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Prospects for Nonlinear Energy
Harvesting Systems Designed
Near the Elastic Stability Limit
When Driven by Colored Noise
Ambient vibration sources in many prime energy harvesting applications are character-
ized as having stochastic response with spectra concentrated at low frequencies and
steadily reduced power density as frequency increases (colored noise). To overcome
challenges in designing linear resonant systems for such inputs, nonlinear restoring
potential shaping has become a popular means of extending a harvester’s bandwidth
downward towards the highest concentration of excitation energy available. Due to
recent works which have individually probed by analysis, simulation, or experiment the
opportunity for harvester restoring potential shaping near the elastic stability limit (buck-
ling transition) to improve power generation in stochastic environments—in most cases
focusing on postbuckled designs and in some cases arriving at conflicting conclusions—
we seek to provide a consolidated and insightful investigation for energy harvester per-
formance employing designs in this critical regime. Practical aspects drive the study
and encourage evaluation of the role of asymmetries in restoring potential forms. New
analytical, numerical, and experimental investigations are conducted and compared to
rigorously assess the opportunities and reach well-informed conclusions. Weakly bistable
systems are shown to potentially provide minor performance benefits but necessitate a
priori knowledge of the excitation environment and careful avoidance of asymmetries. It
is found that a system designed as close to the elastic stability limit as possible, without
passing the buckling transition, may be the wiser solution to energy harvesting in colored
noise environments. [DOI: 10.1115/1.4026212]
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1 Introduction

The successful implementation of vibration energy harvesting
systems relies on the matching of the device dynamics to the
vibration spectra and form which excite the oscillators. Conse-
quently, device development is best accomplished following real-
istic assessment of the input excitation source. While energy
harvesting applications are too numerous to count, the critical
applications are those for which it is genuinely infeasible to access
the location by line transmission and when other power sources
are ill-suited. For example, vibration energy harvesting in an
urban environment may pose less cost-benefit attraction than
achieving successful electrical power generation on a wireless
weather station buoy far at sea or a health-monitoring sensor on a
truss bridge span over a gorge. The ambient vibration sources to
harness in these remote environments are often characterized by
stochastic oscillations with peak amplitudes in the range of a few
Hz or less [1–4]. Above the frequencies associated with peak
acceleration amplitudes, the power spectra roll off at a rate of
20–40 dB/decade, which is characteristic of exponentially-
correlated (colored) or quasi-monochromatic noise sources [5].
These are the key vibrational sources of interest which drive this
study.

From an engineering design perspective, it is challenging to
develop energy harvesters sensitive to such spectra. Fortunately,
numerous recent investigations have uncovered promising oppor-
tunities utilizing nonlinear restoring force (or potential) shaping
to heighten the sensitivity of harvesters to broader and lower

excitation spectra [6,7]. Many studies have considered bistable
harvesters which are postbuckled systems capable of undergoing
energetic cross- or interwell responses [7]. In most cases, the con-
version of nonlinear monostable harvester designs to bistable
forms is achieved by gradually changing a design parameter pro-
portional to a buckling force (e.g., an axial load upon a cantilev-
ered harvester beam) until the critical load has been exceeded:
passing the limit of elastic stability. Magnetic repulsion, magnetic
attraction, and mechanical loading have been popular techniques
to realize these effects [7–10]. The buckling process reduces
the linear natural frequency of the system to a theoretical null at
the critical transition [10]; at this point, the system is termed
essentially nonlinear because linear restoring forces are elimi-
nated. Quinn and colleagues [11,12] have investigated essentially
nonlinear energy harvesters for harmonic and impulsive loading,
but, given the sparse attention to harvester assessment within this
specific design space, decisive conclusions on their performance
in stochastic environments have yet to be made.

Some additional studies encourage further exploration regard-
ing stochastically-excited nonlinear harvesters with restoring
potentials designed near the elastic stability limit. Tang et al. [13]
experimentally observed that when excited by white noise, a har-
vester beam having magnetic repulsion to buckle the system
achieved “optimal performance… near the monostable-to-bistable
transition region.” Zhao and Erturk [14] demonstrated that the
only instance in which a bistable harvester outperformed its linear
counterpart in white noise environments was when the bistable
system was excited to a degree to just allow the harvester mass to
cross the double-well potential barrier and undergo random inter-
well vibration. This indicates that bistability is only beneficial if
the well-escaping phenomena is consistently triggered which, in
one method, may be achieved by designing a marginally or
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weakly bistable system in tandem with thoughtful assessment of
the ambient excitation level. These prior empirical findings [13,14]
deviate from theoretical studies by Daqaq [15–17] which indicate
that nonlinear restoring potential shaping cannot improve power
generation over linear harvesters in white noise environments for
devices having large ratio of mechanical to electrical time con-
stants, sm/se, which represents all harvesters designed near the sta-
bility limit because sm/se ! 1 at the limit. Theory moreover
suggests that bistable potential well shaping may enable a bistable
harvester to outperform a linear counterpart in colored noise envi-
ronments [16] and a recent numerical and experimental study has
given initial evidence of such [18]. Finally, using measured sto-
chastic excitations evincing colored noise characteristics as model-
ing inputs, Green et al. [19] recently concluded that designers must
contend with the fact that ambient vibrations are concentrated at
frequencies so low that any energy harvester configuration is chal-
lenged to be wholly effective for realistic excitations. From the
above reviews, it is clear that there remains an important need to
systematically and comprehensively evaluate the full opportunities
of restoring potential shaping near the elastic stability limit, not
specifically focused on bistability, under colored noise excitations
(which are more representative of key ambient vibration sources
than white noise) in order to form definitive conclusions on best
energy harvesting system design practices.

Another practical factor plays a leading role in the present inves-
tigations. Realistic devices may most likely have asymmetries
(consequently, biases) in their restoring potentials due to imperfec-
tions. Few authors report these features but a number have
described asymmetric biases for bistable harvesters [8,20,21]. The
imperfections may be caused by subtle details such as the straight-
ness of the harvester beam, eccentricity of the buckling force, and
even gravity. In spite of reports of asymmetries principally for
bistable devices, these concerns are relevant both before and after
the buckling transition. Consequently, in this work we find it criti-
cal to take into account the role of asymmetries on energy harvester
performance near the elastic stability limit.

The previous findings and practical considerations collectively
impel this work. We seek to determine the benefits of energy
harvesting systems having restoring potentials designed near the
elastic stability limit. As opposed to studies based on harmonic or
white noise excitations [7–10,13,14,20–22], we are interested in
the probability density functions (pdfs) and long-time mean-
square responses of the systems due to colored noise excitations,
representative of prominent ambient vibration sources existing in
field settings for which vibration energy harvesting applications
are well-suited. Since past analytical, numerical, and experimental
works have individually reported varied, and sometimes conflict-
ing, results regarding nonlinear energy harvesting performance in
white noise environments, this paper provides and compares each
evaluation form to synthesize comprehensive answers to the ques-
tions at hand crucial to successful power generation from realistic
colored noise excitations.

Section 2 poses the problem formulation of the stochastic
response of a nonlinear energy harvester having restoring poten-
tial of generic quartic shape and describes modeling assumptions.
Stationary response pdfs are determined via established methods
and experimental system details are provided. Then analytical,
simulated, and experimental results for the response of nonlinear
energy harvesters designed near the elastic stability limit are com-
pared, followed by discussions on key findings.

2 Nonlinear Harvester Modeling

The nonlinear energy harvester architecture is depicted in
Fig. 1, where a base-excited oscillator having nonlinear restoring
force f(k0, k1, k3) includes piezoelectric and electromagnetic
induction electromechanical conversion mechanisms configured
to convert the relative kinetic energy between the harvester mass
motion and moving base into electrical signal to be captured by
external circuitry, here modeled as resistive loads. In this manner,

findings of this work are applicable to the larger class of energy
harvesting systems employing one or both of the above transduc-
tion techniques.

Equation (1) defines the response of the nonlinear harvester
motion and circuit outputs.

m€zþ b _zþ �V0ðzÞ ¼ �m€g� C1v� C2c (1a)

�VðzÞ ¼
ð

f ðzÞdz ¼ k0z� 1

2
k1z2 þ 1

4
k3z4 (1b)

Cp _vþ 1
Rp

v ¼ C1 _z (1c)

Le _cþ Rec ¼ C2 _z (1d)

Derivatives are expressed by ð�Þ ¼ d=dt and ð Þ0 ¼ d=dz. The
restoring potential �VðzÞ neglects a cubic term in this investigation
because prior studies indicate that probabilistic outcomes for sys-
tems having quartic potentials are substantially less influenced by
asymmetries tending from cubic potential terms (or quadratic
forces) as compared to linear terms (or static, bias forces) [23,24].
Biases, included here by coefficient k0, are commonly encoun-
tered in practical energy harvesting system development,
including biases imposed by gravitational loading or due to manu-
facturing imperfections.

An important modeling assumption is now applied in light of
the focus of the present study. In targeting ambient vibration sour-
ces with greatest energy density in the sub-Hz range, we are inter-
ested in harvesters practically designed with natural frequencies
as low as feasibly possible. As compared to available piezoelectric
materials and electromagnetic induction harvester realizations,
this implies that the mechanical time constants will often be sig-
nificantly greater than the electrical time constants. In this context,
the primary influence of either transduction is a dissipation of
energy in the external circuit [16,25]. With this assumption in
mind, Eq. (1) is reduced and rearranged.

€zþ l _zþ V0ðzÞ ¼ fðtÞ (2a)

VðzÞ ¼ az� 1

2
jz2 þ 1

4
bz4 (2b)

a ¼ k0=m; j ¼ k1=m; b ¼ k3=m; l ¼ 1

m
ðbþ /Þ (2c)

/ ¼ RpC
2
1; piezoelectric (2d)

/ ¼ 1

Re
C2

2; electromagnetic (2e)

Fig. 1 Nonlinear energy harvester with piezoelectric and elec-
tromagnetic induction mechanisms and corresponding
circuitry
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The net system dissipation coefficient l is then related to com-
bined mechanical b and electrical / influences. Power generated
by the harvester is related to the response velocity _z via

P ¼ jv2j=Rp ¼ /j _z2j; piezoelectric (3a)

P ¼ Rejc2j ¼ /j _z2j; electromagnetic (3b)

The colored stochastic excitation fðtÞ ¼ �€g has correlation func-
tion fðtÞfðt�Þh i ¼ rD expf�rjt� t�jg, where r is the correlation
bandwidth (inverse correlation time) and D is the noise intensity.
Power spectral density of the stochastic base excitation is

SffðxÞ ¼ 2D=½1þ ðx=rÞ2� (4)

and the motion is governed by a 1st order Langevin equation

_fþ rf ¼ qðtÞ (5a)

qðtÞh i ¼ 0; qðtÞqðt�Þh i ¼ dðt� t�Þ (5b)

where q is a Gaussian white noise process. By similar enlarge-
ment of the state space, a stochastic excitation of arbitrary
correlation function may be related to a Wiener process [26].
Equation (2) is expressed in Itô stochastic differential form as pre-
sented by Eq. (6) [27,28].

d _x ¼
x2

�V0ðx1Þ � lx2 þ x3

�rx3

2
64

3
75dtþ

0

0

r
ffiffiffiffiffiffi
2D
p

2
64

3
75dB (6a)

x ¼ ½x1; x2; x3�T ¼ ½z; _z; f�T ; dB=dt ¼ qðtÞ (6b)

In the present work, directly simulated results are obtained by
integrating Eq. (6) using the stochastic differential equation
(SDE) toolbox in MATLAB with the Euler–Maruyama (E–M) algo-
rithm. The corresponding Fokker–Planck equation governing the
pdf �pðx; tÞ is given by [27,28]

@�p

@t
¼ �x2

@�p

@x1

þ V0ðx1Þ
@�p

@x2

þ l
ðx2 �pÞ
@x2

� x3

@�p

@x2

þ r
@ðx3 �pÞ
@x3

þ r2D
@2 �p

@x2
3

(7)

satisfying �pðx; tÞ ! 0 as jxj ! 1. Stationary solutions to Eq. (7)
are analytically possible only for quadratic potentials V(x1), i.e.,
linear systems. Other potential forms require evaluation of the
bandwidth r in order to engage further investigation of the station-
ary pdf because various approximation methods suited to particu-
lar assumptions and accuracy requirements are available. Since r
represents a parameter normalized to the mechanical system’s
characteristic frequency (i.e., r¼ 1 indicates the noise level begins
a 20 dB/decade roll-off at the system’s linear natural frequency),
one must select the appropriate method to determine an approxi-
mate stationary pdf based upon the narrowness or breadth of r
with respect to prominent mechanical responses. Our practical in-
terest of this work encourages focus on bandwidths around 1 or
less, r. 1, since maximum ambient vibration energy of our target
excitation sources is sub-Hz and we envision designing harvesters
around the point of elastic instability at which linear natural fre-
quency asymptotically approaches zero (although various design
factors may not allow for the limiting case to be practically
realized).

A preferred scheme to determine pdf response is therefore a
decoupling approximation approach set forth by H€anggi [29], later
extended and utilized by collaborators [30,31], and recently
employed by Daqaq [16] in studying the bistable inductive gener-
ator. For brevity, we present here only the outcome of the method
since the technique has been formalized in full by Moss and

McClintock [27] and H€anggi and Jung [28]. Past studies have
used this pdf approximation technique to investigate chiral sym-
metry breaking in chemical reactions, laser instability, and crystal
formation [23,28,32], but we apply the decoupling method for
new insight into nonlinear energy harvester design synthesis
near the elastic stability limit. The outcome is an approximate,
decoupled stationary pdf p(x1, x2) expressed as

pðx1; x2Þ ¼ Z�1 expf�Vðx1Þ=r1g expf�x2
2=2r2g (8a)

Z ¼
ð1
�1

ð1
�1

expf�Vðx1Þ=r1g expf�x2
2=2r2gdx1dx2 (8b)

r1 ¼ ðD=lÞ=f1þ V00ðx1Þh i=½lr þ r2�g (8c)

r2 ¼ ðD=lÞ=f1þ l=r þ V00ðx1Þh i=r2g (8d)

x2
1

� �
¼
ð1
�1

ð1
�1

x2
1pðx1; x2Þdx1dx2 (8e)

x2
2

� �
¼
ð1
�1

ð1
�1

x2
2pðx1; x2Þdx1dx2 (8f )

Here, Z is a normalization constant. In applying the above approx-
imation scheme for the bistable inductive generator, Daqaq [16]
noted the challenges involved in determining the decoupled pdf
p(x1, x2) since it necessitates computation of r1 which is a func-
tion of the mean-square displacement x2

1

� �
, via V00ðx1Þh i, which is

itself dependent on the pdf. Consequenly, Daqaq [16] demon-
strated the use of an iterative computational method to resolve the
circular-dependence concern, and this method was shown to be
accurate with respect to direct integration of the SDE. Likewise,
we employ the computational method—here, MATLAB command
fsolve—to determine solutions to equation system, Eq. (8). Our
interest is the generated power of the harvester, Eqs. (3a) and
(3b), which is proportional to the square of the device velocity for
both transductions. Therefore, to evaluate the advantages of
designing the harvester nonlinear restoring potential around the
region of elastic instability when the system is excited by colored
noise, we seek insight into the mean-square velocity x2

2

� �
,

Eq. (8f), following that Ph i / x2
2

� �
.

3 Preliminary Remarks on Accuracy, Comparisons,

and Experimentation

The accuracy of the decoupling approximation in predicting
mean-square responses is excellent so long as bandwidth r is not
too small and noise intensity D is not too large [28,31]. However,
accuracy is maintained even for small r so long as noise level is
limited D. 0:3 [31]. Results for high bandwidth r � 1 (white
noise limit) correctly converge to Gaussian response estimates,
and predictions for quadratic potentials (linear systems) also lead
to accurate mean-square responses. Direct simulation of Eq. (6) is
complicated by the extremely small time steps required to main-
tain E–M algorithm stability and the need to integrate for long
times in order to obtain reliable mean-square values. In this work,
results from 80 simulations each lasting 4000 natural periods are
averaged to yield one numerical validation data point; it was
observed that significant deviation in results were obtained if less
exhaustive number of simulations were averaged. Likewise, ex-
perimental results necessitate long evaluation times to attain con-
sistent mean-square responses. These challenges indicate that the
greatest number of comparisons among results will help to ensure
that the insights obtained are valid to the highest degrees of confi-
dence, and justifies our collective usage of analytical, numerical,
and experimental findings.

The experimental setup is shown in Fig. 2 and a schematic is
given in the inset of Fig. 3. The cantilevered ferromagnetic spring
steel beam has length L¼ 132 mm, width 12.7 mm, and thickness
0.51 mm, and is oriented such that gravity plays no role in the axis
of motion. Piezoelectric PVDF patches of length 38 mm and width
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11 mm are applied to both sides of the beam near the clamped
end—with poling directions extending away from the beam surfa-
ces—and with electrode leads connected in series to a load resist-
ance of 5.4 M X. The magnets are neodymium with diameter
12.7 mm, thickness 6.35 mm, and flux density 1.42 T (as quoted
by distributor), and are positioned d¼ 8 mm away from the beam
free end throughout experimentation; only magnet spacing dis-
tance d is adjusted to tailor the harvester restoring potential. In
the course of changing magnet position in the range of elastic

instability, large changes in natural frequency are observed, Fig.
3. As compared to the beam natural frequency of 23.38 Hz when
the magnets are removed (here defined as the linear case), the
closest to essential nonlinearity the authors could achieve with the
experimental system was a nonlinear monostable beam having
natural frequency 4.141 Hz (d¼ 15 mm, Fig. 3), which the authors
hereafter refer to as the essentially nonlinear case. A ring-down
response of the essentially nonlinear harvester is shown in Fig. 4
to exemplify the extremely low frequency oscillations. In the fol-
lowing section, we compare the essentially nonlinear harvester
design to a very weakly bistable device. In the bistable configura-
tion, the magnets are positioned equally apart from the beam cen-
ter position, d¼ 13.5 mm (8.853 Hz intrawell natural frequency),
which was the “weakest” and most symmetric bistable config-
uration the authors could obtain. The stable equilibria of this
harvester configuration displaced the beam free end by
justþ/� 3 mm as compared to the full 132 mm length. Hereafter,
this experimental case is referred to as the bistable harvester. We
note that the gap between magnet spacing d¼ 15 and d¼ 13.5 mm
for the essentially nonlinear and bistable configurations, respec-
tively, was extremely difficult to characterize with confidence in
the resulting symmetry. However, no distinctly monostable con-
figurations were obtained with magnet spacing less than
d¼ 15 mm, indicating the actual elastic stability limit is crossed
for spacing d just less than this value.

When generating colored noise for testing, the bandwidth r
refers to a value normalized with respect to the mechanical sys-
tem; thus, r¼ 1 for the linear harvester has noise bandwidth
extending to 23.38 Hz while for the essentially nonlinear case the
comparable r¼ 1 band extends to just 4.141 Hz. Employing simi-
larly nondimensionalized bandwidths ensures the most challeng-
ing performance comparisons among the various harvester
designs are made, although final remarks on this stringent compar-
ison method are given later in this work. After selecting the appro-
priate bandwidth, colored noise is generated by solving Eq. (5)
using Runge–Kutta numerical integration. The result is recorded
in an uncompressed audio file (300 second length) and played
back as input to the electrodynamic shaker amplifier using various
excitation levels. Noise intensity level D is determined following
experimentation by fitting a power spectral density curve from
Eq. (4) to the measured input acceleration spectrum; the results
for noise intensity D are then used in analysis and simulation for
improved comparison.

4 Noise Bandwidth and Level Influences on Ideal

Designs

Figure 5 presents a collection of analytical, numerical, and
experimental findings of harvester mean-square velocity—propor-
tional to generated power by Eq. (3a)—normalized to noise corre-
lation maxima rD as a function of bandwidth r. In Figs. 5(a) and
5(b), numerical validations are filled-in marks on the plots. Row
(a) and (b) presents the analytical and numerical results while row
(c) and (d) shows experimental findings with legends indicating
the mean-square acceleration input noise levels to provide a more
intuitive interpretation of the excitation levels employed. Column

Fig. 2 Cantilevered ferromagnetic beam with PVDF patch and
adjustable attractive magnets, attached to electrodynamic
shaker

Fig. 3 Measured natural frequencies of beam as equal magnet
spacing d is adjusted. Inset shows test schematic

Fig. 4 Beam velocity ring-down response for case of magnet spacing d 5 15 mm, near point of
essential nonlinearity
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(a) and (c) gives results for the essentially nonlinear harvester and
column (b) and (d) presents bistable harvester data. Results for the
linear systems are given on each plot in Fig. 5; in analysis the lin-
ear results (j¼�1, a¼ b¼ 0) are independent of excitation level
whereas the linear experimental data represent values averaged
over three measured excitation levels which were found to yield
very similar ratios of mean-square velocity to noise characteristics
rD. Damping of the system is experimentally determined to be
l¼ 0.009 (combined mechanical and electrical dissipation) and
the value is correspondingly used in all subsequent analysis and
simulation. The restoring potential parameters j and b which are
employed represent harvesters designed near the elastic stability
limit but, lacking comprehensive justification for their specific
quantitative values, we are only interested here in qualitative com-
parison of the experimental data to analytical and numerical
results.

Figures 5(a) and 5(b) show that the peak responses of essen-
tially nonlinear and bistable harvesters are very similar for each
level of noise. For low noise levels, there are certain bandwidths
for which both nonlinear configurations perform better than the
linear counterpart, particularly for noise bandwidths less than the
individual systems’ natural frequencies, r< 1. The peak of the lin-
ear harvester velocity responses normalized to excitation parame-
ters rD occurs at r¼ 1, representative of the fact that maximum
performance of a linear harvester in colored noise environments
for given noise level is obtained so long as the natural frequency
of the system is included within the noise bandwidth. In contrast,
the essentially nonlinear and bistable harvesters need not have ex-
citation bandwidth extend to their linear resonance frequencies
and in fact achieve optimized performance for bandwidths less
than this frequency; these optima shift as functions of noise level.
Importantly, the essentially nonlinear harvester provides substan-
tially improved power generation when excited by almost any
noise level environment having low bandwidths, Figs. 5(a) and
5(c) r. 0:5. In comparison to the essentially nonlinear harvester,
the bistable system has a serious degradation of performance at

low excitation bandwidths for all excitation levels, Fig. 5(b)
r. 0:3, indicating the system is more likely to remain confined to
a single well such that its response levels mostly converge to those
of the linear harvester. In experiments, the bistable device still
provides mild increase in response levels over the linear system at
very low bandwidths due to occasional well-escape, Fig. 5(d). As
both excitation level and bandwidth increase, the performance
improvements of the essentially nonlinear and bistable harvesters
against the linear counterpart are increasingly degraded. This is
explained by the cubic restoring forces of the nonlinear configura-
tions which provide greater resistance to beam displacements in
high noise level environments while the linear configuration is not
comparatively inhibited.

Simulated results in Figs. 5(a) and 5(b) show excellent quanti-
tative agreement with analysis. Moreover, all of the key trends of
analysis are captured by the experiments, Figs. 5(c) and 5(d),
notably including the superior response levels of the essentially
nonlinear harvester in low excitation bandwidth environments at
any excitation level. These findings indicate that in practical
applications for which the ambient vibration spectrum begins a
roll-off at extremely low frequencies (characteristic of many real-
world excitations like wave or structural vibrations), it may be
best to employ an essentially nonlinear harvester given practical
constraints of designing linear systems having resonances in such
a band.

5 Criticality of Design at the Elastic Stability Limit

Although best performance was obtained by the essentially
nonlinear system in Fig. 5 in analysis, simulation, and experiment,
our experimental sample is not strictly “essentially nonlinear”:
given its nonzero linear natural frequency, the system is actually
very slightly nonlinear monostable. This returns us to a similar
conclusion as that reached by Tang et al. [13] where it was experi-
mentally observed that the “monostable-to-bistable” transition
region yielded optimal harvesting performance in white noise

Fig. 5 Harvester mean-square velocity normalized to noise correlation maxima. Row (a) and (b) analytical results and simulated
data (filled-in marks). Row (c) and (d) experimental results with legends indicating mean-square noise input acceleration values.
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environments. Yet, if the transition itself appears to be a very
high-performance design and there remains difficultly in realizing
ideal essential nonlinearity in practice, one must ask whether it
makes any difference to defer harvester design towards either
mono- or bistability when targeting for the elastic stability limit.
Therefore, we now consider how response characteristics are
influenced as the linear stiffness term j is perturbed away from
essential nonlinearity, j¼ 0.

Figure 6 plots the influence of the linear stiffness term j on
excitation-normalized harvester velocity response levels. Note
that ideal essential nonlinearity corresponds to the region between
left and right plots. It is seen that energy harvester performance is
substantially unaffected whether the system is designed just
before or beyond the critical buckling load. This corroborates sim-
ilar experimental findings by Tang et al. [13] who employed white
noise excitations. However, the logarithmic scaling of the hori-
zontal axis may be misleading because adjustment of buckling
force—whether attractive magnets, repulsive magnets, or mechan-
ical axial load—is difficult to finely control in close proximity to
the elastic stability limit, particularly just beyond the critical
buckling load. As shown in Fig. 3 and also discussed by Masana

and Daqaq [10], the system may rapidly switch from mono- to
bistability. Then, considering Fig. 6 near values j¼61, we see
that bistable harvester performance plummets for low noise levels.
This is the consequence of confinement to a single well and subse-
quent imposition of additional intrawell stiffnesses which raise
the linearized natural frequency to �

ffiffiffiffiffiffi
2j
p

[16]; this is a vulner-
ability that does not concern the slightly monostable harvester
since the linear natural frequency remains

ffiffiffiffiffiffi
jjj

p
. While bistable

harvester response levels are mostly flat and indicate slightly opti-
mizable configurations (corresponding to optimum escape rates
[16]) prior to dropping off rapidly for higher j (right to left from
center), the monostable responses slowly but steadily reduce for
any increase in �j (left to right from center). However, because
the nonlinear monostable harvester does not exhibit the precipi-
tous drop in response levels and given the difficulty in finely tun-
ing buckling loads at the critical point, monostable systems
designed near the elastic stability limit have a distinct robustness
advantage.

6 Impact of Asymmetry on Energy Harvesting

Performance

In fabricating energy harvesters with restoring potentials con-
figured near the elastic stability limit, numerous practical imple-
mentation issues may lead to asymmetric potentials. Therefore,
for the experimental results in Fig. 5, both samples may not be
precisely symmetric. Following assessment of the comparable
importance of obtaining exact essential nonlinearity in Sec. 5, we
now address a similar question: to what degree should asymmetry
concern energy harvesting design in the region of elastic
instability?

Figure 7(a) presents analytical results of the excitation-
normalized harvester velocity response levels in consequence
to changing asymmetric bias a. Several excitation levels D
are shown. Given that our experimental sample classified as
“essentially nonlinear” was actually slightly monostable, we begin
from comparisons of baseline symmetric harvesters with very
minor mono- and bistability and perturb these via an asymmetric
bias. Due to findings in Fig. 6 where linear stiffness j was shown
to influence the ideal symmetric responses, the system responses
in Fig. 7(a) are computed with different linear stiffness j such
that their normalized response levels are identical for the case of
no bias terms a¼ 0; the baseline starting values are comparatively
depicted in Fig. 6 and numerically given in Fig. 7(a). In this way,

Fig. 6 Influence of linear stiffness term j on harvester mean-
square velocity normalized to excitation level

Fig. 7 Influence of bias a on harvester mean-square velocity normalized to excitation level. (a) Analysis; (b) experimental setup
for evaluating influence of gravitational bias; and (c)–(e) experimental harvester mean-square voltage responses normalized to
data for inclination h 5 0 using increasing noise excitation levels from (c) to (e). Legends indicate mean-square base accelera-
tion levels for each test.
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a more meaningful sensitivity comparison is provided since base-
line response levels are the same.

Figure 7(a) reveals that an asymmetric bias is uniformly more
detrimental to a bistable energy harvester’s power generation
capacity than it is for a slightly monostable system. In perturbing
both systems from ideal configurations, the vulnerability of the
bistable system to become confined to an individual intrawell
response, and the subsequent additional stiffnesses associated
with this deviation, suggest that bistable energy harvesting sys-
tems have a distinct disadvantage. The influence of asymmetry is
far more pronounced at low excitation levels, indicating well-
escape is greatly inhibited for the bistable configuration in such
cases. Yet, regardless of excitation level, the asymmetric nonlin-
ear monostable system is less susceptible to performance degrada-
tion due to the same degree of bias.

To validate these predictions, we consider the influence of grav-
itational bias on the test setup. To accomplish this, the test fixture
is arranged with the harvester beam free end hanging downward
but inclined from the vertical direction (gravitational force direc-
tion), Fig. 7(b). The shaker force direction is along the beam’s
axis of transverse motion, inclined from the horizontal plane with
angle h. By changing the inclination, h, the linear and cubic
restoring force terms proportional to j and b are held constant
since magnet spacing remains fixed. The responses of a nonlinear
monostable harvester with equal magnet spacing d¼ 16 mm are
compared to a bistable configuration with magnet spacing
d¼ 13.5 mm. Both experimental samples represent nonlinear har-
vesters having restoring potentials slightly perturbed from essen-
tial nonlinearity (Fig. 3). The piezoelectric PVDF voltage output
serves as the response signal and these values are normalized with
respect to measurements taken without inclination, h¼ 0 deg;
thus, data points for both systems coincide at h¼ 0.

Figures 7(c)–7(e) show experimental results for steadily
increasing colored noise (r¼ 0.5) base acceleration levels. Mean-
square excitation levels for each test are provided in the corre-
sponding legends and each test captured 500 seconds of data. The
first inclination of 2.6 deg leads to notable and uniform reductions
in bistable harvester responses, regardless of noise excitation
level. In contrast, the smallest inclination has comparatively little
effect, if any, on the monostable device. Only for inclines of 4.5
and 5.9 deg do the monostable harvester responses begin to de-
grade. At low noise levels, Fig. 7(c), the reduced response levels
are most pronounced for both systems. In comparison to the bista-
ble system levels, however, the monostable harvester exhibits sub-
stantially less performance reduction. These findings are in good
qualitative agreement with predictions in Fig. 7(a). It was con-
firmed that for an inclination of 5.9 deg the bistable device still
exhibited static bistability; yet, only occasional cross-well escape
events were observed during tests at 5.9 deg even for higher exci-
tation levels. Intuitively, the results demonstrate that the addition
of a potential barrier for the bistable harvester is a nontrivial det-
riment to power generation in stochastic environments when
asymmetries become manifest.

7 Conclusion

Adopting a practical design approach to vibrational energy har-
vesting from realistic ambient vibration sources, this work has
sought to shed valuable light on some of the more promising
opportunities provided by shaping the restoring potential of non-
linear harvesters in the region of elastic instability. An established
stationary pdf approximation technique is utilized to predict
harvester dynamics in response to colored noise excitations, and
series of simulated and measured data are compared against the
analyses. The analytical, numerical, and experimental results
exhibit very good agreement, which help to comprehensively sup-
port the overall conclusions of this research. Several critical
insights may be drawn from these investigations.

One may reason from Fig. 5 that a linear harvester, having inde-
pendence of normalized response level to changing noise level, is

a better choice as compared to devices designed near the elastic
stability limit. However, as vividly depicted in Fig. 3 in compar-
ing the natural frequencies of the measured systems and as recog-
nized by Daqaq [16], a linear “version” of a given harvester may
have natural frequency far removed from the nonlinear counter-
part. Thus, results in Fig. 5 contrasting several nonlinear designs
to the linear case must be carefully assessed when comparing sys-
tems excited by the same noise level. Consider a bridge having
lowest natural frequency near 0.8 Hz [2]. For our “essentially non-
linear” test system with natural frequency 4.141 Hz, this repre-
sents a bandwidth r� 0.19, while for the linear counterpart having
natural frequency 23.38 Hz, this is a bandwidth of r� 0.03. Thus,
a direct comparison between the two designs necessitates deter-
mining the mean-square response of the essentially nonlinear har-
vester for r� 0.19, x2

2

� �
=rD � 52:3 (Fig. 5(a) for D¼ 0.013), and

comparing to the linear system response for r� 0.03,
x2

2

� �
=rD � 3:32. Therefore, the essentially nonlinear harvester

would generate about 16 times more power than the linear ver-
sion. This is an extreme example given the great disparity between
the natural frequencies, but it helps to exemplify the fact that tak-
ing steps to shape the restoring potential of an energy harvesting
system to be most sensitive to the realistic forms and spectra of
ambient vibration is key to successful power generation.

Therefore, to best match harvester design to common, ambient
colored noise excitations, the lowest achievable natural fre-
quency is necessary, but the importance of utilizing the popular
bistable configuration is not critical. While a very weakly bista-
ble device is shown to yield comparable (or even slightly better)
response levels than a slightly nonlinear monostable system
designed near the elastic stability limit (Fig. 6), practical con-
cerns regarding asymmetry and the need for a priori knowledge
of excitation level, which may both lead to single-well confine-
ment and corresponding stiffening effects, suggest there are
more issues in employment of bistable harvesters than nonlinear
monostable devices.

This work demonstrated that ideal, essentially nonlinear
energy harvesters appear as a potent solution to power genera-
tion from realistic ambient vibrations. By eliminating linear
restoring forces, the essentially nonlinear design comes as close
to a pure electrical damper as possible in low excitation level
environments (which induce small displacements about equilib-
rium). However, in the absence of ideal design at the precise
limit of elastic stability, erring on the side of nonlinear mono-
stability appears to be a wiser decision than obtaining bistability
due to the latter’s performance vulnerability in consequence to
single-well confinement which introduces additional stiffening
into the system. The optimal performance may be attained with
weakly bistable systems, but in practical applications a critical
need for system robustness dictates avoiding crossing the elastic
stability limit and retaining monostability if ideal essential nonli-
nearity is not realizable.
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