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Abstract
Recent work has indicated that linear vibrational energy harvesters with an appended
degree-of-freedom (DOF) may be advantageous for introducing new dynamic forms to extend
the operational bandwidth. Given the additional interest in bistable harvester designs, which
exhibit a propitious snap through effect from one stable state to the other, it is a logical
extension to explore the influence of an added DOF to a bistable system. However, bistable
snap through is not a resonant phenomenon, which tempers the presumption that the dynamics
induced by an additional DOF on bistable designs would inherently be beneficial as for linear
systems. This paper presents two analytical formulations to assess the fundamental and
superharmonic steady-state dynamics of an excited bistable energy harvester to which is
attached an auxiliary linear oscillator. From an energy harvesting perspective, the model
predicts that the additional linear DOF uniformly amplifies the bistable harvester response
magnitude and generated power for excitation frequencies less than the attachment’s resonance
while improved power density spans a bandwidth below this frequency. Analyses predict
bandwidths having co-existent responses composed of a unique proportion of fundamental and
superharmonic dynamics. Experiments validate key analytical predictions and observe the
ability for the coupled system to develop an advantageous multi-harmonic interwell response
when the initial conditions are insufficient for continuous high-energy orbit at the excitation
frequency. Overall, the addition of an auxiliary linear oscillator to a bistable harvester is found
to be an effective means of enhancing the energy harvesting performance and robustness.

(Some figures may appear in colour only in the online journal)

1. Introduction

Resonant inertial energy harvesters have received significant
attention by researchers seeking to develop self-powered
sensors [1], harvest human kinetic energy [2, 3], and
expand our portfolio of renewable energy resources [4]. With
maximum vibrational energy conversion achieved around
a designed natural frequency, linear resonant harvesters
are susceptible to a reduction in performance should the
excitation conditions vary too greatly from the ideal sinusoidal
form and frequency. Studies have thus multiplied with the
aim of broadening the usable bandwidth of energy harvesting
performance [5, 6]. One solution has been to directly append
static or dynamic elements to the harvester to tailor or induce

new modal behaviors that increase the number of frequencies
at which the system is sensitive [7–13].

The extension of studies into nonlinear energy harvester
design has introduced a means to broaden the performance
bandwidth for a single device [5, 6]. Numerous recent
investigations have recognized the great potential of bistable
energy harvesting systems [14, 15]. The steady-state
dynamics of bistable harvesters are primarily classified by
two response regimes: small oscillations (low-energy orbits)
around one of the stable equilibria or large oscillations
(high-energy orbits) when the inertial mass vibrates from one
stable state to the other during an excitation period. The latter
high-energy orbit vibrations (also termed snap through) are
beneficial for increasing power harvesting output. Since snap
through is a non-resonant phenomenon, bistable harvesters
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may be more easily excited by realistic stochastic-type
ambient vibration excitation, helping to justify their recent
popularity within the research community [14, 15].

Given the enhancement and multiplication of energy
harvesting dynamics obtained using add-on elements for
linear harvester systems, it appears to be a logical extension
that similar benefits may be acquired by appending such
elements to bistable harvesters. However, because bistable
snap through is not a resonant process, it is an inappropriate
assumption that new modal-type or enhanced responses will
be obtained with the addition of a degree-of-freedom (DOF).
While there are a number of investigations in the general
dynamics literature regarding the utilization of a bistable
attachment as a vibration control implement to an excited
linear oscillator [16–19], it appears that no work has been
presented in the literature on the general dynamics of an
excited bistable system with an auxiliary linear oscillator.
Thus, there are no precedents from which to draw early
conclusions as to the advantages possible in enhancing
the energy harvesting performance of a bistable system by
introducing an appendage linear oscillator.

Therefore, as stimulated by previous linear energy
harvesting investigations [7–13], the aim of this paper is to
explore the potential energy harvesting benefits attainable
by the addition of a linear oscillator to an excited bistable
energy harvester, figure 1. This study also serves as an initial
investigation into the coupled high-energy dynamic responses
of this configuration given the absence of related work in
the literature. Because it is well known that nonlinearities
in coupled systems will readily induce multi-harmonic
effects [19–22], we are interested in a more complete
dynamic evaluation encompassing both fundamental and
superharmonic responses. In particular, we aim to assess
the order-3 superharmonic which has been numerically
and experimentally encountered in several bistable energy
harvesting studies to date where just one bistable DOF was
considered [23–25].

Section 2 introduces the model formulations and
means for predicting solutions. Section 3 compares the
fundamental response of the high-energy dynamics for the
bistable harvester with and without an appendage linear
oscillator as system parameters are varied. Section 4 explores
the additional influence of superharmonic dynamics upon
harvesting performance. Section 5 presents the results from
experiments conducted to verify key features of the analytical
findings, while section 6 summarizes the conclusions of the
research.

2. Modeling and solution formulation

2.1. System governing equations

A diagram of the system under investigation is provided in
figure 1. An auxiliary linear oscillator of mass m2 is attached
to an electromagnetic induction bistable energy harvester
of mass m1 which is subject to base acceleration z̈(τ ) =
−W cos�τ . The lumped-parameter modeling approach
follows that of many researchers who have shown that the

Figure 1. Schematic of a base-excited, inductive bistable energy
harvester to which is attached a linear oscillator. The external
harvesting circuit is shown at the bottom.

primary mechanical responses of a variety of continuously
distributed bistable energy harvester systems may be
accurately modeled as 1DOF devices, including beams
buckled via axial loads [24], magnetic repulsion [26], or
magnetic attraction [27, 28]. In practice, such assumptions
may be violated for bistable harvester systems if higher-order
buckling modes are induced either as a consequence of
the specific interaction between the excitation and the
bistable device or due to the location of attachment of
the auxiliary linear oscillator on the bistable harvester. In
this work, such scenarios are assumed to be avoided by
design. Moreover, the lumped modeling method is particularly
relevant in light of the present experimentation which utilizes
lumped inertial masses for the bistable and inertial bodies.
In the modeling, the bistable electromagnetic transduction
mechanism is assumed to have a low inductance and its output
shunted by a resistive load R, where the relative motion x(τ )
between the base z(τ ) and the bistable harvester mass m1
induces a flow of current i(τ ) in the harvesting circuit. The
double-well restoring potential of the bistable device is

U(x) = − 1
2 k1x2

+
1
4 k3x4 (1)

where position x = 0 is defined as the central, unstable
equilibrium position of the double well, as illustrated in
figure 1. The governing equations for the system may then
be expressed as

m1(ẍ+ z̈)+ d1ẋ− k1x+ k3x3
− d2ẏ− k2y+ ψ i = 0 (2)

m2(ẍ+ ÿ+ z̈)+ d2ẏ+ k2y = 0 (3)

iR = ψ ẋ (4)

where y is the relative displacement between the bistable
inertial mass and the linear oscillator mass and ψ is an
electromechanical coupling coefficient. For energy harvesters
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having an electrical time constant much smaller than the
mechanical natural period, it is well known that the effects
of external circuitry upon the mechanical response of the
harvester are principally additional dissipative influences
[1, 29–33], and this assumption is employed in constructing
equation (4) from Kirchhoff’s law. Following substitution
and nondimensionalization, the governing equations may be
represented as follows:

x′′ + γ1x′ − x+ βx3
− µfγ2y′ − µf 2y = p cosωt (5)

y′′ + (1+ µ)fγ2y′ + (1+ µ)f 2y− γ1x′ + x− βx3
= 0 (6)

where the following constants are defined:

ω2
1 = k1/m1; ω2

2 = k2/m2; µ = m2/m1;

f = ω2/ω1; ω = �/ω1; p = W/ω2
1 (7)

γ1 = (d1 + ε
2)/m1ω1; γ = d1/m1ω1;

ε2
= ψ2/R; γ2 = d2/m2ω2; β = k3/k1;

t = ω1τ (8)

and ()′ indicates a derivative with respect to nondimensional
time t.

2.2. Problem formulation: one-term solution

The harmonic balance method is employed to solve the
governing equations (5) and (6). For most basic response
prediction, one-term solutions may be assumed of the form

x(t) = c1(t)+ a1(t) sinωt + b1(t) cosωt (9)

y(t) = a2(t) sinωt + b2(t) cosωt (10)

where c1 is required due to the possibility that the bistable
oscillator may vibrate around a non-zero stable equilibrium.
The attached linear oscillator does not have a constant
term in the expansion due to the notation that y represents
a relative coordinate. The fidelity of results obtained via
the harmonic balance method is limited by the number of
harmonic terms used in the Fourier series expansion. The
approach has been historically shown to be qualitatively and
quantitatively accurate for both low-energy intrawell and
interwell snap through dynamics [34] and has recently been
revisited as an efficient analytical tool for bistable energy
harvesting systems [25, 35, 36]. Finally, when applying
the results of a steady-state analysis towards a realistic
application, one is advised to evaluate the nearness of
operating conditions to potential bifurcations which indicate
the possibility of co-existing responses including aperiodic
dynamics; a variety of useful analytical tools are available for
these assessments [37–39].

We substitute equations (9) and (10) into (5) and (6),
eliminate higher-order terms, and group the constant, sinωt,
and cosωt terms to yield five governing equations for the
slow-varying coefficients c1, a1, b1, a2, and b2,

− γ1c′1 = 3cc1 (11)

− γ1a′1 + 2ωb′1 + µfγ2a′2

= (3− ω2)a1 − ωγ1b1 − µf 2a2 + µfωγ2b2 (12)

− 2ωa′1 − γ1b′1 + µfγ2b′2

= ωγ1a1 + (3− ω
2)b1 − µfωγ2a2 − µf 2b2 − p (13)

γ1a′1 − (1+ µ)fγ2a′2 + 2ωb′2
= −3a1 + ωγ1b1 +6a2 − σb2 (14)

γ1b′1 − 2ωa′2 − (1+ µ)fγ2b′2
= −ωγ1a1 −3b1 + σa2 +6b2 (15)

where the following are defined:

3c = −1+ β(c2
1 +

3
2 r2

1) (16)

3 = −1+ β(3c2
1 +

3
4 r2

1) (17)

6 = (1+ µ)f 2
− ω2 (18)

σ = (1+ µ)fωγ2 (19)

r2
1 = a2

1 + b2
1 (20)

r2
2 = a2

2 + b2
2. (21)

The steady-state responses of the system are determined
by solving the coupled equations (11)–(15). As such,
equations (14) and (15) may be solved explicitly in terms of
a1 and b1 to determine constants a2 and b2,

a2 =
63+ σωγ1

62 + σ 2 a1 +
σ3−6ωγ1

62 + σ 2 b1 (22)

b2 = −
σ3−6ωγ1

62 + σ 2 a1 +
63+ σωγ1

62 + σ 2 b1. (23)

Equations (22) and (23) are substituted into (12) and
(13) which are thereafter squared and summed to yield
one equation for the bistable harvester response amplitude
squared, r2

1,

p2
= r2

1[(κ3+ δωγ1 − ω
2)2 + (δ3− κωγ1)

2
] (24)

given the following terms:

δ = ωγ262− fσ2 (25)

κ = 1− f62− ωγ2σ2 (26)

2 =
µf

62 + σ 2 . (27)

Given that the term 3 contains unknowns c1 and r2
1,

equation (11) is first solved under steady-state conditions and
one choice of the parameter c1 is selected, depending on
whether one is interested in intrawell, low-energy oscillations
of the bistable oscillator (c1 6= 0) or interwell, high-energy
vibration (c1 = 0). Then, c1 is substituted into 3 such that
equation (24) is expressed fully in terms of a cubic polynomial
of the parameter r2

1. The roots of equation (24) are then
determined and the final coefficients are computed explicitly
from

a1 =
−δ3+ κωγ1

(κ3+ δωγ1 − ω2)2 + (δ3− κωγ1)2
p (28)

b1 =
κ3+ δωγ1 − ω

2

(κ3+ δωγ1 − ω2)2 + (δ3− κωγ1)2
p. (29)

Having computed all five of the coefficients, the stability
of the solutions r2

1 may be determined via a perturbation
method, for example by Jacobian analysis [40].
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This work also focuses on the phase relationships
amongst the dynamic elements. Thus, the system response
may be expressed alternatively from equations (9) and (10)
as follows:

x = c1 + r1 cos (ωt − φ1) (30)

y = r2 cos (ωt − φ2) (31)

tanφ1 = a1/b1; tanφ2 = a2/b2 (32)

where φ1 and φ2 represent phase lags between the input
excitation and the bistable harvester and linear oscillator
displacements, respectively.

2.3. Problem formulation: two-term solution

The advantage of the one-term solution is the direct analytic
expression, equation (24), used to determine the responses.
However, the limited number of terms assumed in the Fourier
expansion constrict the wider applicability of the results
to realistic observations of nonlinear systems coupled to
other linear or nonlinear DOFs which are known to more
readily exhibit multi-harmonic dynamics [20–22]. As a result,
the assumed solution form is now expanded with terms
proportional to the fundamental and third harmonics, which
is the result of the cubic nonlinearity assumption [22] and
recent numerical and experimental observations of the third
superharmonic in bistable energy harvesting studies [23–25].

x(t) = c1(t)+ a1(t) sinωt + b1(t) cosωt

+ a3(t) sin 3ωt + b3(t) cos 3ωt (33)

y(t) = g1(t) sinωt + h1(t) cosωt + g3(t) sin 3ωt

+ h3(t) cos 3ωt. (34)

Equations (33) and (34) are substituted into (5) and (6)
and the coefficients of constant, sinωt, cosωt, sin 3ωt, and
cos 3ωt terms are collected.

− γ1c′1 = 3sc1 (35)

− γ1a′1 + 2ωb′1 + µfγ2g′1
= (31 − ω

2)a1 − γ1ωb1 +
3
4β(−a2

1 + b2
1)a3

−
3
2β(a1b1)b3 − µf 2g1 + µfγ2ωh1 (36)

− 2ωa′1 − γ1b′1 + µfγ2h′1
= γ1ωa1 + (31 − ω

2)b1 +
3
2β(a1b1)a3

+
3
4β(−a2

1 + b2
1)b3 − µfγ2ωg1 − µf 2h1 − p (37)

− γ1a′3 + 6ωb′3 + µfγ2g′3
=

1
4β(−a2

1 + 3b2
1)a1 + (33 − 9ω2)a3 − 3γ1ωb3

− µf 2g3 + 3µfγ2ωh2 (38)

− 6ωa′3 − γ1b′3 + µfγ2h′3
=

1
4β(−3a2

1 + b2
1)b1 + 3γ1ωa3 + (33 − 9ω2)b3

− 3µfγ2ωg3 − µf 2h3 (39)

γ1a′1 − (1+ µ)fγ2g′1 + 2ωh′1
= −31a1 + γ1ωb1 −

3
4β(−a2

1 + b2
1)a3

+
3
2β(a1b1)b3 +91g1 −92h1 (40)

γ1b′1 − 2ωg′1 + (1+ µ)fγ2h′1
= −γ1ωa1 −31b1 −

3
2β(a1b1)a3

−
3
4β(−a2

1 + b2
1)b3 +92g1 +91h1 (41)

γ1a′3 + (1+ µ)fγ2g′3 + 6ωh′3
= −

1
4β(−a2

1 + 3b2
1)a1 −33a3

+ 3γ1ωb3 +91sg3 −92sh3 (42)

γ1b′3 − 6ωg′3 + (1+ µ)fγ2h′3
= −

1
4β(−3a2

1 + b2
1)b1 − 3γ1ωa3

− 33b3 +92sg3 +91sh3 (43)

where the following are defined:

3s = −1+ β
(

c2
1 +

3
2 r2

1 +
3
2 r2

3

)
(44)

31 = −1+ β
(

3c2
1 +

3
4 r2

1 +
3
2 r2

3

)
(45)

33 = −1+ β
(

3c2
1 +

3
4 r2

3 +
3
2 r2

1

)
(46)

r2
1 = a2

1 + b2
1; r2

3 = a2
3 + b2

3 (47)

91 = (1+ µ)f 2
− ω2 (48)

92 = (1+ µ)fγ2ω (49)

91s = (1+ µ)f 2
− 9ω2 (50)

92s = (1+ µ)3fγ2ω. (51)

In the same manner as in section 2.2, the nine equations
(35)–(43) are solved for steady-state conditions. Equations
(40)–(43) are solved for coefficients g1, h1, g3, and h3 in terms
of a1, b1, a3, and b3. Substitution of these expressions into the
preceding equations (36)–(39) is carried out until, as before,
equations (36) and (37) are squared and summed. Likewise,
the decision regarding interest in studying low- or high-energy
oscillations of the bistable device dictates the selection of
the parameter c1 in solving and substituting equation (35)
into this last squared–summed equation. However, unlike in
section 2.2, there are two terms r2

1 and r2
3 to compute, which

necessitates a second equation. Thus, the expressions for a3

and b3 are squared and summed to provide a second equation.
Equations (52) and (53) represent the two coupled nonlinear
response equations.

25612p2
= r2

1K (52)

1612r2
3 = β

2(02
1 + 0

2
2)r

6
1 (53)

where K,1, 01, and 02 are provided in the appendix.
It is found that equations (52) and (53) are nonlinearly

coupled by the terms r2
1 and r2

3. Therefore, a numerical
solution procedure is required. We utilize the MATLAB
software command fsolve, as has been successfully employed
in recent nonlinear vibration studies [41–43]. Having solved
the equations for a given set of system parameters, the
individual coefficients may be computed from the expressions
provided in the appendix, and the stability of the solution may
be checked via a perturbation method as in section 2.2.

4
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Figure 2. High-energy dynamics of the bistable harvester as the mass ratio µ changes. (a) Fundamental response amplitude r1, (b) response
phase φ1 (degrees) and (c) power density P1/(1+ µ).

2.4. Electrical power computation

The average power across the harvesting circuit resistive load
R is computed from P = R|i|2/2. By equation (4) which
relates the generated current to the harvester response and
according to the solution forms equations (9) and (33), the
amplitude of the generated power may be expressed as a
sum of the respective harmonic displacement amplitudes,
P = P1 + P3, where P1 ∝ r2

1 and P3 ∝ r2
3. This practically

represents the guiding assumptions of the method of harmonic
balance that the total system response is the summation of
unique harmonic contributions [25]. Consequently, depending
on whether one considers the fundamental or superharmonic
response magnitude, equation (47), the unique spectral
components of the harvested power are computed. We set
m1 and ω1 to unity to simplify expressions without loss of
generality since other dimensionless groups of equations (7)
and (8) are normalized to these parameters. The values of
the generated power related to the fundamental and order-3
superharmonic are therefore determined, respectively, by
equations (54) and (55).

P1 = (ωεr1)
2/2 (54)

P3 = (3ωεr3)
2/2. (55)

In the following analytical investigations we utilize
the parameters γ = 0.01 and ε2

= 0.04 to represent a
mechanically lightly damped bistable harvester with an
electromagnetic coupling strength typical of many inductive
platforms [31, 32]. From equations (54) and (55), it is
seen that the power is directly proportional to the response
magnitude squared of the bistable harvester and thus the
trends of the displacement amplitude correspond to the trends
of the generated power. Therefore, for a more meaningful
comparison against the bistable energy harvester without
auxiliary linear oscillator, we assess the power density, which
is the power normalized to the net mass of the system.
The power density is computed from P1,3/(1 + µ) and
is employed to evaluate the advantage obtained with the
proposed configuration as compared to the individual bistable
harvester.

3. Comparison of one-term responses with and
without an auxiliary oscillator

3.1. Influence of the mass ratio, µ

To determine the effects of coupling on the fundamental
system response, the roots of equation (24) were computed for
the system parameters p = 0.2, β = 1, f = 1, γ2 = 0.001, and
a range of mass ratios, µ = [0.003, 0.01, 0.1, 0.3, 1, 2]. The
harvester nonlinearity strength β may realistically be varied
over a large range of values by tailoring the severity of the
post-buckled state, and we here employ a value similar to that
used in recent bistable energy harvesting studies [27, 28, 35].
The excitation level p used in this section represents a mild
level with respect to its normalized definition in equation (7).
For a more intuitive interpretation, a recent investigation
determined that the normalized excitation level p = 0.2 was
comparable to an absolute base acceleration of approximately
2.5 m s−2 for an individual bistable harvester beam of
8 g mass and linear natural frequency around 15 Hz [25].
It is recognized that high-energy interwell responses are
most favorable in a steady-state energy harvesting context
as compared to low-energy orbits [14] and, consequently,
we focus only on the high-energy dynamics of the systems.
The response amplitude, phase, and power density of the
bistable inertial generator with and without the attached linear
oscillator are shown in figure 2. The individual bistable
harvester responses may be computed by setting µ = 0 in the
analysis. The displacement magnitude and phase of the linear
oscillator are plotted in figure 3.

Figure 2 shows that for the smallest mass ratios, the
results intuitively converge onto those computed without
the appendage oscillator. As the mass ratio of the add-on
linear oscillator increases, the consequence is a uniform
amplification of the bistable harvester response magnitude for
excitation frequencies less than the natural frequency of the
linear oscillator (here f = 1 so that ω2 = 1). Greater mass
addition yields more amplification above the displacement
amplitude of the individual bistable harvester, figure 2(a). One
trade-off is that the frequency at which enhanced high-energy
dynamics are no longer sustainable may be less than that
for the system without attached oscillator. (We note for

5
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Figure 3. High-energy dynamics of the linear oscillator as the mass ratio µ changes. (a) Fundamental response amplitude r2 and
(b) response phase φ2 (degrees).

completeness the general rule that where stable high-energy
orbits are not predicted, this indicates that the system returns
to the low-energy orbit [35].) While the generated power,
which is directly proportional to the mechanical response
amplitude squared as indicated by equation (54), is amplified
uniformly below the linear oscillator natural frequency, the
power density is enhanced in a bandwidth upper-bounded by
this new cut-off frequency, figure 2(c). The lower bound of
this bandwidth of performance improvement appears to be
an inexact inflection point across the curve for the individual
bistable harvester; in this case, the inflection of the lower
bound occurs across a narrow band ω ≈ 0.769 for µ =
0.003 to ω ≈ 0.781 for µ = 2. Since the power density
is what defines the advantage over the individual bistable
energy harvester, enhancing this metric across the observed
bandwidth translates into an improvement of the energy
harvesting system.

The corresponding high-energy dynamics of the linear
oscillator are shown in figures 3(a) and (b). Recall that in
this example, the natural frequency of the appended oscillator
occurs at ω = 1 since the tuning ratio is f = 1. Unlike a
linear 2DOF system that exhibits two resonant behaviors, the
response of the linear oscillator in figure 3(a) appears as if it
is directly excited to resonance. This challenges the classical
interpretation of a two-mass–spring system exhibiting two
unique modes. Clearly, the linear oscillator responses in
figure 3(a) suggest a single stable resonant peak. What
is further interesting is that the linear oscillator is mostly
in-phase with the bistable harvester for excitation frequencies
less the linear oscillator natural frequency and approaches a
classical resonant 90◦ phase lag as ω→ 1, figure 3(b).

An explanation is proposed for why the high-energy
dynamics of the bistable harvester with auxiliary oscillator are
magnified but may lose stability at a frequency less than that
which destabilizes the individual bistable harvester response.
As suggested above, from the perspective of the linear
oscillator, the bistable harvester appears to be an equivalent
base excitation source judging by the auxiliary oscillator’s
response magnitude and phase characteristics, figure 3. As
a result, the linear oscillator is merely being excited to
resonance. However, this equivalent base excitation source

may be vulnerable to the vibration of the linear oscillator
attachment, and the dynamic interplay between the bistable
and linear masses influences the response of the bistable
harvester in two ways. Firstly, the response amplitude of the
harvester becomes magnified as the linear oscillator is excited
at frequencies approaching its resonance, figure 2(a) as ω→
1; this is similar to a positive feedback mechanism. Secondly,
after it passes a 90◦ phase lag, the resonant linear oscillator
naturally tends to approach a 180◦ phase lag with respect to
its effective base excitation source (i.e. the bistable harvester).
However, this out-of-phase response works directly against
the bistable harvester which would otherwise be capable of
sustaining high-energy dynamics up to greater frequency were
the linear oscillator absent, here approximately ω = 1.7 as
indicated by the individual bistable harvester response curve
in figure 2(a). Therefore, although it may be an effective
base excitation source for the linear oscillator, the bistable
harvester in high-energy dynamics represents an excitation
source that may be worked against and we find that this
influence of the linear oscillator may destabilize the snap
through response. Therefore, the bandwidth of enhanced
energy harvesting power density appears to be governed
in magnitude by the mass ratio µ and upper-bounded in
frequency by the tuning ratio f , as will be further explored
below.

3.2. Influence of the tuning ratio, f

We now consider the impact of the tuning ratio f and employ
irrational numbers to avoid misleading results due to potential
internal resonance phenomena [20]. Namely, we consider the
case of the individual bistable harvester and the harvester
with an auxiliary oscillator of µ = 1 when the tuning ratio is
f = π/i, where i = 1, 2, . . . , 6. All other system parameters
remain the same as from section 3.1.

As was postulated in section 3.1, figure 4 demonstrates
that the response magnitude of the harvester with the add-on
oscillator is uniformly amplified at frequencies less than the
appendage linear oscillator natural frequency. In some cases,
the tuning ratio may be used to extend the stable high-energy
response bandwidth, as in figure 4 for the largest tuning
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Figure 4. High-energy dynamics of the bistable harvester as the
tuning ratio f changes. (a) Fundamental response amplitude r1 and
(b) power density P1/(1+ µ).

ratio considered, f = π (red plots). Likewise, as noted in
section 3.1, power density improvement occurs within a band
of frequencies having as its upper bound the appendage
linear oscillator resonance (if the excitation level is sufficient
to sustain high-energy response to this frequency). These
observations propose an initial framework for the designer
seeking improvement upon the performance achieved with
an individual bistable energy harvester. Enhanced power
harvesting density may be obtained with the addition of the
linear oscillator by first understanding the present excitation
level p, then tailoring the tuning ratio to set the bandwidth
of enhanced response, and lastly modifying the mass ratio
according to potential mass constraints so as to change the
level of the amplification to meet power harvesting goals.

4. Comparison of one-term and two-term solutions

The influence of induced superharmonic effects for power
harvesting as a result of both greater excitation levels
and the appendage linear oscillator was next considered.
The two equations (52) and (53) were solved using the
procedure described in section 2.3, allowing the nonlinear
equation solver to perform refined searches at each frequency

Figure 5. Comparison of numerically and analytically predicted
high-energy orbit response amplitudes r1,3 with an appendage linear
oscillator.

to determine all possible solutions proportional to the
fundamental and third harmonic responses. The method is not
a significant computational burden primarily because one may
determine a reasonably accurate initial guess of the response
magnitude for the solver once the one-term solution has been
computed.

The equations were solved for the parameters p = 3, β =
0.1, µ = 1, and f = 1.67 while other constants remained the
same as those employed in section 3. The excitation level
p = 3 is increased by approximately an order of magnitude
from section 3 since a greater excitation level is known
to be one means of more readily inducing multi-harmonic
nonlinear phenomena [20]. Figures 5 and 6 present the
high-energy orbit bistable harvester response amplitude
and output power, respectively, comparing the one-term
and two-term model formulation results. We note that the
amplitudes predicted by the two-term formulation represent
the individual spectral contributions of the fundamental and
superharmonic responses and would collectively make up
the physical response amplitude, as defined in equation (33).
At each excitation frequency, 50 long-time simulations are
conducted of the governing equations (5) and (6), their
fast Fourier transforms taken for the final half of the time
series, the fundamental and order-3 superharmonic spectral
lines are computed for each run, and then results from the
50 runs are averaged and presented as numerical validation
data points. Across the full bandwidth considered, the
inclusion of superharmonic terms in the harmonic balance
solution formulation substantially alters the predictions as
compared with the one-term results. For frequencies less
than approximately ω ≈ 0.3, the two-term analysis predicts
that several fundamental and superharmonic solution pairs
may exist, although numerical simulation did not uncover the
predicted higher magnitude superharmonic response branch
in this bandwidth. The two-term harmonic balance solution
predicts that one fundamental (superharmonic) response pair
would decrease (increase) rapidly at a bifurcation around
ω ≈ 0.3, and this trend is observed in direct simulation. In
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Figure 6. Comparison of numerically and analytically predicted
high-energy orbit electrical powers P1,3 with an appendage linear
oscillator.

the bandwidth around ω ≈ 0.4–0.7, the two-term analytical
predictions indicate that only one solution pair exists having
rapidly decreasing and then increasing order-3 harmonic
magnitude while the fundamental steadily increases in
amplitude; the numerical simulations are in good quantitative
agreement with this prediction.

A sudden reduction in the fundamental harmonic
response amplitude is predicted by the two-term solution
around ω ≈ 0.8, a feature verified by numerical simulation.
The two-term formulation predicts that this reduction in
fundamental response corresponds to a sudden increase in the
order-3 superharmonic which is also observed in simulation.
In the bandwidth around this drop in fundamental response
near ω ≈ 0.8, two solution pairs are predicted by the two-term
analysis which have similar magnitudes of superharmonic
response but notably different amplitudes of the fundamental
response. While a harmonic balance analysis does not
indicate the likelihood of attaining one of several co-existing
solution forms, the prediction of additional response pairs
near ω ≈ 0.8 in figure 5 suggests that at least two
distinct forms of organized interwell dynamics are possible.
From approximately ω ≈ 1–1.4, the superharmonic response
becomes substantial and the power density proportional to this
response approaches a similar magnitude to that associated
with the fundamental; the simulations quantitatively verify the
two-term analytical formulation predictions which are quite
distinct as compared to the one-term results.

Overall, the intricate responses observed via direct
simulation are much more accurately captured by the
two-term harmonic balance formulation as compared with
the one-term approach. The analysis suggests that the
influence of superharmonic response plays a critical role
in the dispersion of the vibrational energy in the bistable
harvester with appendage oscillator. This observation has
important implications in an energy harvesting context given
that superharmonic dynamics may be equally or more
advantageous to utilize for power harvesting than those
responses having frequency equal to the excitation.

Figure 7. Photograph of the test setup.

5. Experimental validations

The previous analyses indicated key influences that the
auxiliary linear oscillator would provide in enhancing the
energy harvesting performance of the bistable system.
Specifically, section 3.2 predicted that the tuning ratio f
was a parameter capable of tailoring the bandwidth and
rate of amplified response (figure 4). In section 4 the
inducement of superharmonic dynamics was predicted to play
a crucial role in concentrating energy (figures 5 and 6),
providing new opportunities for power harvesting. Therefore,
corresponding experiments are conducted to qualitatively
verify these principal analytical findings.

5.1. Experiment setup description

A photograph of the test setup is shown in figure 7. A bistable
device is constructed using an inertial mass connected to a
translational slide bearing and pre-compressed spring (left of
the figure). Two guiding rods are included in the design so
as to eliminate the potential for bending or twisting of the
compressed spring during snap through. A linear oscillator
(right of the figure) on a separate slide bearing could be
connected to the bistable mass via a removable linear spring.
In this study, two linear coupling springs are employed such
that the resulting tuning ratios are f1 ≈ 4 and f2 ≈ 2 given
that the uncoupled bistable oscillator is observed to have
a linear natural frequency of ω1/2π ≈ 4 Hz. The mass of
the appended oscillator is such that µ ≈ 0.75. The system
is mounted on an electrodynamic shaker platform (shaking
horizontally left and right). The motion of the linear oscillator
is isolated from the direct shaker motion. Accelerometers
are mounted on the inertial masses while a potentiometer
measures the shaker displacement; all measurements are in
the horizontal left–right direction. In a similar spirit to the
model formulation, we assume that the power generation is
proportional to the response amplitude squared of the bistable
oscillator given the inclusion of appropriate transduction
mechanisms, for example a translational induction mechanism
in the bistable oscillator slide bearing or rotational induction
generators that constrain the pre-compressed spring.

8



Smart Mater. Struct. 22 (2013) 125028 R L Harne et al

 

 

Figure 8. High-energy orbit bistable oscillator acceleration frf with
and without an appendage linear oscillator.

5.2. Influence of the tuning ratio, f

In section 3.2 it is observed that the tuning ratio f may
be tailored so as to control the bandwidth and rate of the
amplified bistable energy harvester response as compared
to the device without the auxiliary element. To validate
the analytical predictions, tests are run using slow forward
frequency sweeps from 2 Hz at a rate of 0.15 Hz s−1

with the bistable devices initially vibrating in continuous
high-energy orbit. The frequency response function (frf)
of the bistable oscillator inertial mass acceleration to the
shaker input acceleration is evaluated with and without the
appendage linear oscillator to serve as a normalized response
magnitude metric.

Figure 8 plots the response with and without appendage
linear oscillators having tuning ratios f1 and f2. The individual
bistable device frf (black crosses) exhibits the anticipated
trend of gradually increased amplitude towards the frequency
at which interwell vibration is destabilized. Once the auxiliary
linear element is added to the bistable device, as analytically
predicted throughout this paper, the response amplitude (here,
acceleration frf) is uniformly amplified below the linear
oscillator natural frequencies. In these examples, the linear
oscillator natural frequencies are approximately 16 Hz for
f1 and 8 Hz for f2. As compared to the individual bistable
oscillator frf, the addition of the appendage linear oscillator of
tuning ratio f1 (red squares) amplifies the frf by approximately
80% at 4 Hz; when using the auxiliary oscillator of linkage
with f2 (blue circles) 360% enhancement at 3.75 Hz is
obtained. These findings are qualitatively in good agreement
with those predicted in section 3.2 by the fundamental
harmonic balance analysis, figure 4, and demonstrate the
utility of the simplified one-term solution approach for this
response regime.

5.3. Prevalence of superharmonic response

The analytical predictions of section 4 indicated that at certain
frequencies near the point of high-energy orbit destabilization,
the system with the appendage oscillator may exhibit two
interwell vibration responses uniquely characterized by their
proportion of fundamental and superharmonic vibration. The
two responses are co-existent and the ultimate determination
as to which is attained is dependent on the initial conditions.
To evaluate this feature experimentally, we excite the bistable
oscillator at 4 Hz with and without the auxiliary element of
tuning ratio f1 ≈ 4 and monitor the steady-state responses.

Figures 9 and 10 respectively plot the acceleration
autospectra and time series of the two co-existent forms
of interwell vibration exhibited by the bistable oscillators
with and without the appendage element. Figure 9 shows
the response corresponding to continuous high-energy orbit
having a predominant response frequency commensurate
with the excitation. The system with auxiliary linear
oscillator diffuses approximately one order of magnitude
less vibrational energy to the order-1/3 subharmonic (at
three times the excitation frequency) as compared with the
individual bistable device. The spectral concentration of
bistable harvester snap through energy is an advantageous
result because harvesting circuitry should optimally switch
interface connections at the frequency of greatest harvester
response to maximize power flow to the storage element [28,
44, 45]. We find that at the driving frequency, the
bistable device autospectrum with appendage oscillator is
48.7% greater than the individual bistable device response:
1016 (m s−2)2 Hz−1 as compared to 685.1 (m s−2)2 Hz−1,
figure 9(a). Due to the linkage to the appendage oscillator,
an additional spectral peak is observed at a frequency of
approximately four times the excitation, which corresponds
to the natural frequency of the add-on element; however, this
peak is several orders of magnitude less than that measured
at the driving frequency and does not detract from the overall
advantage obtained via the system with auxiliary oscillator.

When the excitation at 4 Hz is begun with different initial
conditions, alternative steady-state vibrational responses are
discovered, and these are presented in figure 10. In both
cases, sub- and superharmonic responses of fraction- and
integer-multiples of order-3 are apparent. However, the
individual bistable oscillator exhibits a far more diffuse
autospectrum typical of chaotic dynamics; the time series in
figure 10(b) likewise reflects aperiodic vibration. In contrast,
the system with auxiliary oscillator yields a substantially more
concentrated multi-harmonic response, in fact concentrating
more of the vibrational energy at 1/3 of the excitation
frequency than at the drive frequency itself. The time series
of the bistable oscillator having an add-on element in
figure 10(b) demonstrates the more organized composition of
the vibration. At 1/3 of the excitation frequency, the bistable
device autospectrum with the auxiliary element is 49.6%
greater than the maximum autospectral peak for the individual
bistable device that occurs at the drive frequency itself:
1.328 (m s−2)2 Hz−1 as compared to 0.8338 (m s−2)2 Hz−1,
figure 10(a).
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Figure 9. Continuous snap through dynamics due to excitation at 4 Hz. (a) Acceleration autospectra and (b) time series.

Figure 10. Multi-harmonic interwell vibration due to excitation at 4 Hz. (a) Acceleration autospectra and (b) time series.

These results suggest that a bistable energy harvester with
appendage linear oscillator is less susceptible to non-ideal
excitation conditions than the individual harvester because
its vibrational response may become more concentrated to
target multi-harmonic spectral components, which is more
suitable for efficient power harvesting circuits [28, 44, 45].
This feature was suggested in the analytical predictions of
figures 5 and 6 in terms of the multiple solution responses
for the coupled system in the band near ω ≈ 0.8. In contrast,
the individual bistable device may attain either periodic
high-energy orbit or adverse aperiodic response less useful for
power harvesting. The experimental results of figures 9 and 10
validate the trends of the analytical predictions and exemplify
the robustness of the proposed design methodology.

6. Conclusions

This study analytically and experimentally evaluated the
performance and robustness improvements obtained by
appending a linear oscillator to a bistable energy harvester.

The findings also represent an initial investigation of
the steady-state high-energy responses of such a system
within the general dynamics literature. It is found that
uniform amplification of the harvester response magnitude
and power is achieved with the add-on element at
frequencies below the oscillator resonance as compared
to an individual bistable harvester. This trend is validated
with corresponding experiments including the influence
of tailoring the amplification by means of the oscillator
frequency ratio f . The mass ratio µ of the appendage element
appears to govern the amplification of this enhancement
while a practical explanation for its cause may be a form of
positive feedback between the linear oscillator and the bistable
harvester as the oscillator is effectively excited to resonance
via the bistable device which serves a role similar to a base
excitation source. Power density is likewise amplified for
the harvester with auxiliary oscillator, but this enhancement
specifically occurs in a bandwidth below and near to the
attachment’s resonance. Additional robustness improvements
are obtained in the form of concentrated superharmonic
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response in the advent of non-ideal excitation conditions as
compared to the individual bistable harvester which may
exhibit adverse aperiodic response for the same excitation.
This feature is correspondingly observed in the two-term
analytical formulation by way of multiple solution pairs
having unique proportions of fundamental and superharmonic
responses. The present analytical formulation, validated
qualitatively via experiments and quantitatively via direct
simulation, provides an efficient means by which to predict
steady-state energy harvesting performance improvements
attained with the simple yet effective design approach of a
linear oscillator appended to a bistable harvester.

Appendix. Expressions from section 2.3
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