn in Fig. 3. Continued mass adsorption reduces
the fundamental mode frequency until it coincides with the fixed excitation frequency, ω¼1, point Dn, and represents the
maximum excitation level gain passed to the bistable inclusion. Further mass adsorption indicates the sensor is excited
above the fundamental mode resonance, ω41, and thus the gain passed to the bistable inclusion reduces, at some point
finally leading to the subsequent bifurcation like E–F in Fig. 1(a) and shown as En–Fn in Fig. 3. In summary, the design of the
sensor is such that it may be utilized to passively induce an excitation level sweep for the bistable inclusion because
excitation conditions remain constant: mass adsorption alone leads to variation in sensor responses. These factors are more
obviously grasped by specific example and, to this end, an analytical model of the sensor architecture is developed.



Fig. 3. Fundamental mode response amplitude shifting in frequency due to increased modal mass. Letter labels illustrate representative points from Fig. 1(a)
in the context of activating sequential bifurcation for the two DOF sensor architecture using constant excitation conditions.
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3. System modeling and operational demonstration

3.1. Governing equations

The governing equations are derived according to lumped parameter assumptions which are appropriate for many
continuously-distributed microscale systems [1,2,8]. Due to the specific test setup, the system is modeled as undergoing
base excitation, although a similar equation system may be formulated for direct forcing of the host structure (e.g. a
piezoceramic actuator on the clamped host beam end). The equations are initially derived using the host structure
displacement relative to base motion, x, and the relative displacement between the bistable element and host structure, v,
as the response coordinates. The initial coordinate convention with respect to the sensor architecture sub-systems is
depicted in Fig. 2(e). Application of Newton0s 2nd law then yields

m1ð€xþ €zÞþb1 _xþk1x�b2 _v�Λ0ðvÞ ¼ 0 (2a)

m2ð€vþ €xþ €zÞþb2 _vþΛ0ðvÞ ¼ 0 (2b)

Here, mi, bi, ki are effective mass, damping, and linear stiffnesses of the sub-systems, respectively; Λ(v) is an expression of
the potential energy of the bistable element as a function of the relative displacement coordinate v; and operators ( � ) and ()0

denote time and spatial derivatives, respectively. In this study, the classical, symmetric quartic potential energy profile (the
double-well) is utilized which is one possible representation of the potential energy of a beam buckled by repulsive magnet
interactions [42].

ΛðvÞ ¼ � 1
2
k2Lv2þ

1
4
k2NLv4 (3)

The spatial derivative of the potential energy, Λ0 ¼∂Λ/∂v, is the restoring force from which may be computed the fixed
points of the bistable sub-system: Λ0ðvÞ ¼ 0-vn ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L=k2NL

p
. Here, vn are the stable equilibria which are symmetric with

respect to a central unstable configuration. Next, a coordinate transformation is applied by defining y¼v�vn such that the
bistable inclusion response coordinate y is zero at one of the stable positions. Substitution of this transformation into
equation system (2) and a series of simplifications leads to equation system (4):

m1 €xþb1 _xþk1x�b2 _y�k2y½1þαyþβy2� ¼ �m1 €z (4a)

m2 €yþð1þμÞ½b2 _yþk2yð1þαyþβy2Þ��μðb1 _xþk1xÞ ¼ 0 (4b)

Here, k2¼2k2L, while α¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2NL=k2L

p
and β¼k2NL/k2L are stiffness proportionality constants; μ¼m2/m1 is the ratio of bistable

to host structure effective masses; and � €z¼ Za sin Ωt is the harmonic base acceleration of amplitude Za and frequency Ω.
To compensate for asymmetries evident between the bistable inclusion stable equilibria, the proportionality constants α and
β may be modifed to deviate from the prior expressions; the additional equilibria are then positioned at vn ¼ ½�α7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2�4β

p
�=2β. Note that equation system (4) includes linear, quadratic, and cubic terms for the bistable inclusion

displacement y due to the coordinate transformation. For clarity, the generalized coordinates respecting the coupled
linear-bistable beam system are illustrated in Fig. 2(f) while the lumped parameter modeling conventions are shown in
Fig. 2(g).
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3.2. Numerical demonstration of system operation

The system parameter set of the fabricated test samples are first experimentally identified and presented in Table 1. The
bistable inclusion is seen to possess asymmetry between the stable equilibria around the unstable position and this is
reflected in the identified proportionality constants α and β. The fundamental mode natural frequency of the system is
Ω1/2π¼61.3 Hz while the second mode occurs at Ω2/2π¼184 Hz. Next, the parameter set is scaled down to microscale
platform dimensions, taking into account design factors of microscale bistable structures regarding asymmetries induced via
residual stress [29,30,43,44]. The scaled parameter set is provided in Table 2. In the numerical demonstration, to represent
mass adsorption on the sensor over time, the mass of the host structure is a time-dependent quantity such that its mass
increases at a mass ratio rate of þ0.001 per second, reflective of a target analyte entering and diffusing in an environment
during a MEMS mass sensing application. Mass ratio is defined as the accumulated mass over the baseline host structure
mass m1 and the rate was arbitrarily selected for this demonstration. In the following simulation, the host structure is
excited at a constant frequency that is 99.4 percent of the fundamental mode natural frequency prior to mass accumulation,
Ω¼0.994Ω1. Finally, to demonstrate the passive mass quantification strategy of the proposed sensor architecture, equation
system (4) is numerically integrated with a fourth-order Runge–Kutta routine using parameters given in Table 2, and the
results are plotted in Fig. 4.

At the beginning of simulation, because the system is excited at a frequency slightly less than the fundamental mode,
such that ω¼Ω/Ω1o1, and the bistable element is excited within a linear response regime, both elements of the sensor have
almost identical response amplitudes, apparent in Fig. 4 by the coincident results. During this time, the bistable inclusion is
confined to intrawell response, similar to point A in Fig. 1(a). Gradually, however, mass accumulates upon the host structure
such that the reduced fundamental mode natural frequency draws closer to the excitation frequency, ω-1, magnifying the
transmitted excitation level to the bistable inclusion and ultimately activating the bistable element bifurcation from
intrawell to interwell responses, like the B–C jump in Fig. 1(a). Now the bistable inclusion exhibits large displacement and
velocity amplitudes and the host structure response is substantially perturbed. Following continued mass accumulation
such that the fundamental mode natural frequency is reduced to the extent that the constant excitation frequency is above
resonance, ω41, the ability of the bistable inclusion to sustain interwell response is compromised and an E–F type of
bifurcation downwards in response is observed. The mass quantity adsorbed from jump up to jump down may be
determined from one of two ways. With knowledge of the time elapsed between sequential bifurcations and the rate of
mass adsorption, one may directly compute the mass accumulation. This method is not as useful in practice because the rate
of accumulation is likely unknown. The alternative approach is to conduct a bifurcation analysis for equation system (4) to
derive closed-form expressions relating bifurcations to the host structure mass. This is comparable to the prior study [38]
from which Fig. 1 was plotted, although in the present case the system is a two DOF architecture and the analysis will yield
more complex expressions. Derivation of such expressions are one part of on-going efforts.

From the example in Fig. 4, the signaling that bifurcations are crossed is uniquely determined depending on how a
sensing signal is extracted from the system. The individual plots of Fig. 4 depict the variety of measurements that would be
available based on how transduction is configured to monitor either the host structure or bistable inclusion. Thus, in a
configuration that monitors a response related to velocity, the sensed bifurcation event is denoted by sudden amplitude
modulation in host structure response or dramatic increase in the bistable inclusion response, Fig. 4(b), both of which are
accompanied by a transient spike in additional harmonic content (spectra not shown here). Monitoring displacement of the
bistable inclusion provides the most notable indication of change due to the biased mean displacement during the period of
interwell vibrations, Fig. 4(a). The latter unambiguous indicator is not obtained in previous bifurcation-based MEMS mass
sensing studies that have explored monostable oscillator systems.
Table 1
System parameters identified from test setup.

m1 (g) m2 (g) b1 (N s/m) b2 (N s/m) Za (m/s2)

3.52 0.705 0.0673 0.0228 15

k1 (N/m) k2 (N/m) α (1/m) β (1/m2)

637 766 1.27�103 3.20�105

Table 2
System parameters used in simulation for sequential jump events.

m1 (ng) m2 (ng) b1 (nN s/m) b2 (nN s/m) Za (m/s2)

5 0.1 471 18.2 7.0

k1 (N/m) k2 (N/m) α (1/m) β (1/m2)

7.11 0.299 4.57�105 4.64�1010



Fig. 4. Demonstration of sequential bifurcation activation due to mass accumulation upon host structure. (a) Response displacements and (b) velocities.
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4. Experimental investigation

Since this work presents proof-of-concept results of a new sensing method and architecture, the aim of the following
experimental study is more focused on demonstrating some of the mass sensing enhancements described earlier and less
focused on highlighting improved detection accuracy. The simulated results in Fig. 4 exemplified the passive sensing strategy
that may quantify adsorbed mass. This strategy was recently experimentally demonstrated by the authors in a comparable
study of a coupled linear-bistable system composed of a host beam and attached bistable circuitry [45] and gives credence to
the methods strong potential. Therefore, to explore the alternative sensing protocol for the proposed sensor, in the following
example, bifurcation triggering via the controlled frequency sweep approach is investigated. However, the results will
concurrently provide important insight regarding the passive detection strategy.

The test setup is shown in Fig. 2(b); the laser point for velocity measurement is directed to the mass of the host beam
end, composed of the magnet-block assembly on the recessed track. Before each experiment, wax mass is measured using a
microgram scale and incrementally applied to the host beam free end. Low-level white noise base excitation is used to
determine the fundamental mode natural frequency from the frequency response function (frf) of beam velocity to base
acceleration. Then, for a constant excitation level, the excitation frequency is slowly swept from 55 Hz at a rate of þ0.05 Hz/s
into the critical jumping point. The trial is stopped once the jump event is activated to avoid excessive fatiguing of the thin
bistable inset beams during extended periods of interwell response. The critical bifurcation frequency is determined; as
described earlier, the change of the critical frequency may be used to compute the accumulated mass quantity following
suitable bifurcation analysis. The process is then repeated following further incremental addition of wax mass.

Fig. 5(a) presents the time series of an example experimental frequency sweep test in which case no added wax is
applied. As the excitation frequency gradually sweeps toward the fundamental mode of the system, the vibration of the host
beam becomes magnified, so as to greatly amplify the net excitation upon the small bistable inclusion. Simulated results,
Fig. 5(b,c), using equation system (4) and the experimental system parameters of Table 1 are in very good agreement with
the measurements, Fig. 5(a). Partially along the frequency sweep at which point the instantaneous frequency is
approximately 59 Hz, an order-3 harmonic is induced within the asymmetric bistable inclusion which is observed via the
host beam as a small spike in velocity prior to leveling out again in response. The experimental observation of this feature is
closely replicated in numerical simulation, Fig. 5(b). It must be emphasized that this phenomena is not inherent in the use of
the linear-bistable system design (attested by the absence of comparable phenomena in Fig. 4) but was conclusively
determined to be a coincidence of the exact parameters of the fabricated samples (and therefore parameters used in
simulation). As indicated in Section 3, the second mode linear natural frequency of the system is 184 Hz, which is
coincidentally almost exactly three times the fundamental 61.3 Hz. It is known that for a nonlinear two DOF system having a
1:3 ratio of natural frequencies, excitation close to the fundamental will induce a strong higher harmonic response which
may suddenly become manifest [46]. This is an undesirable coincidence of the fabricated samples (primarily due to the exact
degree of magnetic repulsion-buckling employed which partially governs this frequency) and fractional or integer multiples
of the natural frequencies should be avoided in future sample fabrication. Considering again characteristics of the frequency
sweep in Fig. 5, the bistable inclusion response is pushed continually closer to the bifurcation point by the steady
amplification of the host beam response as harmonic excitation sweeps closer to the fundamental mode natural frequency.
In the experiment, the bifurcation is activated and observed by a surge and spike in host beam velocity, Fig. 5(a).
In simulation, the bifurcation is likewise accompanied by a spike in beam velocity, Fig. 5(b), while the bistable inclusion
jumps to the other potential well, Fig. 5(c). The overall good agreement between the measured and simulated results helps
to validate the modeling assumptions and formulation, and verifies that system parameters are correctly identified which is
necessary to support the continued investigations of this work.



Fig. 5. Frequency sweep into bifurcation. (a) Experiment: host beam velocity. (b) Simulation: host beam velocity. (c) Simulation: bistable inclusion
displacement. Inset images denote zoomed views of bifurcation activation.

Fig. 6. (a) Host beam frf due to low-level white noise input denoting natural frequencies and the corresponding triggering frequencies for cases of mass
addition. (b) Measured frf magnitudes for all cases of added mass ratio and triggering frequencies.
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Having observed a typical experimental response trajectory, the results of experimental frequency sweeps for a range of
added mass up to 0.012 mass ratio are collected in Fig. 6. Fig. 6(a) demonstrates how the measured frfs of the host beam are
affected as mass accumulates upon the free beam end. The peaks of the frfs, identified as the fundamental mode natural
frequencies, are plotted as circles and influences of noise, damping, and finite time duration for sampling inhibit desirable sharp
resonant peaks, thus making traditional frequency shift-based mass sensing a less reliable indicator of accumulating mass.

Fig. 6(b) plots frf results for the trials conducted for each case of mass addition. The contour represents the instantaneous
frf amplitudes measured during frequency sweeps; the transition from grayscale contour to the unshaded region denotes
the initial triggering of interwell oscillations. The bifurcation frequencies are shown as crosses which define the boundary
between the intrawell to interwell oscillations, like the B–C jump in Fig. 1(a). While natural frequency is observed to non-
uniformly reduce in consequence to mass accumulation, the triggering frequency consistently reduces upon each case of
mass addition. Consequently, there is no mistaking mass accumulation using bifurcation-based detection as compared to
tracking the fundamental natural frequency (circles).

In Fig. 6(b), the dashed and dotted lines, respectively, depict operational trajectories the sensor would follow using either
the controlled sweep method or the passive strategy with constant excitation conditions. When employing the passive
strategy, it is shown that the constant excitation frequency is a means by which to tailor the quantity of mass that initially
triggers the sensor: frequencies closer to the bifurcation require less added mass to induce the first jump. Although each test
was stopped when the bistable inclusion interwell response was initially activated, it should be recalled that for continued
sweeps, either by frequency or accumulating mass, the second bifurcation downward in response is eventually encountered.
The second bifurcation is not essential for the controlled sweeping approach because repeated activation of the initial
bifurcation yields sufficient information (bifurcation frequency shift) from which adsorbed mass may be quantified.
However, for the passive sensing strategy, the second bifurcation is required and the close connection between the dotted
trajectory in Fig. 6(b) and the analogous example in Fig. 3 should be emphasized.

As illustrated in Fig. 3, the passive mass sensing strategy utilizes a range of excitation level gains passed to the bistable
inclusion, which is similar to a path of fundamental mode responses at given constant excitation frequency. For the proof-of-
concept sample, a portion of this trajectory is shown as the dotted line in Fig. 6(b) up until the initial bifurcation point
(cross) which is equivalent to Bn–Cn in Fig. 3. Envisioning the trends of Fig. 6(b) to continue to higher mass ratios, the
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remainder of the trajectory would extend the vertical dotted line “over” the fundamental mode peak (the range denoted by
circles) and “down” the opposite side to reach the next critical frf level, i.e., the equivalent En–Fn level from Fig. 3. The rate of
following this path, and therefore the rate of jump activation, has important implications in bifurcation-based sensing, and
it is to this matter that the present study turns.

5. Stochastic modeling and noise sensitivities

Bifurcations are inherently stochastic processes since their activation may be inadvertently induced by noise [9,10,20].
Given that mass sensing is necessarily a non-stationary process—that is, mass accumulates at a finite rate over time—the link
between stochastic influences in bifurcation-based sensing and the rate of bifurcation activation is pivotal for accurate
detection because premature or delayed jump events could reduce detection reliability [20–22,24]. Therefore, for initial
insight into the stochastic sensitivities of the proposed bifurcation-based sensing method and two DOF sensor, equation
system (4) is expressed in Itô stochastic differential equation (SDE) form for the following investigation. In addition to the
harmonic base excitation, a stochastic process ζ (t) acts upon the host structure:

dx¼

x2
f�k1x1�b1x2þk2x3ð1þαx3þβx23Þþb2x4g=m1þZa sin ωt

x4
fμðk1x1þb1x2Þ�ð1þμÞ½k2x3ð1þαx3þβx23Þþb2x4�g=m2

2
66664

3
77775
dtþ

0
S

0
0

2
6664

3
7775dB (5a)

x¼ ½x1; x2; x3; x4�T ¼ ½x; _x; y; _y�T ; 〈ζðtÞ〉¼ 0; 〈ζðtÞζðt0Þ〉¼ S2δðt�t0Þ (5b)

where � €z¼ Za sin ωtþζðtÞ. The stochastic process ζ (t) is additive white Gaussian noise of intensity S2 and zero mean,
where dB/dt¼ζ (t). In microscale applications, additive white noise processes ζ(t) commonly represent uncertainties
including thermomechanical fluctuations, Brownian motion, and self-heating [4,11,47].

Prior to exploring noise dependencies, equation system (5) is experimentally validated for responses near the
fundamental mode. Fig. 7(a,c) present measured and simulated beam velocity to base acceleration frf curves, respectively,
of the system in Fig. 2(b) when excited by low-level white noise (S¼0.1) as mass is incrementally added to the host beam
free end. For each case of added mass ratio, a 15 s time series of system response to white noise is measured or simulated.
For the numerical simulations, base acceleration is not included (Za¼0) and equation system (5) is integrated using the SDE
toolbox in MATLAB. The frf results are normalized to the peak of the case without added mass. As mass is added to the end
of the cantilevered host beam, the resonance frequencies—peaks of the plots Fig. 7(a,c)—non-uniformly shift downwards in
frequency, Fig. 7(b). Collectively, noise interferences, damping, and the finite duration of the time series make the
resonances less sharply defined than ideal. Good agreement is seen comparing experimental and simulated trends, and
Fig. 7(b) shows that residual norms of the shifting natural frequency exhibit a similar deviation against linear fits. These
findings verify that stochastic and damping influences are appropriately modeled with respect to system parameters in
Table 1, and support the further use of the model to evaluate sensitivities of the proposed system architecture and sensing
method as functions of noise level and the bifurcation activation rate.

The responses of equation system (5) having additive noise and periodic base excitations are then simulated using the
sweeping styles earlier explored: constant excitation level with (a) controlled frequency sweeps or (b) constant excitation
frequency and progressive mass accumulation over time. The important parameter distributions to consider are the values
of the measure (frequency or mass accumulation) that occur at the jump event. In this work, excitation-to-noise ratio (ENR)
is used to denote the dominance of the harmonic base excitation relative to additive stochastic effects. For example, the
Fig. 7. (a) Experimentally measured frf around the fundamental mode as added mass increases (light to dark). (b) Measured and numerically simulated
fundamental mode natural frequencies as mass increases, with linear fits and residual norms (in inset). (c) Comparable simulated frf responses due to
stochastic excitation.
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root-mean-square value of an 0 dB ENR additive stochastic process is equal to the periodic base acceleration amplitude.
Thus, a simulation with 0 dB ENR is effectively noise-dominated while a 40 dB ENR simulation is primarily influenced by the
harmonic base excitation. In microscale mass sensing applications, ENR may be tailored to overcome noise by applying
higher drive levels at the cost of inducing greater nonlinearities in response [1].

Fig. 8 presents the results of the investigations for the two sweeping styles as functions of ENR level and various
sweeping rates. The bar heights represent mean values of the monitored parameter—frequency of first crossing in (a) and
added mass at first crossing in (b)—determined from 40 trials, while the error bars are one standard deviation from the
mean. It should be noted that simulations conducted with slower sweep rate and high ENR (low additive noise) induce the
most accurate triggering values because such cases approach the limiting condition of stationary and deterministic
bifurcation activation [20].

Fig. 8(a) plots results of the frequency sweep studies. In these simulations, a frequency sweep begins at 55 Hz, and
several forward sweep rates are employed from 0.005 to 0.2 Hz/s. It is seen that for high ENR the individual cases of
frequency sweep rate converge to distinct values of the first crossing parameter, here the frequency of the bifurcation event,
and that faster sweeps exhibit greater deviation and mean values of bifurcation frequency. This indicates that faster sweeps
induce delayed bifurcations, that is, jump events which occur for critical values in excess of the stationary and deterministic
result; as judged by Fig. 8(a) from the slowest sweep rate at high ENR, the latter is approximately 59.63 Hz. In contrast, for
low ENR (high noise), premature bifurcations are activated for all sweeping rates. This may seem counterintuitive but reflects
the fact that noise may activate a bifurcation in advance of the system reaching the deterministic critical condition [20].
Some of these findings are similar to those experimentally observed in recent bifurcation-based mass sensing investigations
using variable-rate frequency sweeping strategies [21]. Our additional insight for the present system is provided by the
deliberate inclusion of noise since stochastic influences are difficult to eliminate in microscale mass sensing contexts.

Fig. 8(b) shows results for the mass accumulation sweeps where base acceleration is held at constant frequency of 59 Hz
while mass gradually accumulates on the host beam end. Several added mass ratio (m.r.) rates are utilized. Similar to the
frequency sweeping method, low noise (high ENR) and slow mass accumulation rates converge to specific m.r. values to
trigger (approximately 0.0048) and exhibit narrow standard deviations around this mean; again, this value represents the
approximate stationary and deterministic critical m.r. value to activate the bifurcation. As the ENR is gradually reduced and
noise becomes more influential, the additive noise frequently induces premature jumps, notably influencing the results
from approximately around 15–20 dB ENR, and the accumulated mass necessary to cross the bifurcation is reduced
(premature bifurcation). By comparing the range of critical activation parameters between Fig. 8(a,b), it may be concluded
that bifurcation activation is substantially more sensitive to change in mass accumulation rate than the frequency sweeping
rate. For example at 15 dB ENR, both Fig. 8(a,b) plot a range of sweeping rates spanning a factor of 20 (0.005–0.1 Hz/s, and
0.0001–0.002 m.r./s) but the change in mean critical jumping frequency is only about 0.5 percent whereas the mean critical
absorbed mass changes by almost 100 percent. These observations are not intended to be a comprehensive evaluation of the
sensing method0s overall sensitivities, but represent first efforts to examine the noise dependencies exhibited by the two
forms of bifurcation sweeping for the proposed sensor platform.

In light of the prior findings, a final important point may be made. To take advantage of the unique passive mass sensing
strategy, it is clear that due to the high variation exhibited in Fig. 8(b), an optimized rate of mass accumulation is required in
a given noise environment for accurate bifurcation activation, and hence mass quantification. The proposed two DOF sensor
architecture provides novel means by which to govern this rate, regardless of mass accumulation rate. As described in
Section 2.3, the two DOF sensor induces an effective excitation level sweep upon the bistable inclusion which is related to
the amplitude of the fundamental mode response for a constant excitation frequency. It was experimentally shown in
Fig. 8. Dependence on additive noise excitation contribution for (a) excitation frequency sweeps into the bifurcation and (b) mass accumulation sweeps
into the bifurcation (m.r.¼mass ratio).
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Section 4 by the dotted line trajectory in Fig. 6(b), that adjustment of this frequency determines the mass accumulation
required to trigger the initial bifurcation. In a similar manner, the rate of the effective excitation level sweep for the bistable
inclusion is related to the rate of growth of the fundamental mode response which, using the one DOF analogy of Section 2.3,
is given by

dH=dω¼ 2ω½ð1�ω2Þ�2ζ2�=½ð1�ω2Þ2þð2ζωÞ2�3=2 (6)

Like the adjustment of the initial gain level passed to the bistable inclusion, the sweep rate is directly adjusted by way of
the constant excitation frequency and overall sensor base excitation level. As seen in Fig. 8, the sweep rate controls the
probability distribution of parameter values which trigger the jump event and therefore the viability of the detection
strategy. This is a important tool for maintaining repeatable and accurate mass quantification and increases sensor
robustness to inevitable microscale noise processes. Further stochastic sensitivity studies of simulated and experimental
responses are required to reach deeper conclusions in these regards but it is clear that the proposed sensor and mass
sensing methods provide new opportunities for reliable and effective detection using bifurcation-based strategies.

6. Concluding discussion

In this study, an alternative method and architecture for bifurcation-based mass sensing is presented which has specific
promise for microscale applications. The architecture empowers a unique strategy for passive mass quantification that
would greatly advance the practicality of bifurcation-based microscale mass sensing by eliminating need for external
tracking hardware. The coupled linear-bistable sensor enables a high degree of adjustability for consistent and accurate
bifurcation activation and hence mass detection. Numerically simulated results of modeled sensor responses are in good
agreement with experimental data and provide strong initial evidence of the new potentials afforded by the coupled linear-
bistable architecture. Continued investigations are required to thoroughly examine the stochastic and sweeping sensitivities
of the sensor and detection strategies, and to develop closed-form bifurcation criteria which are needed to passively
quantify mass by the activation of two bifurcations in sequence. These are on-going efforts which will be further supported
by additional proof-of-concept experimental studies as well as investigations with microscale sensor fabrications.
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