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Several past works have considered a passive vibration absorber device utilizing

distributed mass and spring layers. The thickness of the poroelastic foam spring and

the area density of the mass layer are modified to achieve a target natural frequency of

the device while the foam itself provides adequate dissipation of energy as the mass

briefly reviewed and validated by new experiments. The dependence of the absorber

natural frequency and damping on the poroelastic spring thickness is observed in detail

and is found to be consistent with past work on poroelastic material elastic character-

istics outside of the linear dynamic regime. The results set a practical limit on the

applicability of linearity assumptions in the present modeling of the distributed

poroelastic vibration absorbers and thus determine a design parameter range for which

the computationally efficient model is accurate.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration control of structures or surfaces is a long-standing concern. Due to the reliability of performance and limited
required maintenance, passive vibration control treatments are frequently the preferred remedy. Mid to high frequency
attenuation has oftentimes been achieved using constraining layer damping (CLD) treatments due to the shorter flexural
wavelengths of the structures and therefore greater induced shear stress within the damping material between the
structure and constraining layer. Many analyses and experiments have considered the design and optimization of such
damping solutions [1–7]. However, these treatments are ineffective at low frequencies and the classical dynamic vibration
absorber (DVA), tuned for a target structural mode, is an alternative solution in this event.

The DVA has taken many forms: fluid-filled tanks [8–10], point mass–spring–dampers [11–13], pendulums or
cantilevered beams [14,15], to name a few. The modeling and characterization of such devices has followed suit with a
variety of works focusing on either single-mode attenuation [16–18] or broadband performance [19–22]. Recently, focus
has been put on distributed devices composed of poroelastic foam with an embedded piezoelectric film for actuation
purposes, termed smart foam [23–25]. The embedded piezoelectric film supplies a controlled distributed force against the
flexural vibration of the host structure to improve low frequency attenuation. These devices have also been considered
with a distributed top mass layer (a plate) which collectively yield both the effects of a passive distributed vibration
absorber and an active device [26–28].
. All rights reserved.
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Fig. 1. Schematic of the poroelastic DVA.

Fig. 2. Model geometries of excited base plate and attached poroelastic DVAs.
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The latter passive device is the focus of the present work, Fig. 1. A thin plate is attached to a poroelastic material of the
same planar dimensions; this device thereafter exhibits a single degree-of-freedom (SDOF) natural frequency which is a
function of the foam mechanical properties and geometry and top plate area density. Using common acoustic foam
materials, e.g. melamine or polyurethane, and thin mass layers, e.g. hmo2 mm, these devices can be easily tuned to have
SDOF resonances o200 Hz and be a very lightweight embodiment of the DVA to passively attenuate vibrating surfaces,
which oftentimes have modal resonances in this frequency range. The use of poroelastic foam also serves to provide for
adequate dissipation of energy as the elastic loss factor of such foams is on the order of 10 percent [29–31].

The poroelastic DVA has been considered in detail regarding optimization for passive and active control of an externally
excited plate [26]. Dynamics resulting from moderate compression of the poroelastic foam (i.e. slightly greater strain than
the linear regime) were observed but not explored in great detail. The experimental results showed a hardening spring
effect of the foam for moderate compression levels which is inconsistent with other literature on the mechanical
properties of poroelastic foams [29,30,32].

The objectives of this paper are to revisit the continuum domain model proposed in Ref. [26], explore the effect of
moderate dynamic compression levels via further analyses and experiments, and draw conclusions on the limits of the
model’s practical applicability due to linear elasticity assumptions. The computational simplicity of the model is a
substantial improvement to three-dimensional finite element (FE) analysis but it is important to understand the influence
of the modeling assumptions on the range of utility for such analysis. An overview of the analytical model is initially
provided; this model allows for the prediction of the dynamics of an externally excited host plate to which a number of
poroelastic DVAs are attached. Predictions of foam DVA SDOF resonance dynamics are compared against new
experimental data. The absorber natural frequency and damping are considered closely to determine the influence of
changing DVA foam spring thickness, and consequently the percentage of dynamic compression. The observations allow
for the determination of a range of design parameters for which the model is accurate and therefore serves as the most
efficient solution for prediction of vibration control performance when implementing poroelastic DVAs on vibrating
structures.
2. Modeling overview

For conciseness, only an overview of the model is provided here since the complete derivation is given in Ref. [26]. The
coupled dynamic system of the model is shown in Fig. 2. Poroelastic DVAs are attached to a thin host plate which is excited
by one or more point forces. The base plate and the top mass layer of the DVAs are considered to be thin, Love–Kirchhoff
plates. The poroelastic spring is considered to be a thick, isotropic plate and acoustical features are neglected. It is noted
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that Ref. [26] considers the transverse, i.e. z-axis, stiffness of the melamine foam to be slightly different than the in-plane
stiffnesses which is consistent to the variation of in-plane to transverse stiffnesses observed in other literature [29].
However, this modification is presently unnecessary given that good agreement is found between the isotropic modeling
predictions and experimental results for the linear elastic dynamic regime for which the model is applicable. Therefore,
isotropy of the foam is here assumed although the model is easily amenable to full orthotropic characteristics of the
foam layer.

To derive the Euler–Lagrange equations of motion for the coupled system, strain–displacement relations must be
assumed for each layer. Continuity of displacement is applied between the poroelastic spring (thick plate) and
the bounding thin plates. This allows for the displacements of the poroelastic spring to be expressed in terms of the
displacements of the base and top plates. The number of unknowns to compute is therefore reduced to just the
displacement responses of the base and top plates. Given that the base and top plates are assumed to be thin, by Love–
Kirchhoff assumptions only two unknowns need to be computed: wðx,y,tÞ and wmðx,y,tÞ, the transverse (out-of-plane)
displacements of the base and top plates, respectively.

Next, a Ritz method solution is assumed for the two unknowns. In this work, a hierarchical trigonometric function set is
employed for the trial functions [33].

wðx,y,tÞ ¼
XN

n ¼ 1

anðtÞfnðx,yÞ (1)

wmðx,y,tÞ ¼
XR

r ¼ 1

crðtÞcrðx,yÞ (2)

In Eqs. (1) and 2, a(t) and c(t) are the generalized coordinates of the base and top plates, respectively; fðx,yÞ and cðx,yÞ are
the assumed trial functions; and N and R are the number of modes taken in the Ritz expansions.

Finally, assuming harmonic time response of the system and substituting the Ritz expansions for the two unknowns
into the Euler–Lagrange equations, the governing equations of motion for the system are determined to be
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where K, C and M are the stiffness, damping and mass matrices, respectively; subscript m refers to those of the mass layer;
subscript s refers to those components due to the spring layer written in terms either of the (subscript) base or top plate
displacements; the terms having a ð~Þ indicate elastic coupling terms stemming from application of continuity between the
spring layer and the bounding plates; matrix terms without subscripts refer to the host plate components; and o is the
circular frequency of excitation. At present, the damping is assumed to be proportional to the mass and stiffness matrices
such that

C¼ aMþbK (4)

where a is the mass-proportional damping constant (units radians/s) and b is the stiffness-proportional damping constant
(units s/radians). Given the low frequency range of interest, only stiffness-proportional damping is considered with the
further assumption that b¼ Z=o where Z is the isotropic loss factor of the layer.

The generalized forces, F, are computed by the evaluation of the base plate trial functions at the location of the applied
point forces

FðoÞ ¼
XN

n ¼ 1

XNf

i ¼ 1

fnðx
f
i ,yf

i Þf iðoÞ (5)

where Nf is the number of applied forces, fi, at locations ðxf
i ,yf

i Þ.
In the present study, the coupled governing equations, Eq. (3), are solved over a range of frequencies, o, and the base

plate and top plate out-of-plane vibration response may be predicted from reconstruction of the responses using the
assumed Ritz expansion solutions, Eqs. (1) and (2), at a location (x,y). By assumption of harmonic response, the velocity
and acceleration of the plates may be computed by the relations: _wðx,y,oÞ ¼ jo½wðx,y,oÞ� and €wðx,y,oÞ ¼�o2½wðx,y,oÞ�.
Additional response metrics may be computed—spatial-average mean-square velocity, sound radiation, etc.—and the
derivations for these useful metrics may be found in Ref. [26].

3. Description of shaker experiment

An assessment of the validity of the model may be carried out by studying the accuracy of the predicted SDOF resonant
dynamics which are of greatest importance from a vibration control perspective. These dynamics are most prevalent when
the devices are excited only by transverse vibration, inducing rigid-body motion of the mass layer over the poroelastic
spring, and therefore a shaker platform experiment is the most applicable scenario to study.

Fig. 3 shows a schematic of the laboratory test conducted: a poroelastic DVA sample is attached to a stiff shaker
platform which is excited by white noise. A laser vibrometer measures the velocity of the DVA top plate while an



Fig. 3. Schematic of the shaker table test to measure SDOF resonance characteristics of the foam DVAs.

Fig. 4. Sample variation of the resonance frequency and damping of foam DVA (device 1) as the foam spring thickness is varied.
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accelerometer measures the base platform acceleration. The acceleration frequency response function (FRF) is computed
as the ratio of the top plate acceleration to the base plate acceleration. Since the DVA top mass oscillates in rigid body
translation at resonance, compressing and stretching the foam beneath, the frequency response of a DVA on a shaker table
will ideally appear identical to that of a 1DOF vibration absorber. Fig. 4 presents experimental results from a DVA as the
thickness of the poroelastic layer was reduced from 101 mm to 13 mm, showing the increase in both resonance frequency
and damping as the thickness is reduced.

To compare the model output of this resonance dynamic, the base plate and top plate are both considered to have free
boundary conditions. The base plate is assumed to be exceptionally rigid as compared to the stiffness of the top plate. The
foam used experimentally was melamine foam, Willtec&, manufactured by Pinta Acoustic, Inc. To attach the mass layers to
the foam, a very thin layer of spray glue is applied to the mass which is thereafter placed onto the foam. Geometric and
mechanical properties used in the test and model for the layers are provided in Table 1.

Values of Young’s modulus E, Poisson’s ratio n, and loss factor Z of the melamine foam were determined using an
iterative routine of comparison amongst published data, present experimental results, and the resulting model predictions.
First, observation was made of the range of parameters given in literature [26,29,31] and a choice of the necessary elastic
parameters within the range were taken as initial input to the model. Next, experimental data was acquired of the
resonance frequency and damping of the DVA samples having thickness hs440 mm and compared against modeling
predictions. The elastic parameters were then iteratively updated until the modeled results were in good agreement with
experimental data. This method assumes that the elastic parameters of the foam are isotropic and linear, and it was the



Table 1
Geometric and mechanical properties of the layers.

Layer a (mm) b (mm) h (mm) E (Pa) n r (kg/m3) Z

Base 300 150 10 1e14 0.1 300 0.001

Mass 1 75 50 1.498 2.1e11 0.33 7800 0.001

Mass 2 75 50 0.6096 2.1e11 0.33 7100 0.001

Foam 75 50 – 1.1e5 0.4 8 0.07

Fig. 5. Predicted and measured natural frequencies of the foam DVA samples.
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aim of the present work to determine to what extent such modeling assumptions continue to yield accurate estimates of
the poroelastic DVA response as the foam thickness is modified.

The measurement point of the velocity of the top mass layer was at the center of the top plate: ðx,yÞ ¼ ð0,0Þmm.
The measurement point of the acceleration of the base plate was slightly off center in the y-axis: ðx,yÞ ¼ ð0,�30Þmm.
The thickness of the poroelastic spring layer is modified with each run of the model to observe the parameter’s influence
on the resonance frequency. In practice, changes in the foam thickness were achieved using a bandsaw. Cutting poroelastic
materials proved to be challenging and many samples were required since a number were torn by the bandsaw blade. No
single blade selection and speed seemed amenable for all required cuts as it generally became more difficult to
consistently cut the foam as the thickness was significantly reduced.

In evaluating the influence of a mass layer dynamically interacting with a poroelastic material, care must be taken to
avoid interfering influences in the investigation. Ref. [34] determined numerous interactions existing between a dynamic
mass inclusion (or layer) and poroelastic material. Not only the thickness of the foam between the mass and vibrating
structure plays a role in determining the natural frequency of the sample, but also features related to the planar range of
foam around the mass, the shape of the mass, and the potential existence of other masses in close proximity. To strictly
determine the influence foam thickness on the DVA natural frequency and damping, it is necessary to hold constant these
additional parameters from test to test. As such, the mass layer fully covered the foam sample and the length-width
dimensions of the sample remained constant for all tests: only melamine foam thickness was modified between
evaluations. This protocol eliminates extraneous influences in the experimental results, allowing for the accurate
determination of the relation between foam thickness and DVA resonance characteristics.

4. Experimental and model comparison

4.1. Comparison of SDOF resonance frequency

Fig. 5 plots the comparison between the modeled and measured SDOF natural frequency of the poroelastic DVAs for
two samples having unique mass layers, device 1 being more than twice the mass of device 2. For poroelastic thicknesses
of hs430 mm, the model is in good agreement with measurements, accurately tracking the variation of the resonance
frequency. However, for thinner foam layers, measurements show a steady reduction in the natural frequency as compared
with the linear elastic predictions of the model. This indicates that for thinner foam layers there is a softening effect of the
equivalent transverse stiffness of the poroelastic spring.

Explanation and validation of this effect is given in past literature on the nonlinear and viscoelastic characteristics of
poroelastic foams due to varying levels of static or dynamic compression [29,30,32]. For low compression levels, the elastic



Fig. 6. Force–deflection curve for poroelastic foams with small hysteresis for loading/unloading; derived from Fig. 1 in Ref. [29].
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dynamics of melamine foams are linear, Region 1 in Fig. 6, derived from Fig. 1 in Ref. [29]. However, for moderate
compression levels, Region 2, the foam undergoes a softening effect. At extreme compression levels, Region 3, the foam
exhibits hardening spring characteristics prior to cell collapse or tearing. Similar trends are observed for polyurethane
foams [30].

It is noted that the present DVA configuration and test setup is conceptually identical to the uniaxial compression
protocol used to determine stiffness parameters of melamine foam [29] and to determine the relationship of Fig. 6.
The controlled test utilizes a shaker compressing a rectangular prism of poroelastic material between two plate layers; the
imposed static and oscillating displacements of a moving plate strain the foam due to the opposing fixed plate. Poisson’s
effect strain and force through the foam are measured so as to back-calculate Young’s modulus and Poisson’s ratio from a
three-dimensional FE code [29]. In comparison to the test protocol, the present evaluation utilizes the resonance of one
plate (the DVA top mass layer) as the dynamic testing plane. As such, we anticipate that experimental results of the
present work to demonstrate stress–strain relationships similar to the empirical evaluations from the testing protocol.

In the context of the present DVA study, the net dynamic compression of the full foam thickness is negligible for thick
poroelastic foam springs. The mass layer oscillates in one-dimensional rigid-body motion alternatively compressing and
stretching the melamine foam to a minor extent. Indeed, for the masses chosen in the present tests, the oscillation of the
top mass layer is nearly imperceptible even for high shaker platform accelerations of 2 g (19.6 m/s2). However, as the
thickness of the foam layer is reduced, the net compression and extension of the foam spring increases and the transverse
stiffness of the spring is effectively reduced. This explains the model’s overestimation of the predicted natural frequencies
of the devices in Fig. 5 for thinner foam layers.

It is interesting to note that a comparative experiment was performed in the work deriving the model used in this
study, Ref. [26], but the opposite effect was observed in the experiments: a hardening spring effect as the foam thickness
was reduced. This contradicts earlier literature [29,30,32] and the present experiments.

In Fig. 5, as the foam thickness is reduced device 1 appears to more plainly exhibit the softening spring effect before
device 2. This is explained by the fact that device 1 is resonating at lower frequencies since it uses a mass layer of greater
area density (kg/m2) than device 2. Thus there is greater transverse oscillation amplitude of the device 1 mass and
therefore greater dynamic compression of the foam spring, inducing the onset of the softening spring effect prior to its
appearance for the device 2 sample.

Recall that the model employs not only linear stress–strain relationships for the poroelastic material but its present
implementation utilizes isotropic assumptions for the foam layer. Anisotropic effects are anticipated to be more influential
for thin melamine foam samples where the pore dimension approaches the order of the sample thickness [35]. In this case,
the continuum domain assumptions of the model would misrepresent the problem studied. The results of Fig. 5 show that
the isotropic and linear assumptions of the model do not inhibit accurate predictions of the DVA natural frequency for
thicker foam samples. Only once the melamine foam thickness is reduced to approximately hso30 mm do the predictions
begin to adversely deviate from experimental results. In this range both softening spring and anisotropic influences are
presumed to become more dominant. However, at the lower natural frequencies, o200 Hz, for which the DVAs are of
greatest use in a vibration control context, the model lends useful and reasonably accurate predictions of the DVA natural
frequency.
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4.2. Comparison of damping at the SDOF resonance

The benefit of poroelastic foam to serve as the distributed spring layer of the present DVA is twofold: achieving low
natural frequencies with ease and the inherent hysteric damping induced as the foam layer is compressed and stretched by
the top mass layer at resonance. However, linear elasticity assumptions in the model consider the loss factor, Z, of the foam
to be a constant regardless of the thickness of the foam material. In the model in Section 3, Table 1 shows that a loss factor
of Z¼ 0:07 was used in all predictions of the SDOF resonance of the devices, which was the parameter that yielded closest
agreement to the measured samples having thicker foam springs, hs440 mm. In Fig. 4, reduction in the foam thickness
yields a gradual increase in the damping at resonance which is otherwise not accounted for in the model.

To approximate the experimentally observed loss factor, a curve-fitting procedure may be utilized. Consider the
distributed DVA to be equivalent to a SDOF mass–spring–damper excited near resonance. The classical equation governing
these dynamics is

m €xþc _xþkx¼ 0 (6)

With a loss factor model of damping, this is rewritten

m €xþkð1þ jZÞx¼ 0 (7)

Taking the Laplace transform of this equation with zero initial conditions yields

s2þ
k

m
ð1þ jZÞ

� �
XðsÞ ¼ 0 (8)

where X(s) is the Laplace transform of x(t) and s is the Laplace variable. The two roots (poles) of the polynomial in s in
Eq. (8) are complex conjugates:

s1,2 ¼ 7 j

ffiffiffiffiffi
k

m

r ffiffiffiffiffiffiffiffiffiffiffiffi
1þ jZ

q
(9)

By the binomial theorem, for Z51, Eq. (9) is rewritten as

s1,2 ¼7 j

ffiffiffiffiffi
k

m

r
1þ

1

2
jZ

� �
(10)

From Eq. (10), the natural frequency of the DVA, on (units radians/s), and the loss factor of the device, Z, may be
determined by the following equations:

on ¼ 9Imagfs1,2g9 (11)

Z¼ 2
Realfs1,2g

Imagfs1,2g

����
���� (12)

Using the experimental data from the shaker tests, a 2-pole curve fit was made to the resonant responses using the
MATLAB Signal Processing Toolbox [36]. After establishing the two poles, s1,2 (recall they are necessarily complex
conjugates), the measured loss factor of the DVA for a given foam thickness was determined from Eq. (12). Fig. 7 plots the
results of this procedure for the loss factor as a function of the DVA foam thickness.

The loss factor of device 1 is found to gradually increase with decreasing foam thickness. Device 2 shows a much
smaller rate of increase until a sudden increase for the thinnest sample measured. The change in loss factor as a function of
the poroelastic spring thickness is explained for the same reasons as the softening trend in the spring. Past work has
shown that the loss factor induced by moderate dynamic compression/stretching of poroelastic materials (Region 2 from
Fig. 6) is slightly increased as compared with the linear regime (Region 1) [30,32]. Device 1 exhibits this effect more
gradually since a greater compression of the foam is achieved due to the heavier top mass layer than that of device 2, as
earlier described in Section 4.1. Thus, the results of Fig. 7 are consistent with the past literature and further set limitations
for accurate prediction of the model unless this effect is accommodated for in the implementation of DVAs having thin
foam springs. Knowledge of how much compression of the foam is induced by a given DVA design could be estimated from
knowledge of the SDOF resonance frequency: the lower the frequency, the more likely that a thinner poroelastic spring
layer would exhibit a higher loss factor at resonance. As in the prior section, ‘thinner’ may be classified as hso30 mm.

5. Remarks on modeling and experimental results

In Section 4.1 we find that the model overpredicts the effective stiffness of the poroelastic DVA as a result of reduced
foam thickness. In Section 4.2 we see that the measured loss factor of the foam spring dramatically increases for thinner
samples, which can only be accounted for in the model by replacement of the loss factor used in evaluation since this
parameter is assumed constant.

These limitations are a result of the linear elastic, isotropic assumptions used to model a poroelastic material. Although
the model is fairly accurate and therefore beneficial as a computationally efficient design tool for moderate foam
thicknesses of approximately hs430 mm, the dynamics of poroelastic materials for thinner samples become highly



Fig. 7. Experimentally determined loss factor of the foam DVA samples for changing foam thickness.
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influenced by factors not accounted for in the present analytical formulation. We see this plainly by considering the
seminal Biot–Allard constitutive relationship for net stress within a poroelastic differential element [37,38]

sij ¼ 2GEijþ K�
2

3
G

� �
dijEkk�adijp (13)

where sij represents the stress tensor, Eij is the strain tensor, G is the shear modulus, K is the bulk modulus, and dij is the
Kronecker relationship. The last term in Eq. (13) is notably absent in the present formulation of the model evaluated in this
work: the vibroacoustic component �adijp. The coupling between elastic and fluid domains is a and the acoustic pressure
p is found to increase in consequence to an increase in the dynamic compression percentage of the DVA foam spring. As a
result, the model neglects a component of the constitutive stress relationship for poroelastic materials whose influence
becomes much more substantial for thin poroelastic layers. In light of the vibroacoustic term’s role in Eq. (13), the effective
stiffness of the foam spring should reduce for very thin samples that undergo greater dynamic compression.

This explanation conforms to the empirical findings of past work [29,30,32] and in the present data of Fig. 5. These
results demonstrate that practical engineering assumptions employed to efficiently model the DVA with poroelastic spring
[26] have real and observable limitations but also highlight the difficulty that would be involved in attaining a
comprehensive exactness of prediction. The vibroacoustic interaction between porous frame and filling fluid of poroelastic
materials is truly an ultimate challenge for researchers [39].

6. Conclusions

This work presented a summary of a computationally efficient model earlier developed to predict the coupled elastic
dynamics of poroelastic distributed vibration absorbers and externally excited structural panels. The model predictions
were compared against experimental data in determining the extensibility of the model in estimating the poroelastic DVA
dynamics as the foam spring varied in thickness. Experimental observations were found to be in agreement with
established literature on the elastic characterization of poroelastic materials for moderate dynamic compression in terms
of the changing DVA resonance frequency and damping. Linear elastic and isotropic characterization of the poroelastic
materials reduces the fidelity of the continuum domain model but over a range of reasonable DVA design parameters the
model provides an accurate and efficient prediction of DVA resonant dynamics as compared to three-dimensional FE
analysis. A limit on the modeling accuracy to melamine foam spring thicknesses of approximately hs430 mm was
observed which is regularly satisfied in achieving lower device natural frequencies, o200 Hz, that are encountered in
modal structural vibration.
Acknowledgments

The author is grateful for the enlightening interaction and comments by reviewers which aided in the development of
more insightful conclusions from the study.

References

[1] H. Oberst, K. Frankenfeld, On the damping of bending vibrations on thin sheet metal by firmly bonded coatings, Acustica 2 (4) (1952) 181–194.
[2] E.M. Kerwin, Damping of flexural waves by a constrained viscoelastic layer, The Journal of the Acoustical Society of America 31 (7) (1959) 952–962.



R.L. Harne / Journal of Sound and Vibration 332 (2013) 3646–36543654
[3] M.J. Yan, E.H. Dowell, Governing equations for vibrating constrained-layer damping sandwich plates and beams, Journal of Applied Mechanics 39 (4)
(1972) 1041–1046.

[4] P.R. Mantena, R.F. Gibson, S.J. Hwang, Optimal constrained viscoelastic taped lengths for maximizing damping in laminated composites, AIAA Journal
29 (10) (1991) 1678–1685.

[5] B. Azvine, G.R. Tomlinson, R.J. Wynne, Use of active constrained-layer damping for controlling resonant vibration, Smart Materials and Structures 4 (1)
(1995).

[6] A. Baz, J. Ro, Vibration control of plates with active constrained layer damping, Smart Materials and Structures 5 (1996) 272–280.
[7] L. Cremer, M. Heckl, B.A.T. Petersson, Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies, third ed. Springer, Berlin,

2005.
[8] H. Frahm, Means for damping the rolling motion of ships, 1910. U.S. Patent #970,368.
[9] H.H. Frahm, Results of trials of the anti-rolling tanks at sea, Journal of the American Society for Naval Engineers 23 (2) (1911) 571–597.

[10] R. Moaleji, A.R. Greig, On the development of ship anti-roll tanks, Ocean Engineering 34 (1) (2007) 103–121.
[11] J.P. Den Hartog, Mechanical Vibrations, fourth ed. Dover Publications, New York, NY, 1985.
[12] J.C. Snowdon, Vibration of simply supported rectangular and square plates to which lumped masses and dynamic vibration absorbers are attached,

Journal of the Acoustical Society of America 57 (3) (1975) 646–654.
[13] K. Liu, J. Lie, The damped dynamic vibration absorbers: revisited and new result, Journal of Sound and Vibration 284 (2005) 1181–1189.
[14] R.G. Jacquot, J.E. Foster, Optimal cantilever dynamic vibration absorbers, Journal of Engineering for Industry 99 (1977) 138–141.
[15] J.J. de Espı́ndola, C.A. Bavastri, E.M.O. Lopes, On the passive control of vibrations with viscoelastic dynamic absorbers of ordinary and pendulum

types, Journal of the Franklin Institute 347 (1) (2010) 102–115.
[16] M.P. Singh, S. Singh, L.M. Moreschi, Tuned mass dampers for response control of torsional buildings, Earthquake Engineering and Structural Dynamics

31 (4) (2002) 749–769.
[17] L. Zuo, S.A. Nayfeh, The two-degree-of-freedom tuned-mass damper for suppression of single-mode vibration under random and harmonic

excitation, Journal of Vibration and Acoustics 128 (2006) 56–65.
[18] S-M. Kim, S. Wang, M.J. Brennan, Dynamic analysis and optimal design of a passive and an active piezo-electrical dynamic vibration absorber,

Journal of Sound and Vibration 330 (4) (2011) 603–614.
[19] T.L. Smith, K. Rao, I. Dyer, Attenuation of plate flexural waves by a layer of dynamic absorbers, Noise Control Engineering Journal 26 (2) (1986) 56–60.
[20] M.S. Khun, H.P. Lee, S.P. Lim, Structural intensity in plates with multiple discrete and distributed spring-dashpot systems, Journal of Sound and

Vibration 276 (2004) 627–648.
[21] M.N. Hadi, Y. Arfiadi, Optimum design of absorber for mdof structures, Journal of Structural Engineering 124 (11) (1998) 1272–1280.
[22] M.B. Ozer, Extending den Hartog’s vibration absorber technique to multi-degree-of-freedom systems, Journal of Vibration and Acoustics 127 (2005)

341–350.
[23] C.A. Gentry, C. Guigou, C.R. Fuller, Smart foam for applications in passive–active noise radiation control, Journal of the Acoustical Society of America

101 (4) (1997) 1771–1778.
[24] P. Leroy, N. Atalla, A. Berry, Three dimensional finite element modeling of smart foam, Journal of the Acoustical Society of America 126 (6) (2009)

2873–2885.
[25] A. Kundu, A. Berry, Active control of transmission loss with smart foams, Journal of the Acoustical Society of America 129 (2) (2011) 726–740.
[26] P. Marcotte, A Study of Distributed Active Vibration Absorbers (DAVA). PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg,

Virginia, 2004.
[27] H. Osman, M.E. Johnson, C.R. Fuller, P. Marcotte, Interior noise reduction of composite cylinders using distributed vibration absorbers, Proceedings of

the Seventh AIAA/CEAS Aeroacoustics Conference, Vol. 2, Maastricht, The Netherlands, 2001, pp. 2001–2230.
[28] P. Marcotte, C.R. Fuller, P. Cambou, Control of the noise radiated by a plate using a distributed active vibration absorber (dava), Active 99, Proceedings

of the International Symposium on Active Control of Sound and Vibration, Fort Lauderdale, FL, USA, 1999, pp. 447–456.
[29] L. Jaouen, A. Renault, M. Deverge, Elastic and damping characterizations of acoustical porous materials: available experimental methods and

applications to a melamine foam, Applied Acoustics 69 (2008) 1129–1140.
[30] S.W. White, S.K. Kim, A.K. Bajaj, P. Davies, D.K. Showers, P.E. Liedtke, Experimental techniques and identification of nonlinear and viscoelastic

properties of flexible polyurethane foam, Nonlinear Dynamics 22 (2000) 281–313.
[31] A. Renault, L. Jaouen, F. Sgard, Characterization of elastic parameters of acoustical porous materials from beam bending vibrations, Journal of Sound

and Vibration 330 (9) (2011) 1950–1963.
[32] R. Singh, P. Davies, A.K. Bajaj, Identification of nonlinear and viscoelastic properties of flexible polyurethane foam, Nonlinear Dynamics 34 (3) (2003)

319–346.
[33] O. Beslin, J. Nicolas, A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions, Journal of Sound

and Vibration 202 (5) (1997) 633–655.
[34] K. Idrisi, M.E. Johnson, D. Theurich, J.P. Carneal, A study on the characteristic behavior of mass inclusions added to a poro-elastic layer, Journal of

Sound and Vibration 329 (2010) 4136–4148.
[35] R. Guastavino, P. Göransson, Vibration dynamics modeling of anisotropic porous foam materials, Proceedings of Forum Acusticum, Budapest Hungary,

2005, pp. 123–128.
[36] MathWorks. MATLAB User Guide. The MathWorks, Inc., Natick, MA, 2011.
[37] J.F. Allard, Propagation of Sound in Porous Media. Modelling Sound Absorbing Materials, Elsevier Applied Science, New York, NY, 1993.
[38] K. Idrisi, Heterogeneous (HG) Blankets for Improved Aircraft Interior Noise Reduction. PhD Thesis, Virginia Polytechnic Institute and State

University, Blacksburg, Virginia, 2008.
[39] A. Sestieri, A. Carcaterra, Vibroacoustic: the challenges of a mission impossible? Mechanical Systems and Signal Processing 34 (2013) 1–18.


	On the linear elastic, isotropic modeling of poroelastic distributed vibration absorbers at low frequencies
	Introduction
	Modeling overview
	Description of shaker experiment
	Experimental and model comparison
	Comparison of SDOF resonance frequency
	Comparison of damping at the SDOF resonance

	Remarks on modeling and experimental results
	Conclusions
	Acknowledgments
	References




