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Structural components susceptible to adverse, post-buckled dynamic behaviors have long
challenged the success of applications requiring lightweight, slender curved structures,
while researchers have begun to leverage such bistable systems in emerging applications
for novel energy attenuation and shape-changing properties. To expedite development
and deployment of these built-up platforms containing post-buckled constituents, efficient
approaches are required to complement time-consuming full-field models in the predic-
tion of the near- and far-from-equilibrium dynamics. This research meets the need by
introducing a semi-analytical model framework to enable the characterization of steady-
state responses in multi degree-of-freedom (DOF) and multistable structural systems sub-
jected to harmonic excitation. In so doing, the pathway for assessing impedance measures
is created here so as to identify how energy travels and returns within built-up multistable
structures. Verified by simulations and qualitatively validated by experiments, the analysis
is shown to accurately reproduce both near- and far-from-equilibrium responses including
different classes of energetic snap-through dynamics that only exist in such multistable
structures. A first look at the impedance measures of different dynamic regimes reveals
a connection between damping in multistable structures and the sustainability of far-
from-equilibrium oscillations.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Modern, built-up structural systems are designed closer than ever to the margins of safety using slender structural
components with the intent to achieve greater efficiency, functionality, and performance, all at a minimum of cost and
weight. Whether the application is for lightweight spacecraft [1], fiber-based automotive components [2], hypersonic aircraft
[3], or tensegrity civil structures [4], the use of such flexible structural members promotes the onset of nonlinear dynamic
phenomena [5], ranging from small perturbations away from ordinary linear dynamic response patterns [6] to post-buckled
‘‘snap-through” events that compromise performance and integrity [7].

The wide-ranging, practical importance of these built-up structural systems, i.e. structures possessing many degrees-of-
freedom (DOF), has motivated efforts to identify the prime nonlinearities involved and to predict and characterize the sub-
sequent dynamic responses. To this latter end, high-fidelity models are often developed, typically facilitated by the finite ele-
ment (FE) method. Yet, the mass, stiffness, and damping constants that populate the FE matrices must be identified which is
challenged by the presence of nonlinearities. Therefore, experimental practices for nonlinear parameter identification have
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been articulated by delli Carri and Ewins [8] and Spottswood and Allemang [9,10] while recently emerging experimental
techniques using laser- and high-speed-video-based data are introducing new avenues for extracting such needed informa-
tion [11,12]. These advancements open the door for FE models to probe the nonlinear dynamic responses, while concurrent
efforts have shown that reduced order modeling can considerably enhance the efficiency of such simulations [13,14].
Although these works establish methodologies of great promise, the reliance on time-domain FE simulation nevertheless
consumes considerable time and computational resources due to the need to significantly refine time-steps in order to accu-
rately reproduce nonlinear behaviors [15], thus limiting the contribution of such methods on nonlinear structural system
development and deployment to specific case studies.

In contrast to time-stepping simulation methods, semi-analytical methods are able to predict the complex dynamic
responses of nonlinear structures using orders-of-magnitude less computational expense, albeit with a fidelity not as true
as full-field numerical simulation. On the other hand, the ‘‘cost” of these analytical methods is largely proscribed by the dif-
ficulty in formulating approximate theories and solution methods that facilitate dynamic response predictions at an accu-
racy useful for engineering system design. The assumptions of steady-state or stochastic response, single DOF system, or
single physics are often applied to enable the semi-analytical study of nonlinear structures with experimentally-relevant
fidelity [16] since formulating a theoretical tool that sufficiently addresses a combination of nonlinear features, multiple
physics, and multi DOF is challenging. Yet, researchers have recently shown that such analytical models may predict impor-
tant and unique nonlinear phenomena such as post-buckling bifurcation behaviors [17], intriguing detached resonance
curves [18], transient and persistent snap-through buckling [19–21], and internal resonance [22]. These are also examples
of far-from-equilibrium nonlinear responses, which are in general much more difficult to predict than weakly nonlinear
dynamics that are small perturbations from underlying linear behavior [23]. This is because the guiding assumptions in
the theoretical developments must be established upon firm bases due to large deviations from linearity lest the predictions
be devoid of utility. Such bases are typically provided by empirical evidence or intuitive reasoning [24].

Steps to advance semi-analytical methods to predict the dynamic response of more complex nonlinear structures oper-
ating under less ideal conditions are being pursued. In particular, researchers have recently formulated analytical methods to
predict the excited, nonlinear response of multi DOF structures modeled as coupled mass-spring-damper sub-systems [25–
28]. The extension to studies of multi DOF systems is of prime, practical importance. Such perspective introduces opportu-
nity to investigate how power flows through excited, nonlinear structural systems built-up from many constituents [29].
Exploring energetic measures is relevant since a sub-system vulnerable to high deformations given a certain energy input
must be identified at an early stage of development lest it result is large, far-from-equilibrium behaviors when deployed.
Yet, these recent advancements [25–28] are limited to considering certain weak nonlinearities in the model formulation that
permit small deviations away from linearity and thus cannot uncover behaviors that cause far-from-equilibrium responses
such as snap-through.

Indeed, the number of examples where slender beams, panels, or multi-body systems possessing one or more bistable,
buckled, or slightly curved constituents are used in applications is large and growing. The contexts range from mechanical
metamaterials [30], shape-morphing structures [31], bifurcation-based sensors [32,33], to thermally-stressed aircraft panels
[3], including the example shown in Fig. 1(a). As such, the important snap-through dynamic of these multistable structures
may become activated.

To appreciate this critical dynamic response, displacement measurements of the three DOF experimental system studied
in this report are shown in Fig. 1(b) where a slowly changing frequency of harmonic force excitation into beam 1 induces a
sudden onset of snap-through dynamics near time 620 s at which point the instantaneous excitation frequency is around
17 Hz, in other words slightly less than the lowest natural frequency of the system around 18 Hz. Activation of snap-
through in beam 1 causes a cascade of the behavior into the system, ultimately resulting in all three beams snapping
through. One may perceive an analogy of this experimental evidence to the cascading of strong nonlinear dynamic response
through a realistic post-buckled panel system such as that shown in Fig. 1(a) on the aircraft skin. The proportionality
between stress and strain indicates that the onset of aperiodic or persistent snap-through buckling is a clear detriment to
long-term system integrity [3], in addition to the adverse impacts on other performance traits including aerodynamics
and reusability.

Consequently, a particular need in state-of-the-art development of semi-analytical methods for computationally-efficient
prediction of the excited dynamics of nonlinear structures is the accommodation of multi DOF systems including post-buckled
constituents. Because such dynamics potentially include far-from-equilibrium behaviors, the prior theoretical formulations are
not applicable due to foundations of development which presume the existence of weak nonlinearities relatively near to
dynamic equilibria [25–28].

Therefore, the aim of this research is to provide a new foundation for the analytical study of excited multi DOF structures
including constituents which may be post-buckled, and thus possibly driven to undergo snap-through oscillations. In so
doing, this study also introduces a means to uncover energetic measures of importance in the design and development of
harmonically-excited nonlinear structures via a first evaluation of the impedance of post-buckled constituents assembled
into a system. By this approach and using a fundamental understanding of traditional linear impedance-based analysis, this
report gives the first articulation of multi DOF, post-buckled system impedances that serve as signs for the existence of near-
and far-from-equilibrium dynamics.

This paper presents these new outlooks and results via the following organization. The next section describes the archety-
pal dynamic system under consideration as it relates to the experimental platform developed for laboratory assessment and



Fig. 1. (a) Photograph taken by the authors of a Lockheed YF-12A at the National Museum of the U.S. Air Force at Wright-Patterson AFB, Ohio, USA, revealing
skin buckling on neighboring rib stiffened panels. (b) Measurements of the experimental system of this research showing an onset of snap-through buckling
dynamics as a slow change in the single frequency of force excitation that drives beam 1 approaches 17 Hz which is slightly less than the lowest natural
frequency of the system around 18 Hz and exemplifies the softening nonlinear of the multistable structure.
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to practical embodiments of multi DOF structural systems containing post-buckled constituents. Then, the model formula-
tion and its semi-analytical solution approach are described. Discussions are then provided that compare analytical predic-
tions, numerical simulations, and experimental measurements to validate the model and to characterize first observations of
the influences of impedance measures on the onset of nonlinear dynamic phenomena in built-up, post-buckled structural
systems.
2. Multi DOF system description

2.1. Lumped-parameter system definition

A harmonically-excited, nonlinear, n DOF system is considered where each generalized coordinate is coupled to all other
DOF. Without loss of generality, a three DOF system is specifically examined here, shown schematically in Fig. 2(a), in accor-
dance with the experimental platform discussed in Section 2.2 and by virtue of the research motivation shown in Fig. 1(a).

Fig. 2(b) provides a schematic of the ith DOF in the system and the forces acting on the mass element. The mi, ci, and ki;h are,

respectively, the mass, viscous damping constant, and linear spring stiffness for the ith generalized coordinate. The corre-
sponding generalized force is f iðtÞ. Linear elastic coupling exists between all pairs of coordinates. For instance, a spring force

between the ith and ðiþ 4Þth coordinates is due to the relative deformation xiþ4 � xi of spring with stiffness kiþ4;i. Local non-
linearity exists between each generalized coordinate and a respective ground reference according to a nonlinear force given

by �ki;ipixi þ kNL;i;ix3i for the ith generalized coordinate. The force kNL;i;ix3i is representative of large deformation such as



Fig. 2. (a) Lumped-parameter schematic of three DOF system examined in this research. (b) Coupling elements and forces acting on each DOF of the system.
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stretching in a beam, while the force �ki;ipixi is associated with loads that reduce the linear stiffness to such extent that it
may become negative. Both of these influences are commonly encountered in the study of axially compressed (possibly post-
buckled) structural members undergoing transverse vibration [5], which is the focus of this study and motivation for model
definition. While the nonlinearities investigated in this report are local and pertain only to elastic effects according to the
specific research motivations, the analytical procedure established can readily be employed to account for other local and
global elastic and dissipative nonlinearities, since the present theoretical foundation builds upon a method articulated by
Spanos [34] that is amenable to such broader classes of nonlinearities.
2.2. Experimental setup description

The three DOF experimental platform examined in this research is composed in a way to amply realize the lumped
parameter assumptions exemplified in the schematic of Fig. 2(a), while it effects a less complex architecture than a genuine
panel system composed with post-buckled constituents, Fig. 1(a). A photograph of the platform is shown in Fig. 3(a). Three
simply-supported, spring steel beams are mounted to an optical isolation table (Newport Smart Table UT2). One end of each
beam is able to be axially compressed to different extents via a fine-threaded load screw that moves the simple support end.
The axial compression permits the negative linear force realized in the model by the terms �ki;ipixi since it reduces the linear
stiffness in proportion to the nearness to the fundamental, critical Euler load [5]. Large deflection of the beams (with respect
to the beams’ thicknesses, all approximately 0.635 mm) permits the cubic nonlinear restoring force kNL;i;ix3i [35]. In this study,
each beam is compressed to an extent to induce a weak post-buckling so that pi > 1. For instance, the largest peak-to-peak
distance between post-buckled stable equilibria considered here (without beam-to-beam coupling springs) is 3 mm which
contrasts with the beam’s length of 257 mm and thickness 0.635 mm. Thus, the beams are buckled only in the fundamental
mode shape.
Fig. 3. (a) Photograph of experimental prototype of three beam system coupled via bent springs. The beam 1 is driven by the shaker via the relative
deformation of the interfacing springs and a rigid bar extending from the shaker. (b) Close-up photograph of the coupling springs and simple supports. (c)
Close-up photograph of the attachment between the shaker and beam 1. (d) Top-down view schematic of the experimental setup.
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By virtue of the roller ball bearing design (McMaster 8600N3), the simple supports effect viscous damping forces for mod-
erate to high amplitudes of beam oscillation but exert friction-like force characteristics for very small beam oscillations [36];
the latter condition is not within the scope of this research, where the focus is instead on conditions that promote meaning-
ful amplitudes of dynamic response. Nearest neighboring beams are elastically coupled at locations close to their center
points by bent spring steel springs, Fig. 3(b), that provide a linear restoring force for the small deformations. This coupling
is chain-like in nature but lacks the global coupling characteristic of Fig. 2(a); in other words, the global coupling spring of
stiffness k1;3 ¼ k3;1 in the more general model schematic is not present in the experimental platform. The coupling springs
are secured between beams by high-strength, miniature cube magnets that are slightly visible in Fig. 3(c). Between each
beam pair, the coupling spring pair is slightly offset from the beam centers to best promote dynamic behaviors associated
only with the lowest order mode for pre- and post-buckled conditions [37]. The ‘‘beam 1” nearest to the shaker is excited via
a pair of tension interfacing springs that provide connection to the electrodynamic shaker (LDS V408). The interfacing
springs attach to beam 1 using high-strength, miniature cylindrical magnets soldered to the spring ends. Due to the height
difference between the beam centers and shaker axis, a thick and rigid aluminum bar is used to convert the motions of the
shaker into parallel motions at the level of the beam centers, so that forces acting on beam 1 via deformation of the inter-
facing spring are aligned with the transverse motion of the beam center.

To excite the system, a vibration controller (Vibration Research VR9500) provides a feedback-controlled signal to a power
amplifier (Crown XLS1500) that drives the shaker. The shaker acceleration characteristics are governed via the controller and
reference accelerometer (PCB 333B40) mounted on the shaker attachment bar. A force transducer (PCB 208C01) is attached
between the shaker bar and interfacing springs to measure the real-time force delivered to beam 1. Although the controller
maintains acceleration according to the reference accelerometer, it was found that under steady-state operations the input
force was dominated by the instantaneous harmonic excitation frequency with nonlinear harmonic force generation never
exceeding about 20% of the force amplitude associated with the fundamental frequency, thus ensuring strong agreement
with the single-frequency force excitation description used in the analysis. Experimentally, a miniature accelerometer
(PCB 352A24) is attached on each beam at approximately 42% of the length from a simple supported end. Data acquisition
hardware (National Instruments) accepts the signals from these five sensors which are then post-processed (MATLAB) for
time- and frequency-domain assessment purposes.

By being weakly buckled in the fundamental mode and with the present focus of excitation frequencies only around the
lowest three linear natural frequencies, the dynamic responses of the three beam system occur strictly in spatial distribu-
tions proportional to the fundamental modes. Thus, higher-order mode buckling is not observed in the data collected and
evaluated in this investigation. Consequently, as a first approximation, such careful system composition and observed exper-
imental behaviors enable the reduction of a three coupled-beam, distributed parameter system model into an equivalent
lumped parameter system model on the basis of Galerkin’s method and Newton’s 2nd law [5,35]. The equivalent lumped
parameter system is schematically shown in Fig. 2(a), noting that in the experimental platform the global coupling spring
stiffness k1;3 ¼ k3;1 = 0 and the excitation forces f 2 ¼ f 3 = 0.

3. Analytical model formulation

Considering the schematics shown in Fig. 2, generalized to the n DOF system, the use of Newton’s second law of motion
leads to a system of governing equations described by
[M
 ð1Þ]x + [C]x + [K]x + N(x) = F.. . _
The underline denotes a vector while the [ ] brackets denote a matrix. In (1), the terms are
½M� ¼ diag½mi�; ½C� ¼ diag½ci�; ½K�ih ¼
Xn
h¼1

ki;h; i ¼ h

�ki;h; i–h

8><
>: ð2Þ

x ¼ ½x1; x2; � � � ; xn�T ; F ¼ ½f 1; f 2; � � � ; f n�T ð3Þ

where T is the transpose operator. The nonlinear forces NðxÞ considered in this study are
Ni ¼ �ki;ipixi þ kNL;i;ix3i ð4Þ

while, as indicated in Section 2.1, the analytical method described below can readily be extended to enable exploration of
local and global elastic and dissipative nonlinearities.

3.1. Linear response

To examine the linear system dynamic response, one must determine the equilibria x� given that post-buckled configu-
rations may not satisfy the trivial case of x� ¼ 0 that is common to weakly nonlinear n DOF systems. The equilibria are there-
fore determined by solving
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½K�x� þ Nðx�Þ ¼ 0 ð5Þ

Due to the nonlinearity of Nðx�Þ, there may be multiple equilibria identified from (5) if one or more constituents in the

system is post-buckled. Then, the transformed coordinate is defined y ¼ x� x� and substituted into (1) to yield
½M�€yþ ½C� _yþ ½K�yþ ½K�x� þ Nðyþ x�Þ ¼ F ð6Þ

where the components of the nonlinear terms are
Nðyþ x�Þ
i
¼ �ki;ipiyi � ki;ipix

�
i þ kNL;i;iy3i þ kNL;i;iðx�i Þ3 þ 3kNL;i;iðx�i Þ2yi þ 3kNL;i;ix�i y

2
i ð7Þ
The elements of (7) are concisely expressed using
Nðyþ x�Þ
i
¼ ½KL�i;iyi þ Nðx�Þi þ ðKNLÞi ð8Þ
where
½KL� ¼ diag½�ki;ipi þ 3kNL;i;iðx�i Þ2� ð9Þ

Nðx�Þi ¼ �ki;ipix
�
i þ kNL;i;iðx�i Þ3 ð10Þ

ðKNLÞi ¼ 3kNL;i;ix�i y
2
i þ kNL;i;iy3i ð11Þ
Using (5) and considering the expansion of (8) and definitions (9)(11), (6) is rewritten to be
½M�€yþ ½C� _yþ f½K� þ ½KL�gyþ KNL ¼ F ð12Þ

The governing equations (12) are therefore defined around an equilibrium for y ¼ 0. As such, the linearized form of (12) is
½M�€yþ ½C� _yþ f½K� þ ½KL�gy ¼ F ð13Þ

whose undamped linear eigenvalue problem of the homogeneous form of (13) is solved under the assumption of harmonic
response y ¼ Yekt . Likewise, the linear forced response of (13) is computed assuming harmonic excitation
F ¼ f ejxt ð14Þ
where j ¼
ffiffiffiffiffiffiffi
�1

p
, that induces a harmonic response
y ¼ Yejxt ð15Þ

The use of (14) and (15) towards predicting the forced response is conducted with the understanding that the actual,

measurable responses of the system are the real components of (14) and (15).
For weakly nonlinear system dynamics, the nonlinear forced response of a multi DOF structure may not be considerably

different than the solution to (13). Yet, for systems that contain one or more post-buckled constituents, the responses are
inherently ‘‘far” from the linear equilibrium x� ¼ 0. Therefore, a new approach is required to predict and explore the forced
responses of such strongly nonlinear systems.

3.2. Nonlinear forced response

To this end, one returns to (1) and invokes procedures of stochastic or harmonic linearization [34,38]. An equivalent sys-
tem to (1) is introduced using
½M�€xþ ½C� _xþ f½K� þ ½Ke�gx ¼ F ð16Þ

For generalized coordinates that are coupled in a chain-like configuration via relative displacements
NðxÞi ¼
Xn

h¼1

gi;hðwi;hÞ;wih ¼ xi � xh; i–h

xi; i ¼ h

�
ð17Þ
and gih is an odd function of wih. Then the component ½Ke�i;h is computed from
½Ke�i;h ¼
hgi;hwi;hi
hw2

i;hi
ð18Þ
where the brackets denote the mathematical expectation. Example coupling phenomena that do not satisfy the property of
being chain-like include couplings proportional to the products of coordinate motion rather than due to relative motion dif-
ferences [34]. This is not a considerable limitation to the approach currently developed since a significant number of prac-
tical problems in structural dynamics involve such chain-like couplings among generalized coordinates [28,39].
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In general, the components of ½Ke�i;h are functions of unknown constants associated with the assumed solution for each
generalized coordinate contributing to the computation of (18) for the relative motionwih. For the local nonlinearity encoun-
tered in Fig. 1(b), the ½Ke� is diagonal and wi;i ¼ xi.

A specific case is useful to engage the method in greater detail. Consider a harmonic excitation (14). Using the coordinates
x and respecting the general case that the equilibria may not be x� ¼ 0, an appropriate assumed solution must account for
non-zero generalized coordinate bias as well as oscillations according to the anticipated steady-state response (15). Conse-
quently, one assumes
x ¼ qþ rejxt ð19Þ

where in general the biases q are real while the amplitudes r are complex. This approach was conceived in Ref. [34] to inves-
tigate the dynamics of structures with asymmetric nonlinearities undergoing dynamics near to equilibrium, but has not yet
been considered as a strategy for analyzing post-buckled n DOF systems that may include both near-to- and far-from-
equilibrium dynamics. Using (19), the components (18) are averaged over a period of the harmonic excitation, T ¼ 2p=x.
Substituting (19) into (18) and averaging over T , one obtains
½Ke�i;h ¼
�ki;ipi þ kNL;i;i 3q2

i þ 3
4 r

2
i

� �
; i ¼ h

0; i–h

(
ð20Þ
In (20), the approximation is made that 9
2 q

2
i �

7q4
i

2q2
i
þr2

i
� 3q2

i which agrees well to numerical simulation results and previous

related derivation [20] according to the present focus on symmetric post-buckled sub-systems. Upon substitution of (19)
into (16), one obtains
�x2½M� þ jx½C� þ ½K�� �
rejxt þ Keðq; rÞ

h i
rejxt þ ½K� þ Keðq; rÞ

h in o
q ¼ Fejxt ð21Þ
The time-harmonic terms ejxt in (21) are independent of the time-independent terms that are products with the biases q.
As such, to uniquely satisfy (21), one must simultaneously solve (22) and (23).
½K� þ Keðq; rÞ
h in o

q ¼ 0 ð22Þ

f�x2½M� þ jx½C� þ ½K�gr þ ½Keðq; rÞ�r ¼ F ð23Þ

To address (23), one introduces ½K� ¼ �x2½M� þ jx½C� þ ½K�. Then, Eq. (23) is expressed using [27]
½K�r ¼ F � ½Ke�r ð24Þ

where the ðq; rÞ dependence of ½Ke� is dropped for brevity. Solution to the components ri in (24) is obtained by Cramer’s Rule
[40].
ri ¼

det

K1;1 � � � K1;n

K2;1 � � � K2;n

..

. ..
.

F � ½Ke�r ..
.

Kn;1 � � � Kn;n

2
66664

3
77775

det½K�

ð25Þ
The notation in (25) is that the ith column of the numerator is replaced with F � ½Ke�r.
For the k DOF that include a nonlinear local coupling to the ground reference, the Eqs. (22) and (25) provide a coupled set

of 2k algebraic equations (k 6 n) to solve. The generalized coordinate amplitudes and biases for the remaining DOF that
involve only linear local and global couplings may be solved for in sequence, using the appropriate portions of (25), once
the respective amplitudes and biases for the nonlinear coordinates are found from (25).

Having obtained the complex response amplitudes r, the impedances are computed using
Zi;h ¼ Fh

jxri
ð26Þ
where i ¼ h are complex input (or drive-point) impedances and i–h are complex transfer impedances. The real (imaginary)
parts of the impedances denote the inhibition of energy transfer (effectiveness of energy reciprocation) [41].

3.3. Solution method for semi-analytical results

Eqs. (22) and (25) represent 2k nonlinear equations that are solved to assess the influences of parameters and harmonic
excitation features upon the dynamics induced in the nonlinear n DOF system. In this research, a trust-region-dogleg algo-
rithm (nonlinear least squares cost function minimization) via the fsolve command in MATLAB software is used to numer-
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ically solve the equations. This approach is capable of solving equations with complex variables, like (25). On the other hand,
convergence is observed to be slow. Hence in this research the real and imaginary parts of (25) are solved as separate equa-
tions. While this may appear to delay the process of analytical prediction since the number of equations increases from 2k to
3k; in fact it is found to significantly expedite the solution procedure. At each increment of independent variable the equa-
tions are solved 20 times, where 25% of initial guesses are randomly selected values among the orders of magnitude of values
represented by the dynamics, 25% of initial guesses are randomly perturbed values from the underlying linear response for
the same independent variable, and 50% of initial guesses are randomly perturbed values from the solution result from the
prior independent variable. This method of seeding initial guesses is found to be robust to locating the steady-state dynamic
regimes and is about six or more times faster than direct numerical integration of the governing equations (also undertaken
for analytical model verification purposes).
4. Results and discussions

4.1. Model verification and experimental comparison

System identification of the experimental system is carried out to approximate the equivalent lumped parameter values
that constitute the three DOF system model. Here, the beams are termed beam 1, 2, and 3, as labeled in Fig. 3(a). Before the
beams are coupled, free vibration responses are recorded to approximate damping constants ci and linear natural frequen-
cies xi. The fundamental mode contributions of linear, local stiffness ki;i for the beams are computed from basic theory [42].
Each mass, including contributions due to fundamental mode motions [42], attached magnets, and accelerometers, is
approximately mi=15 g. These estimates enable the determination of axial compressive load parameters pi via
2ki;iðp� 1Þ ¼ mix2

i , since pi > 1 for all beams considered in this study [5]. Note that this parametric selection pi > 1 is moti-
vated by a greater experimental vision, such as the panel structure in Fig. 1(a), and is not a limitation to the suitability of the
analysis developed here. Based on the measurements, the linear, local stiffness of the beams is each about ki;i = 200 N/m
while for beam 1 the stiffness is about k1;1 = 350 N/m due to the attached tension springs for shaker excitation.

Using the amplitude of the symmetric, statically-stable equilibria x#i for each uncoupled beam from the configuration

without axial load xi = 0, the nonlinear stiffnesses kNL;i;i are then computed by kNL;i;i ¼ ki;iðpi � 1Þ=ðx#i Þ
2
. Prior to their attach-

ment to the beams, the stiffnesses of the coupling springs are approximated to be k1;2 ¼ k2;1 = 35 N/m and k2;3 ¼ k3;2 = 53 N/m
using static load measurements. The generalized forces for beams 2 and 3 are zero. Because the force driving beam 1 is gov-
erned by a controlled shaker acceleration and deformation of the tension spring pair, the force is modeled as having a fre-
quency dependent amplitude jf 1j ¼ kcA=x2 where kc = 150 N/m is the net tension spring stiffness and A is the amplitude of
the shaker acceleration. The remaining identified system parameters are given in Table 1, while the forces f 2 and f 3 are zero
in accordance with the experiment. Despite extensive system identification efforts, the imperfections from beam to beam,
the bearings in the simple supports, and the appreciable number of connections among systemmembers with spring attach-
ments collectively prevent a quantitative comparison of analytical model results to the measurements. Nevertheless as
shown below, a good qualitative agreement in trends is plainly observed between analytical an experimental findings. Here-
after, for consistency, the analytical and numerical results are discussed referring to the three DOF as ‘‘beams” although only
the experimental system properly considers beams.

Fig. 4(a) presents the velocity amplitude for the three beams of the structure when the shaker acceleration amplitude is
A = 1.8 m/s2. The dashed curves are the linear response predictions, the open data points are analytical predictions, and the
dots are results from numerical simulations. In an identical way as for experimental data, the simulation results are deter-
mined by selecting the spectral component of the fast Fourier transform of the numerically integrated response time series
that is equal to the harmonic excitation frequency. According to the symmetric post-buckled configurations of each sub-
system and considering the coupling spring stiffnesses with respect to local spring stiffnesses, only one underlying linear
response is uncovered for this multi DOF structure. Thus, while there are four states of statically stable equilibria (in fact,
two pairs of symmetric configurations), they do not result in significantly different linear forced response. Considering
the nonlinear forced response (data points and dots), the resonances are observed to ‘‘soften” to lower frequencies than
the frequencies of peak response for the linear behavior. Indeed, this is expected because post-buckled structures exhibit
softening spectral trends in the low amplitude, nonlinear dynamic regime [5,35], termed ‘‘intrawell”. The analytical and
numerical results are in good agreement as to the quantitative and qualitative deviation of the forced, nonlinear dynamics
of the three DOF structure from the respective linear behaviors.
Table 1
Approximate experimental platform system parameters.

beam ci [mN.s/m] kNL;i;i [MN/m3] pi [dim]

1 317 800 1.77
2 198 520 1.65
3 256 1360 1.43



Fig. 4. Analytical, numerical results. (a) Velocity amplitude of the beams as a function of harmonic excitation frequency. (b–d) Trends in impedance around
critical frequency regimes for each DOF as denoted by the corresponding curves and symbols provided in (a). Shaker acceleration amplitude A = 1.8 m/s2.
Dashed curves are linear response predictions, open data points are analytical predictions, and dots are numerical simulation results.
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Fig. 5(a) presents the corresponding measurements of beam velocity amplitude when the shaker acceleration amplitude
is A = 0.95 m/s2. Experiments are conducted with the harmonic excitation frequency changing at a rate of 0.03 Hz/s in
increasing and decreasing values over the bandwidth shown in the figure. The overall dynamics of the system clearly agrees
with the qualitative trends observed in the nonlinear forced responses in Fig. 4(a) as generated by the model. The level of
excitation that drives the experimental platform induces a bifurcation at frequency 26 Hz, seen by a sudden jump up (down)
in velocity amplitude, for increasing (decreasing) frequency in the slow sweep, for beams 1 and 2. At frequencies away from
the important region around the resonances, i.e. outside of about 18 to 32 Hz, the damping in the simple support bearings
greatly suppresses system oscillations, which explains the negligible response levels measured in beams 2 and 3 when dri-
ven at frequencies outside of this bandwidth. Nevertheless, within the important frequency band, the qualitative agreement
between the modeled results and measured data is good. This adds a degree of experimental validation to the numerical ver-
ification for the semi-analytical model formulation and solution approach developed in this research.
4.2. Steady-state impedance measures for forced, multistable structures in low amplitude dynamic regimes

In parts (b), (c), and (d), Figs. 4 and 5 present the real and imaginary parts of impedances for beams 1, 2, and 3, respec-
tively. The analytical and numerical results, Fig. 4, are in good agreement as to the ways by which the nonlinear impedance
measures differ from those of the underlying linear system (dashed curves). One crossing of zero reactance (imaginary part
of impedance), Fig. 4(b), occurs as the driven beam 1 undergoes the resonance around 26 Hz, while two and three zero-
crossings in reactance respectively occur for beams 2 and 3 corresponding to resonances/modes, respectively at 18 and
23 Hz, and near to the occurrence of the resonance at 26 Hz. These characteristics are likewise observed in the experimental
data, Fig. 5(b–d), where the more dramatic bifurcation at 26 Hz for beam 1 corresponds to a sudden leap of reactance from
negative to positive values Fig. 5(b), and vice versa depending on the frequency sweep direction. When reactance vanishes,
the management of the input energy in the three DOF system is fully governed by the means for the system to dissipate
energy, according to a conservation of energy. Thus, the resistance, real part of impedance, controls the ultimate response
amplitudes in such conditions [41]. It is seen that for the low amplitude nonlinear, forced dynamic regime of this multistable
structure, Figs. 4 and 5(b–d) reveal that the resistance values are considerable at these resonant states where the reactance
Fig. 5. Experimental results. (a) Velocity amplitude of the beams as a function of harmonic excitation frequency. (b–d) Trends in impedance around critical
frequency regimes for each DOF. Shaker acceleration amplitude A = 0.95 m/s2.
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vanishes. Thus, when oscillating in the low amplitude dynamic regime, the multi DOF and multistable structure is suffi-
ciently able to manage the input energy via damping mechanisms. As described in the following sub-section of this report,
a dramatic change occurs in impedance measures when snap-through dynamics are triggered.
4.3. Characterization of snap-through response in multi DOF structures

Although transfer functions of force to response (or corresponding inverse relationships) have been investigated for
weakly nonlinear, multi DOF systems [26–28,39], such qualities have not been uncovered for multistable structures that
may oscillate far-from-equilibrium, such as that exemplified in the time series of Fig. 1(b) where snap-through is excited
in the experimental platform of this research. Thus, this section firstly verifies and validates the model efficacy in predicting
the steady-state dynamics of the multistable structure when harmonically forced and then takes a new look at the ways in
which input and transfer impedances are tailored in consequence to the occurrence of snap-through response.

As the amplitude of harmonic excitation driving a post-buckled structure increases, energetic oscillations between the
stable equilibria, snap-through, may be triggered [5,14,35]. Consequently, to explore the regime corresponding to the far-
from-equilibrium dynamics, the analytical and numerical results, shown in Fig. 6(a), are determined according to a shaker
amplitude excitation level A = 3.8 m/s2. In the analytical predictions (open data points), the softening resonance features
at high frequencies in the bandwidth plotted are seen to merge into a collective softening behavior that loses distinction
from the lower frequency linear resonances around 18 and 23 Hz. The simulations (dots) do not predict such severe distor-
tion in the bandwidth of 20–22 Hz, where instead a softening resonance regime occurs in the numerical results. One expla-
nation for this deviation between analytically and numerically predicted dynamics in the low amplitude nonlinear regime
from about 20 to 22 Hz is that the approach to obtain solutions for the analytical model formulation (nonlinear least squares
cost function minimization) appears to suggest that the local cost function minima provided by these intrawell behaviors are
greater than the minima associated with the higher amplitude nonlinear regime occurring in the same frequency band-
width; in consequence, the minimization procedure is challenged to identify the low amplitude responses. The authors
are pursuing more robust numerical methods and tuning [43] by which such deviations may be overcome in the ongoing
development of the analytical model formulation and solution approach.

At low frequencies, the analytical and numerical methods both predict the possible activation of one of two snap-through
dynamic regimes, shown according to the considerably greater amplitudes of beam velocity in the frequency band 12–18 Hz
and labeled A⁄ and B⁄. Around 14 Hz, each sub-system snaps-through in-phase with the excitation force (to be verified
below) while a second possibility occurs around 17 Hz where beam 1 snap-through while beams 2 and 3 undergo a lower
amplitude motion at the frequency of the excitation. The analytical and numerical modeling methods are in qualitative
agreement as to these trends although the quantitative amplitudes of the respective responses do not exactly agree. As
shown below via the experimental time series, this is due to the activation of other-order harmonic oscillations that tailor
the response amplitudes proportional to the driving frequency, which is likewise evident in the numerical time series whose
spectral response is concisely shown via the data points in Fig. 6(a).

Interestingly, when beam 1 of the experimental platform is driven by shaker acceleration amplitude A = 9.3 m/s2 so as to
cause far-from-equilibrium responses at frequencies less than around 18 Hz, the mostly single-periodic dynamics observed
Fig. 6. Analytical, numerical results. (a) Velocity amplitude of the beams as a function of harmonic excitation frequency. (b) Trends in impedance. Only
those impedance measures corresponding to snap-through dynamic regimes are shown. Shaker acceleration amplitude A = 3.8 m/s2. Dashed curves are
linear response predictions, open data points are analytical predictions, and dots are numerical simulation results. Grey- and black-filled data points
respectively correspond to lower and upper bound frequencies of snap-through regimes.
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experimentally in Fig. 7(a) are in greater qualitative agreement with the analysis than with numerical simulations. This is
because the simulations suggest that a notable proportion of the dynamic behaviors are aperiodic or multi-harmonic, as seen
in the more scattered numerical data points in Fig. 6(a) in the lower frequency regime. Comparing the experimental obser-
vations from the low amplitude nonlinear dynamic regime to the responses observed when the beam 1 is driven at a the
greater level reveals a progression from purely softening nonlinear response trends in Fig. 5(a) to a combination of severe
softening nonlinear oscillations at higher frequencies and snap-through dynamics at frequencies below about 18 Hz, as seen
in Fig. 7(a). Experimental studies employing excitation at intermediate amplitudes, not shown for sake of brevity, confirm
that an evolution exists from one dynamic regime to the next, where the softening low amplitude nonlinear resonances
gradually ‘‘lean” more and more towards lower frequencies for increasing excitation amplitude, while snap-through is ulti-
mately triggered for the similar change in excitation. Perhaps due to the simple support bearing damping, the measured non-
linear responses at high frequencies are suppressed more than the analytical and numerical methods predict in their
respective characterizations.

Yet, at low frequencies, the measurements in Fig. 7(a) directly reveal both of the snap-through dynamic regimes predicted
by the analysis and simulation. The first of these is denoted with the label A, and a time series of the corresponding beam
displacements operating under this steady-state is given in Fig. 8(a). Here, at 14 Hz, the beams snap-through in-phase with a
progressively increasing phase delay observed in the maxima from beam 1 to 2 to 3. This phase delay is logical since small
inherent damping in the system coupling springs prevents an immediate transfer of energy from the input at beam 1 through
the three DOF multistable system. The second, measured snap-through regime, also predicted by the analysis and simula-
tion, is shown in Fig. 8(b) which corresponds to the label B in the velocity amplitude plot Fig. 7(a). The time series Fig. 8
(b) reveals out-of-phase motion between beam 1, which snaps through at a frequency equal to the excitation, and beams
2 and 3 that indeed snap-through but instead at a period twice the excitation period. This explains the reduced amplitude
of the far-from-equilibrium responses for beams 2 and 3 shown in Fig. 6(a) at label B⁄ and Fig. 7(a) at label B: the snap-
through responses of beams 2 and 3 occur at one-half of the frequency so that the spectral component proportional to
the excitation frequency, i.e. that plotted in Figs. 6(a) and 7(a), is reduced. The qualitative character of these strongly non-
linear and far-from-equilibrium dynamics is shared among analysis, simulation, and experiment, which serves as further
verification and validation for the analytical model formulation.

The input and transfer impedances corresponding to the snap-through dynamic regime are presented in Figs. 6(b) and 7
(b). For ease of relating the influence of changing excitation frequency to change in the resistances and reactances, the
arrows in Fig. 6(a) correspond to the arrows provided in Fig. 6(b), while in Figs. 6 and 7 the grey- and black-filled data points
respectively correspond to lower and upper bound frequencies of snap-through regimes. The amplitudes of the input and
transfer impedances corresponding to the snap-through regime, previously labeled by A⁄ and A, are found to be very low
when compared to the intrawell responses in the quasi-linear regime results in Figs 4 and 5. This finding is intuitive since
snap-through pertains to large amplitude dynamics and, as such, for a similar amount of input force the sub-system veloc-
ities are large, which corresponds to low impedance amplitudes and contrasts with the impedance amplitudes of the quasi-
linear regime. As the harmonic excitation frequency driving the three DOF system increases towards the bifurcation from
one snap-through regime A to the second B shown by the light cyan arrow in Fig. 7, the measurements indicate that the resis-
tances of each sub-system reduce from small positive values towards zero while the reactance of beam 1 trends towards zero
at the bifurcation. Similar trends are borne out in the analysis and simulation, respectively from the labels A⁄ to B⁄ in Fig. 6.
Fig. 7. Experimental results. (a) Velocity amplitude of the beams as a function of harmonic excitation frequency. (b) Trends in impedance. Only impedance
measures corresponding to snap-through dynamic regimes are shown. Shaker acceleration amplitude A = 9.3 m/s2. Grey- and black-filled data points
respectively correspond to lower and upper bound frequencies of snap-through regimes.



Fig. 8. Time series of beam displacements from the experimental setup. (a) and (b) show respective snap-shots of the displacements according to the labels
A and B indicated in Fig. 7.
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This discovery is interesting in light of the interpretation about energy management in the multi DOF system subjected to
harmonic excitation force. Considering the snap-through response as a class of strongly nonlinear ‘‘resonance” since the
reactance vanishes at the bifurcation point, the resistance is all that remains in the system to manage the energy that is
injected into the system. Otherwise, without resistance, a system driven under a resonant state will have infinite growth
in response [41]. Based on the experimental, analytical, and numerical findings, one concludes that the loss of dynamic sta-
bility for snap-through regimes of oscillation is due to the inability to balance the input driving energy with dissipation
mechanisms. There is logic to this conclusion, considering prior findings that correlate increased damping to increased sus-
tainability of snap-through response in post-buckled vibration energy harvesting platforms [44] and discoveries that
increased damping promotes the formation of well-developed strange attractors [45].

A practical consequence to this conclusion is to suggest that multi DOF structures operated in conditions that potentially
induce post-buckling among constituents, such as in Fig. 1(a), should be lightly damped to prevent the triggering of adverse,
steady-state snap-through response. While this suggestion does indeed follow the new discoveries of this work enabled by
complementary analytical, numerical, and experimental examples, it conflicts with reported evidence that lightly damped,
post-buckled, built-up structures regularly undergo transient snap-through response, oftentimes associated with chaos
[14,24]. Whether transient or steady-state, far-from-equilibrium dynamics that result in large stresses in structural systems
are nevertheless to be avoided for the long-term integrity of the platform. Yet, due to the relatively straightforward means by
which to measure impedance in practice, the shifts in reactance and resistance can potentially be used as real-time indica-
tors for triggering detrimental steady-state responses as guided by the model predictions enabled by the analytical method
established here.
5. Conclusions

Verified by simulations and qualitatively validated by experiments, the semi-analytical modeling approach introduced
here provides efficient means to predict far-from-equilibrium, steady-state dynamics in harmonically excited, multi DOF,
multistable structural systems and enables future, detailed explorations of impedance measures and energy flow in multi-
stable structures. Characteristics in the response amplitudes and impedances for low amplitude and far-from-equilibrium
dynamics regimes are faithfully predicted by the analytical approach, while intriguing details observed in the corresponding
experimental platform are found to correlate well with analytical results. Future studies will uncover a refined picture of
how impedance measures are tailored according to system and excitation parameters to begin formulation of guidelines
for the design and deployment of built-up, multistable structural systems.
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