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On the fundamental and
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RL Harne and KW Wang

Abstract
Superharmonic dynamics are characteristic of many nonlinear systems undergoing high levels of excitation. However,
what constitutes high levels is relative to the system under study. For instance, bistable oscillators may have very low lin-
earized natural frequency which often becomes a normalization parameter for excitation in analysis. Thus, high excita-
tion levels may be a common operating condition for bistable oscillators. Recent experimental energy harvesting
investigations using bistable devices (referred to as bistable energy harvesting) have observed superharmonic spectral
and phenomenological effects yielding superior electrical power relative to that achieved by the fundamental harmonic.
To provide a thorough analytical framework to probe the collective fundamental and superharmonic effects on bistable
energy harvester power harvesting performance, this article employs the method of harmonic balance to predict the
resulting electrodynamic responses applicable to piezoelectric and electromagnetic coupling configurations. The analyti-
cal results exemplify the relative ease by which significant superharmonic effects are activated and dominate spectral
characteristics, potentially to greatly benefit energy harvesting. The conclusions are corroborated by trends observed in
previously published investigations and are validated by present numerical results and experimental findings. This study
provides new insights and suggests that careful understanding of excitation characteristics is needed for optimum bistable
energy harvesting in practice.

Keywords
Superharmonics, bistable energy harvester, electromagnetic, piezoelectric

Introduction

The ultimate goal of vibration-based energy harvesting
is to convert as much as possible the ambient environ-
mental vibration into electrical energy to reduce reli-
ance on wired or disposable power sources. This is
oftentimes achieved using devices of the form of electri-
cally damped mass–spring oscillators, designed so as to
resonate at the frequency most dominant in the envi-
ronment vibration spectrum (Stephen, 2006; Williams
and Yates, 1996). This design approach is justified if
the ambient vibration is narrowband in frequency and
remains stationary over long periods of time. However,
a typical ambient vibration spectrum is often the result
of stochastic excitation that becomes low-pass filtered
as a result of the environment or host structure itself
(Daqaq, 2011). This is the characteristic of many engi-
neering structures, for example, bridges or buildings,
which exhibit low-frequency modal vibration but are
driven by decidedly white noise sources such as auto-
motive tire forces or cross-wind (Rao, 1984). Likewise,
ocean waves are excited by the stochastic nature of

wind but are effectively low-pass filtered such that
ocean wave energy is heavily concentrated at frequen-
cies below 1 Hz (Falnes, 2002).

While great headway has been made in linear energy
harvesting research, the above-mentioned realistic
vibration sources pose difficulty in designing linear har-
vesters suitable for such a distribution of the available
vibration energy. Thus, a variety of nonlinearities have
been studied to exploit their resulting dynamics for
improved broadband performance (Tang et al., 2010;
Zhu et al., 2010). Of these, bistable harvesters have
received much attention due to their capability of
achieving high velocity and displacement per cycle as
the devices snap through from one stable state to the
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next (Harne and Wang, 2013). Conveniently, snap
through may be excited regardless of the form or fre-
quency of input excitation (i.e. it is not a resonant
effect), potentially making bistable harvesters more
beneficial in realistic vibration environments (Daqaq,
2011). Since steady-state electrical output is dependent
on the response amplitude of the harvester inertial
mass, the snap-through effect is propitious for energy
harvesting. As a result, recent analytical and experi-
mental investigations in bistable energy harvesting have
rapidly multiplied (Betts et al., 2012; Erturk et al.,
2009; Ferrari et al., 2010; Harne et al., 2013; Harne and
Wang, 2013; Kim and Kim, 2013; Mann and Owens,
2010).

Analysis of bistable energy harvesters was initially
conducted with numerical integration case studies
(Erturk et al., 2009; Mann and Owens, 2010) which
provided insight, but lack the ability to draw general-
ized conclusions regarding performance expectations or
design guidelines. In particular, analytical methods
which yield information in the frequency domain may
help to better understand the characteristics of bistable
harvesters operating in complex spectral environments.
Therefore, a number of researchers have recently uti-
lized analytical techniques such as the method of multi-
ple scales (MMS) (Karami and Inman, 2011),
stochastic differential equation solution (Daqaq, 2011,
2012), and Melnikov theory (Stanton et al., 2012a) to
provide more rigorous assessment of bistable harvesters
relative to other designs such as monostable Duffing or
a baseline linear harvester.

Some works have also used the method of harmonic
balance (Mann et al., 2012; Stanton et al., 2012b). Like
MMS, this method truncates an exact series expansion
solution to a finite number of terms so as to provide
for tractable equations governing system responses.
Yet, unlike MMS and other perturbation techniques,
the method of harmonic balance does not necessitate
assumption of small nonlinear terms (i.e. no perturba-
tion parameter requirement) and is therefore better sui-
ted to modeling the strongly nonlinear dynamics of
bistable systems (Feeny and Yuan, 2001; Tweten and
Mann, 2013; Yuan and Feeny, 1998). In their original
demonstration of the dynamics of a postbuckled beam,
Tseng and Dugundji (1971) demonstrated the quantita-
tive and qualitative accuracy of the harmonic balance
method in fundamentally characterizing intra- and
interwell responses. The method uses the Fourier series
expansion

r tð Þ= c tð Þ+
XN

k = 1

ak tð Þ sin kvtð Þ+ bk tð Þ cos kvtð Þ ð1Þ

where the number of terms N determines the fidelity of
the modeled result. An exact solution, N =‘, is com-
putationally infeasible, and in general the relative

importance of additional harmonics declines substan-
tially after the first few, depending on the nonlinearities
involved. Additional terms of order k represent other
spectral lines at frequencies kv induced in consequence
to excitation at frequency v. Stanton et al. (2012b) and
Mann et al. (2012) used a one-term expansion which
provided an assessment of the fundamental dynamics
of the bistable harvester.

In recent works by Masana and Daqaq (2011, 2012),
it was shown by numerical and experimental results
that the superharmonic responses of bistable energy
harvesters—that is, dynamics occurring at integer frac-
tions of the fundamental frequency—may become more
substantial as the relative excitation levels increase. The
phenomena were found to potentially yield more sub-
stantial electrical output than fundamental harmonic
responses. Since what is defined as relative excitation
amplitude is normalized to the linear stiffness of the
harvester (equivalently, the linear natural frequency),
which may be very small for bistable devices, it is pru-
dent to consider additional harmonic effects in a bis-
table energy harvesting analysis. Indeed, the amplitude
of excitation employed by Masana and Daqaq (2012)
that was found to induce significant superharmonic
effects was only 5.5 m/s2 (0.56 g) which is an average
acceleration level compared to other bistable energy
harvesting research employing similarly sized devices
(Erturk et al., 2009; Ferrari et al., 2010; Mann and
Owens, 2010).

Given the observed sensitivity of inducing promi-
nent superharmonic spectral content and phenomena
for bistable devices, it is beneficial to conduct a thor-
ough analytical investigation of a bistable energy-
harvesting device accounting for superharmonic effects
that provides insight into the onset and range of influ-
ence of these key dynamics. This research seeks to pro-
vide such an analytical framework by extending the
harmonic balance method to include components of
the third harmonic and validates the findings via
experiments and simulations. The focus is on the inter-
well, snap-through responses and the spectral content
of first and third harmonics induced in consequence to
various excitation frequencies and levels, that is, excita-
tion provided at frequency v, and responses induced at
v and 3v. Since the nonlinear stiffness of bistable
energy harvesters is often modeled as cubic, only odd
harmonics are induced as a result of interwell response
(Malatkar and Nayfeh, 2007; Szemplińska-Stupnicka,
1968), justifying the focus of this work. With this
framework, we can provide predictions and insights on
prevalent superharmonic phenomena that are inher-
ently absent in fundamental harmonic balance investi-
gations and which play important roles in tailoring
energy harvesting performance for bistable systems.

This article is organized as follows. The following sec-
tion presents the model of a bistable energy-harvesting
device having piezoelectric or electromagnetic conversion
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mechanisms, derives amplitude response equations using
the harmonic balance method, and describes the proce-
dure undertaken to solve the coupled nonlinear equa-
tions. We then compare the results of the present method
with the one-term harmonic balance solution previously
used in the literature that exemplifies the substantial dif-
ferences even for relatively low excitation levels. Dynamic
response predictions for higher excitation levels are pre-
sented, where it is found that superharmonic response
dramatically affects energy harvesting. Because of the
redistribution of vibrational energy over the spectrum,
we then focus on the superharmonic bandwidth to deter-
mine the range of excitation characteristics suitable for
enhanced superharmonic energy harvesting. In addition
to previously published experimental studies which vali-
date the present analytical evaluation, we present new
supporting experimental and numerical evidence to vali-
date the predictions. Concluding remarks are then pro-
vided to summarize key findings.

Bistable energy harvester modeling

Governing equations

Following nondimensionalization, the governing equa-
tions for piezoelectrically or electromagnetically
coupled bistable energy harvesters connected to har-
vesting circuit load resistances are identical, with the
exception of the coupling coefficient interpretation.
Therefore, for a more extensible application of the find-
ings in this study, the harvester of interest is generalized
as a base-excited bistable system having either electro-
magnetic or piezoelectric conversion mechanisms, the
latter components of which are connected to an exter-
nal resistor (Figure 1), which is a conventional repre-
sentation of a generic electrical load. The governing
equations for the coupled system are expressed as

m€�x+ b �x
:
�k1�x+ k3�x

3 = � m€�z� G1�v� G2�c ð2Þ

Cp �v
:
+

1

Rp

�v=G1 �x
:

ð3Þ

Le �c
:
+Re�c=G2 �x

:
ð4Þ

where �z is the base motion given by €�z= � Po cosOt; �x
is the bistable harvester displacement; �v is the voltage
across the load resistance Rp; �c is the current flow
through resistance Re; m is the mass; b is the mec-
hanical damping constant; k1 and k3 are linear and
nonlinear stiffness terms, respectively; Cp is the piezo-
electric capacitance; Le is the electromagnetic converter
inductance; G1 and G2 are piezoelectric and electromag-
netic coupling constants, respectively; and the overdot
is differentiation with respect to time t. Following non-
dimensionalization and simplification, the governing
equations may be reduced to satisfy either harvester
configuration

x00+ gx0 � x+bx3 = p cosvt � eui ð5Þ

i0+ ri= ux9 ð6Þ

The following parameters are defined

t =vot; v=O=vo; vo =
ffiffiffiffiffiffiffiffiffiffi
k1=m

p
; g = b=mvo;

b= k3x2
o=mv2

o; p=Po=xov2
o ð7Þ

i= v; e=
Cp

m

vo

xov

� �2

; u=
xo

vo

G1

Cp

; r =
1

RpCpvo

;

for piezoelectric coupling ð8Þ

i= c; e =
Le

m

co

xov

� �2

; u=
xo

vo

G2

Le

; r =
Re

Levo

;

for electromagnetic coupling ð9Þ

where xo, vo, and co are characteristic length, voltage,
and current, respectively, such that x=�x=xo, v=�v=vo,
and c=�c=co. Here, ( )9 indicates differentiation with
respect to nondimensional time t. We note that formu-
lation of equations (5) to (9) extends the technique
earlier employed where focus was directed to electro-
magnetic induction harvester designs (Mann et al.,
2012). In equations (5) to (9), the term r represents the
ratio of electrical to mechanical natural frequencies, u

is analogous to a ‘‘transducer constant,’’ and e is an
electromechanical coupling term.

Solutions to equations (5) and (6) are assumed in the
form of Fourier series expansions

x(t)= c+ a1sinvt+ b1cosvt + a3sin3vt+ b3cos3vt

ð10Þ
i tð Þ= g1sinvt+ h1cosvt+ g3sin3vt + h3cos3vt ð11Þ

where the coefficients slowly vary in time. The constant
term, c, is required to describe the bistable device

Figure 1. Bistable energy harvester driven by base excitation
having either piezoelectric or electromagnetic conversion
mechanisms, and corresponding harvesting circuits.
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dynamics since the oscillator permits low-energy orbits
around one of the stable equilibrium positions.

Amplitude response equations

Equations (10) and (11) are substituted into equations
(5) and (6) and the coefficients of the constant, sinvt,
cosvt, sin3vt, and cos3vt terms are equated

� gc0=Lcc ð12Þ

� ga01 + 2vb01 =L1a1 � vgb1 +
3

4
b �a2

1 + b2
1

� �
a3

� 3

2
b a1b1ð Þb3 + eug1 ð13Þ

� 2va01 � gb01 =vga1 +L1b1 +
3

2
b a1b1ð Þa3

+
3

4
b �a2

1 + b2
1

� �
b3 + euh1 � p ð14Þ

� ga03 + 6vb03 =
1

4
b �a2

1 + 3b2
1

� �
a1 +L3a3 � 3vgb3

+ eug3 ð15Þ

� 6va03 � gb03 =
1

4
b �3a2

1 + b2
1

� �
b1 + 3vga3 +L3b3

+ euh3 ð16Þ

ua01 � g01 =vub1 + rg1 � vh1 ð17Þ

ub01 � h01 = � vua1 +vg1 + rh1 ð18Þ

ua03 � g03 = 3vub3 + rg3 � 3vh3 ð19Þ

ub03 � h03 = � 3vua3 + 3vg3 + rh3 ð20Þ

where the following terms are defined

Lc = � 1+b c2 +
3

2
r2

1 +
3

2
r2

3

� �
ð21Þ

L1 = � 1� v2 +b 3c2 +
3

4
r2

1 +
3

2
r2

3

� �
ð22Þ

L3 = � 1� 9v2 +b 3c2 +
3

4
r2

3 +
3

2
r2

1

� �
ð23Þ

r2
1 = a2

1 + b2
1 ð24Þ

r2
3 = a2

3 + b2
3 ð25Þ

Steady-state dynamics are predicted in the event that
the time derivatives are zero. Using this assumption,
the electrical expression coefficients are solved directly
from equations (17) to (20) in terms of the mechanical
coefficients

g1 =vF1a1 � rF1b1 ð26Þ

h1 = rF1a1 +vF1b1 ð27Þ

g3 = 3vF3a3 � rF3b3 ð28Þ

h3 = rF3a3 + 3vF3b3 ð29Þ

f 2
1 = g2

1 + h2
1 ð30Þ

f 3
3 = g2

3 + h2
3 ð31Þ

F1 =
vu

r2 +v2
ð32Þ

F3 =
3vu

r2 + 9v2
ð33Þ

Equations (30) and (31) provide the electrical
response amplitudes associated with the fundamental
and third harmonics, respectively. Equations (26) to
(29) are then substituted into equations (15) and (16) to
solve for coefficients a3 and b3

a3 = � 1

4D3

b L3 + 3euF3vð Þ �a2
1 + 3b2

1

� �
a1

�
+ 3gv+ euF3rð Þ �3a2

1 + b2
1

� �
b1Þ ð34Þ

b3 =
1

4D3

b 3gv+ euF3rð Þ �a2
1 + 3b2

1

� �
a1

�
� L3 + 3euF3vð Þ �3a2

1 + b2
1

� �
b1Þ ð35Þ

D3 = L3 + 3euF3vð Þ2 + 3gv+ euF3rð Þ2 ð36Þ

Finally, equations (26), (27), (34) and (35) are substi-
tuted into equations (13) and (14). The resulting equa-
tions are squared and summed to obtain the first
frequency response equation (37).

256D3p2 = 9b4r8
1 + 96Sb2r4

1 + 256D1D3

� �
r2

1 = kr2
1

ð37Þ

D1 = L1 + euF1vð Þ2 + gv+ euF1rð Þ2 ð38Þ

S= gv+ euF1rð Þ 3gv+ euF3rð Þ
� L1 + euF1vð Þ L3 + 3euF3vð Þ ð39Þ

Unlike the one-term solution formulations (Mann
et al., 2012; Stanton et al., 2012b), the frequency response
equation (37) contains two unknowns to be computed:
the two nondimensional response amplitudes r1 and r3.
Thus, a second equation is required. This is determined
by squaring and summing equations (34) and (35).

16D3r2
3 =b2r6

1 ð40Þ

The harmonic balance frequency response equations
using the superharmonic terms in the expansion pro-
duce two coupled, nonlinear equations (37) and (40)
which must be solved for r2

1 and r2
3, after which the elec-

trical response amplitudes, equations (30) and (31),
may be computed. Average nondimensional electrical
power is computed by equations (41) and (42) for
power proportional to the fundamental and third har-
monics, respectively

P1 =
1

2
rf 2

1 =
1

2
rF2

1 r2 +v2
� �

r2
1 =

1

2
r

v2u2

r2 +v2
r2

1 ð41Þ
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P3 =
1

2
rf 2

3 =
1

2
rF2

3 r2 + 9v2
� �

r2
3 =

1

2
r

9v2u2

r2 + 9v2
r2

3

ð42Þ

Finally, for completeness, the final two coefficients
are presented explicitly.

a1 =
16

k
p 3b2 3gv+ euF3rð Þr4

1

�
+ 16D3 gv+ euF1rð ÞÞ ð43Þ

b1 =
16

k
p �3b2 L3 + 3euF3vð Þr4

1

�
+ 16D3 L1 + euF1vð ÞÞ ð44Þ

Thus, having solved equations (37) and (40) for the
nondimensional response amplitudes r1 and r3 and cor-
responding powers P1 and P3, the coefficients may be
computed from equations (26) to (29); (34) and (35);
and (43) and (44), and stability could be resolved via a
perturbation approach around the fixed point (Nayfeh
and Balachandran, 1995). The following study focuses
on interwell responses for which c2 = 0. However, if
low-energy orbit solutions are also desired, c2 may be
determined from steady-state consideration of equation
(12) and these results may be substituted into the rou-
tine given above for corresponding intrawell response
predictions.

Procedure for equation solving

The present Fourier series expansion yields two nonli-
nearly coupled polynomials, equations (37) and (40),
the solutions (i.e. roots) to which thereafter determine
the harvester responses. The authors therefore utilize
the MATLAB command fsolve which has been widely
employed in recent vibrations research along with simi-
lar computational techniques (Cha and Chen, 2010;
DeSmidt, 2010; Moghimi Zand et al., 2009;
Padmanabhan and Singh, 1995; Sracic et al., 2012).
For the present interest in steady-state interwell
responses, the benefits of the proposed model formula-
tion and solution method over alternative numerical
solutions, for example, continuation methods, are the
substantially reduced computational effort and confi-
dence of an analytically derived result.

Analytical study system parameter
selection

Throughout the following studies, parameters
employed in analyses are identical to those utilized ear-
lier (Mann et al., 2012): g = 0:01, b= 0:09, u= 10,
r= 2500, and e= 0:8. Damping g is set to a value
comparable to a harvester exhibiting mild, hysteretic
material losses. The selection of b, as a ratio of non-
linear to linear restoring forces in the double-well

potential, can be realistically varied over a wide range
based on design parameters such as axial load on a
clamped–clamped beam (Masana and Daqaq, 2012) or
repulsive magnet distance (Stanton et al., 2010). The
electrical and electromechanical parameters u, r, and e

are characteristic of inertial generators having very high
electrical natural frequency with respect to mechanical
resonance and a mild degree of coupling, which is com-
mon for many electromagnetic harvester realizations
(Mann and Sims, 2010); typical piezoelectric harvester
designs may exhibit smaller natural frequency ratios r

but comparable-order coupling terms u and e (Liao
and Sodano, 2009). In the following, our primary focus
is on the influence of excitation level upon inducement
of superharmonic effects in key frequency bands; this is
justified because an individual bistable energy harvester
placed in an ambient environment is likely to be
exposed to a large range of excitation levels while sys-
tem design parameters remain mostly constant.
However, it may be shown from use of the proposed
model and solution method that many of the same
results hereafter discovered have comparable (but not
identical) trends when changing other parameters such
as damping g or nonlinearity strength b.

Comparison against one-term harmonic
balance solution

The importance of considering the additional superhar-
monic response within the harmonic balance analysis is
compared against the one-term solution formulation
earlier presented in the literature (Mann et al., 2012;
Stanton et al., 2012b). Figure 2(a) and (b) presents the
results of one- and two-term harmonic balance solu-
tions for mechanical response amplitudes and electrical
power, respectively, for excitation level p= 0:2 which
represents a mild excitation level for bistable oscillators
according to the normalization scheme. In light of the
experimental results in this research, further remarks
on excitation level classification will be provided later
for more intuitive interpretation. Up to v’0:15, several
stable high-energy orbit solutions are predicted using
the two-term harmonic balance. As excitation fre-
quency approaches v! 0:3, the two-term superharmo-
nic power begins to increase dramatically above the
term related to the fundamental harmonic, a feature
observed over a large range of excitation amplitudes by
Masana and Daqaq (2012) and explicitly predicted by
the present analysis. This effect is indicated in the
expression for superharmonic power, equation (42),
since the superharmonic power term is multiplied by a
factor including 9v2 as opposed to v2 for the funda-
mental harmonic, equation (41). The most important
reason explaining why the superharmonic power does
not always exceed the fundamental harmonic compo-
nent in Figure 2 is that the superharmonic mechanical
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response is shown to substantially decrease for v ‡ 0:3.
(Admittedly, the denominator of equation (42) also
increases slightly faster than that of equation (41) for
v.1, but both denominators include term r2 = 25002

which dwarfs the influence of the other denominator
terms in this respect.)

Although the one- and two-term solutions are in fair
agreement at frequencies less than v’0:3 in terms of
the fundamental harmonic response amplitude trend,
near v’0:3 the fundamental response computed with a
two-term formulation decreases significantly onto
another stable solution branch in consequence to a
response-annihilating saddle-node bifurcation. This
feature was explicitly observed in experiments and cor-
respondingly shown in numerical integration simula-
tions (and only using base acceleration of 2.0 m/s2)
(Masana and Daqaq, 2012) but not yet predicted ana-
lytically. After the decrease in response amplitude,
Figure 2 shows that the subsequent stable response
amplitude gradually follows similar trends as the one-
term solution when v increases. The harvested power
similarly grows following the bifurcation at v’0:3.
This comparison shows that even for relatively small
excitation levels, the one-term harmonic balance solu-
tion is incapable of providing complete insight into the
refined dynamics and resulting harvested power
induced by the superharmonic response, several charac-
teristics of which were observed in past simulations and
experiments (Masana and Daqaq, 2012) and will be
further validated and explored in this study. It should
be emphasized that comparison between one- and two-
term solutions is best made in terms of general response
trends and predicted phenomena instead of quantita-
tive response amplitude values; in other words, because
the two-term formulation ‘‘balances’’ more of the spec-
tral energy, the two-term net response amplitude
xj j= r2

1 + r2
3

� �1=2
will be distinct from the one-term

response amplitude xj j= r1. This explains why the

specific amplitudes in Figure 2 differ between the two
solution formulations and encourages comparison
based on response trends and phenomena.

Finally, it is observed that both one- and two-term
harmonic balance solutions predict stable responses
extending to asymptotic values as v! 0. These
responses are not necessarily stable and realizable but
are the consequence of odd-order Fourier series solu-
tion expansion. It has been shown that even-order
expansions enable determination of criteria for symme-
try breaking bifurcation which denotes the realizable
lower frequency limit of response existence
(Szemplińska-Stupnicka and Rudowski, 1993). Thus,
to determine boundaries which demarcate realizable
interwell responses from the more likely intrawell oscil-
lations in this low-frequency regime, either the prior
method may be employed or more exhaustive basin of
attraction numerical studies may be conducted.
Furthermore, some of the responses in Figure 2(a) have
individual amplitudes less than the distance between a
stable equilibria position x� and the central unstable
position: r1, 3\x�= 1=

ffiffiffi
b
p

= 3:3�3. This may lead one
to believe that the system is not genuinely snapping
through. However, the net response amplitude is the
vector sum of r1 and r3: xj j= r2

1 + r2
3

� �1=2
. In Figure

2(a), for some combination of responses r1, 3 the vector
sum is always greater than x�; however, it will be found
in studies hereafter using different excitation levels that
the net response amplitude may in fact be less than that
of the stable equilibria position, xj j\x�, which has
important energy harvesting implications to be
discussed.

Effects of increasing excitation amplitude

Excitation amplitude p = 1.6

Previous research has shown that manifestation of
superharmonic response is amplified as a result of

Figure 2. Comparison of one- and two-term solutions for p= 0:2 for vt(fundamental harmonic) and 3vt(superharmonic).
Frequency dependence of (a) response displacement amplitudes and (b) harvested power.
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increasing excitation amplitude (Masana and Daqaq,
2012; Nayfeh and Mook, 1995; Szemplińska-Stupnicka,
1968). Since the excitation amplitude term p is normal-
ized to the linear stiffness of the bistable device which
may be very small (Masana and Daqaq, 2012), it is
therefore plausible that a bistable harvester will regu-
larly encounter ‘‘high’’ excitation levels. Furthermore,
the above comparison against the one-term harmonic
balance analysis showed that substantial deviation in
responses was predicted when incorporating superhar-
monic contribution even for mild excitation levels. This
makes critical an evaluation of the associated induced
superharmonic response and other dynamic effects over
a broader range of excitation amplitudes above the mild
levels thus far considered and continued validation by
numerical simulation and experiments.

Figure 3 plots system responses for excitation level
p= 1:6. For clarity, this amplitude will be referred to as
‘‘moderate,’’ those lower as ‘‘low’’ or ‘‘mild’’ levels, and
those greater as ‘‘high’’ levels. All other system para-
meters remain the same as in the prior section. Interwell
response amplitudes r1, 3 computed from long-time,
direct simulation of governing equations (5) and (6) are
given as data points in Figure 3(a); for each excitation
frequency v, the data points are the fundamental v and
superharmonic 3v spectral components from a fast
Fourier transform of the numerically integrated steady-
state response x, which is identical in form to the pre-
sentation provided by the two-term harmonic balance.
As evidenced in Figure 3, inclusion of the superharmo-
nic terms in the analysis results in refined electrody-
namic features in the range of 0:15\v\0:3. At
v’0:15, a superharmonic response appears due to
saddle-node bifurcation, producing a sudden increase
in electrical power. As the frequency is increased
toward v’0:3, the superharmonic power continues to
increase until a second saddle-node bifurcation elimi-
nates its dominance. This effect simultaneously induces
a sudden decrease in the system response for the funda-
mental term, mechanically and electrically. Increasing

the frequency still further, the fundamental harmonic
mechanical response and electrical power become domi-
nant. As shown in Figure 3(a), numerical simulations
follow the predicted response trends, notably verifying
the importance of the superharmonic spectral contribu-
tion and response-altering phenomena in the bandwidth
around v’0:3. It is noted that simulations were unable
to locate the response pair in Figure 3(a) predicted at
frequencies v\0:3 where the fundamental and super-
harmonic components have comparable response
amplitude, indicating their existence is practically mar-
ginalized, as least for the present system parameters.

For excitation frequency, v.0:3, the electrical power
attributed to the superharmonic component continues
to increase, despite the fact that the superharmonic dis-
placement amplitude asymptotically approaches a con-
stant value. This is due to the feature mentioned in the
prior section regarding the superharmonic power multi-
plicative factor 9v2. However, the substantial reduction
in the corresponding superharmonic response ampli-
tude r3 at higher frequencies explains why the power
component P3 never exceeds power proportional to the
fundamental response P1. There also appears a coexis-
tent stable but low-magnitude interwell response at fre-
quencies greater than v’0:3. This is an intriguing
dynamic feature which will be further considered in the
next section.

To provide greater clarity to the appearance of the
superharmonic responses, Figure 4 presents the results
of forcing p= 1:6 but focused specifically onto the
superharmonic bandwidth. Within the bandwidth near
0:07 † v † 0:3, a bifurcation is predicted to induce a
response pair characterized by fundamental and super-
harmonic response spectra having comparable ampli-
tudes ranging 1:5 † r1, 3 † 3:5, which could also be
observed in coarser resolution via Figure 3. However,
numerical simulations did not detect their existence
after numerous runs but instead repeatedly located the
response pair characterized by much greater fundamen-
tal response, although the numerically evaluated

Figure 3. Frequency dependence of (a) response amplitude and (b) average harvested power for p= 1:6.
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fundamental response of this latter solution pair was
determined to be closer to r1’4 than the predicted
r1’4:5. Near v’0:4, the system is predicted to plainly
undergo a saddle-node bifurcation of the two existent
stable responses at which point the new trajectories
decrease significantly in amplitude and follow the prior
unrealized response branches. Simulations likewise
observe this dramatic event, although it occurs closer
to normalized excitation frequency v= 0:36. The sud-
den decrease in fundamental mechanical response
(about 20%–25% reduction) shown in Figure 4(a) was
earlier observed to a similar degree (Masana and
Daqaq, 2012). The inclusion of superharmonic
dynamics to the harmonic balance analysis is capable
of predicting these dynamic features, and therefore
more accurately reflects the experimentally and numeri-
cally observed bistable energy harvesting phenomena in
this bandwidth.

Excitation amplitude p = 4.5

Figure 5 plots the predicted responses for an excitation
amplitude of p= 4:5; other system parameters remain
the same from prior studies. To more easily observe all

the features, the plots are provided in logarithmic scale.
As was shown for the case of p= 1:6, a number of
bifurcations appear in the superharmonic regime which
substantially increase harvested power and ultimately
cause the high-energy orbit of the fundamental harmo-
nic to decrease in amplitude near v’0:5. While the spe-
cific superharmonic response of bistable energy-
harvesting devices is one focus of this work, the overall
dynamic response due to a large range of excitation lev-
els is of equal interest as this was not considered by ear-
lier investigations and we have thus far observed that
superharmonic correction in the analyses has not been
trivial even for low excitation amplitude (see Figure 2).

Past harmonic balance analyses using one-term
expansions indicated a number of regimes in which
low-energy and high-energy orbits of the fundamental
harmonic were alternatively activated depending on fre-
quency and excitation level (Mann et al., 2012; Stanton
et al., 2012b). From these studies it was shown that for
very low excitation levels, only low-energy orbits are
possible; for intermediate excitation levels, low-energy
and high-energy orbits are coexistent depending on ini-
tial conditions; for greater excitation levels, only high-
energy orbits were predicted.

Figure 4. Frequency dependence of (a) response amplitude and (b) average harvested power for p=1.6. Focus on superharmonic
frequency bandwidth.

Figure 5. Frequency dependence of (a) response amplitude and (b) average harvested power for p= 4:5.
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Then considering Figure 5 once more, it is interest-
ing to observe the additional stable interwell response
predicted to first exist as a consequence of bifurcation
at v’1. The corresponding superharmonic component
is of insignificant amplitude and only its initial branch-
ing point near v’1 is shown in Figure 5. The net
response amplitude for this response pair is less than
the vibration magnitude between the two wells,
xj j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 + r2
3

p
\1=

ffiffiffi
b
p

= 3:3�3, which diminishes fur-
ther as excitation frequency increases. The phase of this
response lags the excitation by approximately 180�,
where phase lag of the fundamental harmonic f1 is
computed from tan f1ð Þ= a1=b1 (not plotted here for
brevity). Given that the dynamic represents an interwell
oscillation in the sense that the response mean is zero
over a forcing period (i.e. the model employing c2 = 0

predicts its existence), this indicates that the unstable
central equilibrium position of the harvester becomes
stabilized in consequence to the high level and fre-
quency of excitation. In other words, the system under-
goes exceptionally small oscillations, comparable to an
intrawell response, but instead of oscillating about a
stable equilibria, the bistable harvester exhibits zero-
mean interwell harmonic response around the central
unstable equilibrium such that xj j\1=

ffiffiffi
b
p

. This phe-
nomenon is known as excitation-induced stability
(EIS), is a consequence of parametric-type excitation,
and is recognized as one means of stabilizing systems
such as inverted pendula (Ibrahim, 2006). When per-
turbed around an interwell response solution, the bis-
table oscillator governing equation takes the form of a
Mathieu–Hill equation (Tseng and Dugundji, 1971)
which represents a parametrically excited system; this
gives further evidence that the phenomena observed in
Figure 5 for stable, very low response amplitude—but
still interwell—vibrations is indicative of EIS.

Therefore, depending on the excitation frequency
and amplitude, there may be coexistent interwell
responses representing a high-energy snap-through
dynamic favorable for energy harvesting and an

adverse cross-well response characterized by near sta-
tionarity of the harvester inertial mass. The likelihood
of attaining each response (including potential coexist-
ing intrawell orbits) is subject to initial condition sensi-
tivity and may be characterized by evaluating the
basins of attraction (Wiggins, 2003). However, the lack
of reports of EIS for bistable energy harvesters in the
literature, and the authors’ own numerical and experi-
mental investigations which did not give evidence of
such behaviors, may indicate the EIS phenomenon has
low degree of realization for practical bistable harvester
configurations.

Just as proper bistable energy harvester design is nec-
essary to initially attain high-energy orbits and there-
fore maximize electrical power, we find that it is equally
important to know the range of excitation level and fre-
quency that may provide undesirable opportunity for
the breakdown of the high-energy orbits. These are glo-
bal features of energy harvesting using bistable devices
which had not been classified with the earlier analyses
but appear more plainly in the present investigation in
considering a broad range of excitation inputs.

Superharmonic energy harvesting analysis

Following consideration of the frequency bandwidths
over which power proportional to superharmonic spec-
tral components may be superior to that obtained via
the fundamental response, the investigations now seek
to determine the excitation level regime over which
superharmonic power is in fact superior. Since the
superharmonic response of this study occurs primarily
around v’0:3, it is logical to focus on frequencies in
this range. Figure 6 presents the dependence of bistable
harvester responses on excitation amplitude p while
excitation frequency remains fixed v= 0:32. All other
system parameters remain the same as in the prior stud-
ies. Even for very low excitation amplitude in this key
frequency range v’0:3, the superharmonic response is
found to yield a greater level of harvested power than

Figure 6. Excitation amplitude dependence of (a) response amplitude and (b) harvested power. v= 0:32.
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that component related to the fundamental harmonic.
This was observed in Figure 2(b) in initially comparing
the one- and two-term solutions. Thus, the superhar-
monic harmonic balance analysis shows that superior
power harvesting may be achieved in this bandwidth
which is an important insight the one-term solution is
inherently incapable of predicting. Thus, the net har-
vested power increases in this bandwidth but the pri-
mary cause is due to the third harmonic 3v response as
compared to the spectral component proportional to
the driving frequency v.

The advantage of superharmonic power harvesting
is even greater when the excitation level is increased so
as to induce saddle-node bifurcation near p’0:4. From
approximately 0:45\p\4:5, the superharmonic power
is noticeably greater than the component proportional
to the fundamental harmonic response, as much as four
times greater (Figure 6(b)). Interestingly, however,
above this excitation amplitude both fundamental and
superharmonic responses undergo another saddle-node
bifurcation which reduces the magnitude of superhar-
monic mechanical response. As a result, the maximum
power output is reduced to the level achievable by the
fundamental harmonic. This shows that superharmonic
energy harvesting is not necessarily superior even in the
frequency range where the effect is dominant should
the excitation amplitude exceed a critical value: for the
present parameters, approximately p= 4:5. Once
again, this implies that a careful understanding of the
excitation frequency and amplitude for a given bistable
energy harvester is important so as to attain maximum
superharmonic energy harvesting performance, in the
same way that the fundamental harmonic response
need also be considered.

Experimental investigation

In addition to the agreement of the above analytical
results to the numerical findings and to the previously
published experimental and direct simulation results
(Masana and Daqaq, 2012), this section presents new
experimental validation and evidence of the ready indu-
cement of superharmonics for bistable energy harvest-
ers. A clamped, ferromagnetic spring steel beam
buckled via magnetic attraction is employed (Figure 7).
The beam has length L = 134 mm, width 12.7 mm,
and thickness 0.508 mm. The magnets are stood off
from the free beam tip by d=6mm with their centers
equidistant to the beam tip equilibrium position when
the magnets are absent: d = 14 mm. In this configura-
tion, the two intrawell natural frequencies (and damp-
ing ratios) were measured to be 14.94 Hz (0.016) and
15.06 Hz (0.019) with stable equilibria at �x65:06mm,
ensuring as close to ideal symmetry of the double-well
potential was achieved. Piezoelectric polyvinylidene
fluoride (PVDF) patches of 28 mm thickness are

applied to both beam surfaces near the clamped end
with poled axes facing outward and electrode leads
connected in series to an external load resistance
Rp = 4:5MO. The frame to which the beam was
clamped is firmly attached to an electrodynamic shaker
in an orientation such that gravitational influences do
not affect beam response in the axis of motion. The
measured responses during testing are the base accel-
eration, beam tip velocity and displacement, and the
voltage across the load resistor.

A series of experiments is conducted to evaluate the
dependence on increasing excitation level to consis-
tently induce prominent superharmonic spectral
response in the bandwidth near normalized excitation
frequency v’0:3 and to validate the existence of key
stable responses. For each test, the shaker base accel-
eration level is fixed while very slow increasing fre-
quency sweeps of harmonic base motion are conducted,
+0.01 Hz/s, to ensure quasi-stationary excitations
over a given period of time. After data are acquired,
autospectral density of the beam velocity is calculated
over time intervals spanning 4 s, and thus 0.04 Hz of
slow sweep elapsed during this period. The spectral
lines of commensurate frequency with the excitation v

and that of three times the drive 3v are extracted from
calculated autospectra and are plotted in the left col-
umn of Figure 8. The corresponding horizontal axis
data point therefore represents the mean instantaneous
normalized excitation frequency which occurs during
the 4-s interval of sweeping. In the left column of auto-
spectral velocity responses, only interwell responses are
plotted, including chaos; the absence of data points
indicates the harvester beam response was confined to
intrawell oscillations. The right column shows the

Figure 7. Experimental setup. Postbuckled ferromagnetic beam
with piezoelectric PVDF patches, attached to shaker platform,
with PVDF electrode leads connected to external resistance
(not shown).
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Figure 8. Experimentally measured bistable harvester responses. Left column (1), beam tip interwell velocity autospectral density
components of fundamental v and superharmonic 3v in consequence to excitation at given v. Right column (2), piezoelectric
voltage amplitude during slow excitation frequency sweep. (a) EL= 2:53 m=s2, (b) EL= 3:01 m=s2, (c) EL= 3:48 m=s2,
(d) EL= 3:94 m=s2 and (e) EL= 4:39 m=s2.
EL: excitation level.
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complete sweeping time series of the piezoelectric vol-
tage amplitude.

As excitation (base acceleration) level increases, top
to bottom in Figure 8, the existence of stable responses
in the key bandwidth near v= 0:3 correspondingly
increases. In every case, the existence of these responses
is destabilized during the sweep once fundamental and
superharmonic spectral components are almost equal,
thereafter the periodic responses undergo a decrease in
level due to a return to intrawell or chaotic dynamics.
The frequency at which the annihilation of response
occurs is unique with respect to the excitation level but
typically occurs in the range 0:3 † v † 0:4. These find-
ings are in excellent agreement with trends observed in
Figures 2 to 5, and particularly as analytically predicted
and numerically demonstrated in Figure 4(a), where
saddle-node bifurcation phenomena are shown to
destabilize the fundamental and superharmonic
responses. Experimentally, it is seen that the lower
response trajectories after the bifurcation event are
chaotic (more so evident in the right column of Figure
8), persisting until approximately 0:4 † v † 0:45 at
which point interwell responses are recaptured and the
bistable harvester undergoes the advantageous primar-
ily pure-harmonic snap-through dynamic. For frequen-
cies higher than the point at which the interwell
responses are restabilized v ‡ 0:45, the superharmonic
3v component is of negligible amplitude as compared
to the fundamental, but the 3v harmonic in fact contri-
butes the highest proportion of any additional spectral
line as excitation frequency continues to increase (full
sweeping spectra not shown for conciseness). This is
also in good agreement with analyses which indicated
that following the bifurcation near the superharmonic
bandwidth v’0:3, the fundamental response would
dominate the overall harvester response. The experi-
mental results plainly indicate which of the response
branches predicted by analyses are the stable
fundamental–superharmonic response pair in the
regime prior to the bifurcation, v † 0:4; the existent
pair constitutes the large amplitude fundamental v and
the smaller amplitude superharmonic 3v which exhibit
an asymptotic-like approach in magnitudes (v compo-
nent decreasing and 3v component increasing) just
prior to destabilization, prominently observed in the
left column of Figure 8. After the bifurcation phenom-
ena and decrease in net system response, the new trajec-
tories (i.e. spectral components) follow response
profiles comparable to those predicted by analysis and
numerical simulation in Figures 3 and 4 in the range
0:35 † v † 0:4. However, experimentally, prior to
obtaining the smooth fundamental and superharmonic
responses, the system undergoes chaotic vibrations
until the frequency sweep reaches approximately
0:4 † v † 0:45.

Figure 9(a) plots the measured voltage autospectral
components of the fundamental and superharmonic

spectral lines for a full frequency sweep lasting from the
initial onset of interwell dynamics near v’0:2 up to the
normalized excitation frequency at which the pure-
harmonic snap-through response destabilizes and the
harvester returns to intrawell dynamics, v’1:37. The
corresponding voltage amplitude sweeping time series is
given in Figure 9(b). Note that the average generated
power is proportional to the squared voltage amplitude
spectral components by way of the load resistance and
coupling terms; thus, a plot of average power on a loga-
rithmic scale would be proportional by a constant fac-
tor to Figure 9 and extend the orders of magnitude
spanned such that all the salient trends of the voltage
plot of Figure 9(a) have comparable relation to power
plots of the analyses. The potentially misleading nature
of plotting ‘‘average power’’ for measured responses
which undergo chaos is justification for plotting voltage
instead of power; in contrast, for analyses where chao-
tic responses are not predicted by steady-state investiga-
tions, this difficulty of presentation is not encountered
and thus plots of power were provided. For base accel-
eration of 3:28m=s2, the first responses to be activated

Figure 9. Experimentally measured bistable harvester
piezoelectric voltages. (a) Autospectral density components of
interwell fundamental v and superharmonic 3v voltages in
consequence to excitation at given v. (b) Voltage amplitude.
Excitation level= 3:28m=s2.
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are chaotic, persisting until onset of the dramatic super-
harmonic effects observed near v’0:25. The multi-
harmonic responses remain stable up to bifurcation
near v’0:35 after which the system returns to a chaotic
response. Around the bandwidth 0:3 † v † 0:4 in
Figure 9(a), however, it is found that the voltage
response proportional to the superharmonic 3v

becomes substantially amplified with respect to the fun-
damental v (as much as 3.2 times at v= 0:377), which
verifies the analytical predictions throughout this work
that superharmonic electrical responses in this band-
width may become notably superior to the fundamental
harmonic responses. Following the recapturing of
snap-through response near v’0:5, the superharmonic
voltage spectrum continues to increase as frequency
increases but not to the same degree exhibited by the
fundamental term. Overall, these trends are in good
agreement with the predictions for normalized excita-
tion level p= 1:6 (Figure 3), although the system was
estimated to sustain interwell response to higher nor-
malized excitation frequency. This latter deviation may
be due to the extremely slow rate of frequency sweeping
because it is known that optimized sweep rates are nec-
essary to probe the full frequency extent of stable, non-
linear responses (Nayfeh and Mook, 1995).

In light of the comparable results between experi-
ments and analysis, it appears that one way to deter-
mine approximate translation between the arbitrary
low–moderate–high excitation level classification used
in the analytical studies and the known experimental
base acceleration levels is to observe the frequency at
which the destabilizing superharmonic bifurcation
event occurs. In analysis, it was observed that this fre-
quency increased from v’0:3 at p= 0:2 (low/mild
excitation level) to approximately v’0:4 for p= 4:5
(high excitation level). Likewise, in Figure 8, it is
found that the destabilization event occurs at v’0:3
for base acceleration of 2:53m=s2 and at v’0:4 for
acceleration of 4:39m=s2. Thus, for the present sys-
tem, the ‘‘low’’ to ‘‘high’’ classification used in the
analytical studies appears to also characterize the full
range of excitation levels evaluated in the laboratory.
This is by no means a comprehensive excitation level
ranking system, but is described to highlight the fairly
narrow excitation level range across which the present
experimental bistable harvester transitioned from rel-
atively mild- to high-level regimes, requiring adjust-
ment of base acceleration level from 2:53m=s2 to only
4:39m=s2. While one example of many potential bis-
table energy harvester systems and configurations,
these findings indicate the relative ease with which
dramatic superharmonic effects may become highly
activated, leading to important superharmonic 3v

spectral concentration (near v’0:3) and diffusion
(during continuous snap through) of the response and
electrical energies.

Conclusion

A model for a bistable energy-harvesting device is pre-
sented and its electrodynamic equations solved using the
method of harmonic balance having fundamental and
superharmonic components. Model investigations expli-
citly predict a host of new dynamical features which have
been observed in prior experimental and direct numerical
simulation studies but not yet captured analytically. Due
to the nature of bistable devices having relatively low lin-
ear stiffness (or linear natural frequency) which serves as
the normalization parameter for excitation level, even a
mild level of excitation may induce significant superhar-
monic effects, a trend consistently observed in the pres-
ent analyses and experimental studies.

Harvested power related to the superharmonic
response is predicted to be greater than that related to
the fundamental harmonic response in a certain band-
width, up to a critical excitation amplitude. Experimental
results provide validation to the numerous trends pre-
dicted by analyses and give strong evidence of the ease at
which superharmonic spectral diffusion may occur with
bistable systems. However, this finding is not disadvanta-
geous because harvested power proportional to the third
harmonic was shown by analysis, numerical simulation,
and experiment to potentially increase significantly above
power proportional to the fundamental harmonic in the
band of frequencies near v’0:3. With these insights, it
can be concluded that substantial deviation between pre-
dicted and true system responses may occur if employing
insufficient models without consideration of superharmo-
nic dynamics. Overall, the results of this research indicate
that effective bistable energy harvesting design and
implementation requires a clear understanding of the
input excitation characteristics relative to the device
design parameters so as to appropriately harness the
superharmonic effects.
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