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Small-deflection theory is used along with FE models to compute the equivalent elasticity parameters

of sandwich structures. Eigenfrequency and eigenmode analyses, comparing the equivalent 2-D

continua with full 3-D models, are utilized to determine how continuous connections and in-vacuo

assumptions are influenced as real-world discontinuities and gas- or foam-filled cavities are included. It

is found that discrete connections between structural elements reduce stiffnesses and eigenfrequencies

of the net structure substantially. The presence of gas or foam in the core cavities is observed to

increase the overall damping of the dynamic panel response while also amplifying certain panel

resonances.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Typically, structural-acoustic problems are solved by imple-
menting a mathematical model of the structure exhibiting
dynamics of reduced complexity. Equivalent elasticity parameters
play an important role in this regard by providing the researcher
with materials or structures having nearly identical static and
dynamic characteristics as the original complex specimen. For
instance, in the field of building construction and analysis, such
approach is commonly followed in the study of structural
response to seismic excitation [1–3].

Residential buildings in the United States are made primarily
of stud-framed walls, which consist essentially of stiffeners
sandwiched between plaster and wood (e.g., oriented strand
board) panels, with insulation materials (e.g., fiberglass wool)
filling the cavities. Sandwich panels are also used extensively in
industrial buildings but the facing and core elements typically
consist of thin-walled, cold-formed steel sheets and rigid foamed
insulation, respectively. A comprehensive structural analysis has
been carried out by Chong and Hartsock [4] for this type of
structure, including the mechanisms of flexural stresses, deflec-
tions, vibration, and thermal stresses, thus summarizing two
decades of research on the topic. Stiffened plates differ from
uniform plates in that their properties are directional, i.e., their
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bending rigidity about one axis is not necessarily the same as the
bending rigidity about a perpendicular axis. The computational
effort can be reduced dramatically by modeling a stiffened wall
as an equivalent homogeneous orthotropic 2-D continuum. This
simplification is usually valid at low frequencies, i.e., when the
bending wavelength is larger than the distance between the
wall stiffeners. At higher frequencies, the wall components
(e.g., panels, studs, and insulation material) have to be modeled
separately and cannot be smeared into an equivalent uniform
material.

A considerable amount of work has been devoted to modeling,
analyzing, and designing thin-walled sandwich structures with
core layers having truss, sinusoidal, honeycomb, and otherwise
periodic cross sectional geometries. A comprehensive review on
this topic was provided by Noor and Burton [5]. Mainly two
approaches may be considered to compute the equivalent proper-
ties of sandwich structures. In the first approach, which is used in
this paper, the core layer is modeled as an equivalent continuum
and is then combined with a plate model. In the plate model, the
sandwich structure is modeled as several layers with approxima-
tions made in the direction of the thickness. Analytical expres-
sions for the characteristics of the equivalent continuum are
derived from a strength-of-materials type of theory [6,7]. A more
recent approach is based on the homogenization theory, which is
essentially an asymptotic expansion method taking benefit from
the periodicity of the structure. In this approach, two small
parameters are defined: e, the ratio of the panel thickness to
characteristic length of the panel and e, the ratio of one period
length of the panel to the characteristic length of the panel. The
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original heterogeneous specimen is then modeled as an equiva-
lent homogeneous plate by making these two small parameters
tend to zeros. Several homogenization approaches exist, based
on the order in which these parameters tend to zero (e.g., both
simultaneously or one after the other). More details on the
homogenization techniques may be found in the book of Lewinski
and Telega [8] as well as in references [9,10].

Most studies implicitly utilize in-vacuo conditions for the
cavities enclosed by the sandwich structure and also assume that
the periodic core geometry contacts the facing sheets continu-
ously. These conditions are rarely met in practice. For instance, in
building construction, nails are used to hold the studs to the wood
or plaster panels and wall cavities are filled with insulation
materials. Therefore, there is a need to understand how the
vibration response of sandwich structures is affected by air-filled
or foam-filled cavities and how the computation of equivalent
elasticity parameters for continuous connections between the
core and facing sheets compares to that for punctual (discrete)
connections. Recently, Burlayenko and Sadowski [11] studied the
effect of foam-filled cavities on the free vibration and buckling
characteristics of a honeycomb sandwich structure. They found
that foam had little influence on the mode shapes of the structure.
However, their work was limited to the first two modes of
vibration of the structure and lacked an analysis of the effect of
foam on the dynamic response.

This paper is organized as follows. Section 2 describes the
approach followed to compute equivalent elasticity parameters of
three-layered sandwich structures. Finite element (FE) analysis is
utilized for this purpose. An example case is then studied. Natural
frequencies and mode shapes of a 2-D Mindlin plate with
equivalent elastic constants are compared to those of a 3-D shell
structure to validate the approach. Section 3 investigates the
effect of discrete connections between the core and facing
elements on the equivalent elasticity parameters and on the
resulting eigenproperties. Section 4 studies the effects of air-
and foam-filled cavities on the vibration response of a sandwich
structure to determine how such an inclusion would modify the
usefulness of the FE approach. It is shown that elastic homo-
genization techniques are easily applicable to realistic building
construction scenarios, provided attention is given to the relative
inertial and damping influence of the embedded gas or elastic
material (e.g., foam) within the cavities of the sandwich structure.
Section 5 reports the main conclusions of this study.
2. Small deflection theory

2.1. Methodology

Libove and Batdorf [6] derived a model for the determination
of equivalent elastic properties for incompressible sandwich
panels having an arbitrary core design. This method transforms
the exact core geometry into an equivalent homogeneous ortho-
tropic 2-D continuum, having bending, twisting and shearing
stiffnesses Dx, Dy, Dxy, DQx, and DQy, respectively. Included with
Fig. 1. (a) Exact geometry of sandwich panel having period 2p. (b) Equivalent continuou
the derivation were a series of experiments which may be
implemented with manufactured specimen panels to determine
the elasticity constants. Cheng et al. [12] then proposed and
validated a set of corresponding FE models to expedite the
computation of such elastic properties. The latter FE models are
employed here to evaluate the equivalent bending and twisting
stiffnesses of the panels. To determine equivalent shearing stiff-
ness characteristics, the three-point bending test carried out with
FE models described by Nordstrand et al. [7] and based on ASTM
standard C393-62 is utilized.

2.1.1. Force-distortion governing equations

The exact geometry of the periodic sandwich panel under
study is shown in Fig. 1(a). The distortion equations for the
incompressible sandwich panel are [6]:
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where Mx and My are internal bending moments, Mxy is the
internal twisting moment, Qx and Qy are internal shearing forces,
and nx and ny are the Poisson’s ratios coupling the bending
responses. These moments and forces are labeled for a unit core
cross-section in Fig. 1(b) having thickness hf and period 2p.
The curvatures and twist, kx, ky, and kxy, are defined about the
middle-plane of the panel.

The facing sheets and the core layer are considered to be
isotropic materials of thicknesses tf and tc, respectively. The FE
models to calculate the equivalent stiffnesses for the sandwich
structure (i) define a 3-D geometry of a certain section of the
sandwich core; (ii) apply the loads described in the distortion
equations; and (iii) calculate the resulting strains or displace-
ments from key nodes. Likewise with careful undertaking of
the described laboratory tests [6], the FE models allow one to
immediately apply the desired moments and/or shearing forces
such that it is assumed the remaining moments and forces in
Eqs. (1)–(3) are zero. For instance, in Eq. (1), the bending moment
Mx is applied in the FE model but no moment My or shear Qx are
applied and thus the equation is reduced to kx ¼�Mx=Dx.

The FE models to compute these equivalent elastic constants
Ex, Ey, Gxy, nx, and ny are depicted in Fig. 2. These are only
schematics of the FE model geometries and do not represent
meshed versions of the models. The model to compute Ex uses
geometries of a single core period, 2p, with a length of sufficient
span so as to ignore end effects. Increasing this length naturally
reduces the influence of potential end effects on the deformation
at the center of the specimen, but becomes more costly to
compute due to the increasing number of finite elements. The
model to calculate Ey uses multiple periods of the sandwich
structure and a depth equal to or greater than the period length.
s material having bending, twisting and shearing stiffnesses Dx, Dy, Dxy, DQx, and DQy.
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Fig. 2. (a) FE model to compute equivalent Ex elasticity parameter of sandwich

panel. (b) FE model to compute Ey. (c) FE model to compute Gxy. Each model

indicates centrally-located nodes and the output parameters required to be

extracted at these locations.

Fig. 3. (a) FE model to compute equivalent Gxz elasticity parameter of sandwich

panel. (b) FE model to compute Gyz. Edges of the geometries are simply supported

and a linear load, W, is applied to the specimen center.

Table 1
Elastic constants used in FE models.

Constants Description Value

a Length of panel (m) 4.064

b Width of panel (m) 4.064

2p Period of sandwich panel core (m) 0.4064

hf Thickness of sandwich panel (m) 0.1016

Ec Young’s modulus of the core layer (GPa) 10.8

Ef Young’s modulus of the facing sheets (GPa) 2.10

tc Thickness of core layer (m) 0.0381

tf Thickness of facing sheet (m) 0.0127

rc Core density (kg m�3) 450

rf Facing sheet density (kg m�3) 760

nc Poisson’s ratio of the core layer 0.29

nf Poisson’s ratio of the facing sheet 0.24

Table 2
Computed equivalent elasticity parameters.

Ex

(GPa)

Ey

(GPa)

nx ny Gxy

(MPa)

Gyz

(MPa)

Gxz

(MPa)

req

(kg m�3)

2.2 1.38 0.246 0.244 331.3 0.62 46.68 201.7
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The model to calculate the twisting stiffness, Gxy, uses a geometry
of equal length and depth.

Unit moments per area are applied to rigid end elements in
the models to compute bending stiffnesses, as shown in Fig. 2 (a)
and (b). Rigid elements are modeled by using a Young’s modulus
six orders of magnitude greater than the facing sheet value. For
the twisting stiffness model, Fig. 2(c), unit moments are applied
without rigid end planes, since additional rigidity would inhibit
the sample deflection. In each model, sides of the geometry to
which no moments or forces are applied are given boundary
conditions of symmetry. This implies that displacements in the
co-ordinate axis normal to the plane of symmetry must be zero.

In Fig. 2, the desired output quantities of each model are
provided in inset boxes. Bending strains and shearing strains are
appropriately output at centrally positioned nodes on the top and
bottom facing sheets for the models to compute bending and
twisting stiffnesses, respectively. Using the strains, the bending
and twisting curvatures are calculated as follows [12],

kx ¼
ex1�ex2

hf
, ky ¼

ey1�ey2

hf
, kxy ¼

gxy1�gxy2

2hf
ð4Þ

These parameters relate to the bending stiffnesses, shear
stiffnesses, and Poisson’s ratios as,
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Since unit moments per area were employed in the FE models,
the stiffnesses given in Eq. (5) are straightforward to calculate.
From the computed stiffnesses may be found the equivalent
elastic material properties representing a 2-D incompressible,
homogeneous orthotropic plate,

Ex ¼
12Dx

h3
f

, Ey ¼
12Dy

h3
f

, Gxy ¼
6Dxy

h3
f

, nyx ¼ ny ð7Þ

2.1.2. FE models for shearing stiffnesses

Nordstrand et al. [7] employs a three-point bending test and FE
model thereof to determine the shearing stiffnesses of sandwich
panels. Incompressible sandwich panel theory is employed to
assume that the resultant shear stress produced by the centrally-
applied load is carried only by the core layer, and not by the
facing sheets. Therefore, the vertical deflection, D, of the simply-
supported sandwich panel is computed as,

D¼
WL3

48bDi
þ

WL

4AGiz
ð8Þ

where i¼x,y, depending on the orientation of the specimen or, in
the present case, the FE model geometry. Furthermore, L is the
sample length, Di is the flexural rigidity per unit length of the
panel and AGiz is the equivalent shear stiffness. The panel cross-
sectional shearing area is A¼ bh2

f =ðhf�tf Þ, where b is the specimen
width. Schematics of the FE model geometries of the three-point
bending tests to compute the equivalent shearing stiffnesses are
depicted in Fig. 3(a) and (b).

The model is evaluated for a variety of specimen lengths, L.
Vertical deflection of the facing sheet opposite the force, W, is
evaluated at a centrally located node of the sample for each run of
the model. As per Nordstrand et al. [7], a plot of D=WL3 against
1=L2 is generated. The y-intercept of the plot is 1=48bDi while
the slope is 1=4AGiz. Therefore, by simulation of the three-point
bending test for a number of sample lengths, L, the appropriate
equivalent shearing stiffness Giz is determined.

2.2. Comparison of the undamped eigenfrequencies

A sandwich structure with the periodic cross-section of
Fig. 1(a) and with the characteristics reported in Table 1 was
considered. In this paper, all simulations were performed using
the commercial FE software package COMSOL Multiphysics.
Equivalent material properties were computed using the above
methods and are provided in Table 2. The first 15 undamped
eigenfrequencies of the structure were computed, first, using the
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exact structure geometry in a full 3-D FE model discretized into
triangular shell elements and, second, using an equivalent 2-D
thick (Mindlin) plate analysis also using triangular elements.
Meshing was not set for specific element size but was fine enough
to include no fewer than 8 elements per model characteristic
length, e.g., 2p in the model of Fig. 2(b), which assured the grid
Table 3
Comparison of first 15 eigenfrequencies (Hz) computed from full 3-D and

equivalent 2-D FE models with percentage differences.

Mode number Full 3-D model Equivalent 2-D model

1 7.08 7.09 (þ0.14%)

2 12.81 12.68 (�1.0%)

3 14.67 13.21 (�9.9%)

4 16.48 15.90 (�3.5%)

5 22.72 22.10 (�2.7%)

6 26.41 25.99 (�1.6%)

7 28.34 27.88 (�1.6%)

8 30.14 29.94 (�0.66%)

9 36.17 35.33 (�2.3%)

10 37.29 37.38 (þ0.24%)

11 42.31 42.38 (þ0.16%)

12 44.14 43.48 (�1.5%)

13 46.57 45.14 (�3.1%)

14 49.31 49.06 (�0.51%)

15 50.09 49.30 (�1.6%)

Mode Number
1

2

6

7

13

Full 3-D Model Equivalent 2-D Model

Fig. 4. Comparison of eigenmode shapes of low order sandwich panel vibration

from full 3-D and equivalent 2-D FE models.
independence of the computational results. Boundary conditions
were prescribed as follows. In the full 3-D FE model, the four
vertical edges forming the corners of the structure were pinned.
In the equivalent 2-D FE model, the four corners of the plate
were fixed.

The first 15 undamped eigenfrequencies of the structures were
computed by both models and are given in Table 3. For these
lowest order modes, the average absolute deviation between
methods is 2.0%. There is a significant difference in eigenfre-
quency computation for the third mode, resulting perhaps from
the specific modeling of the boundary conditions. Ignoring this
outlier, the average absolute deviation between models for the 15
lowest order eigenfrequencies is 1.4%. A comparison of several
eigenmode shapes computed by the two methods is shown in
Fig. 4. Even for the 13th mode, there is a clear consensus between
the two models, indicating that the 2-D model of much reduced
computational expense may be further employed with confi-
dence. It is noted that the 3-D FE model used 70,000 shell
elements while the 2-D FE model used only 10,000 elements
when setting the maximum element size to be the same for
each model.
3. Introduction of punctual connections between the layers

3.1. Determination of the seven equivalent elastic constants

Oftentimes, sandwich structures are not bonded continuously
but instead utilize a finite number of attachment locations. For
instance, in the present building construction application of
interest, the connections between the plates/boards and the studs
are punctuated by nails. This section studies the influence of such
punctuated connections on the computed equivalent elasticity
parameters and, therefore, on the dynamic response.

The FE models from the previous sections were modified to
include discrete connections between the facing panels and the
core layer (e.g., studs). These connections represent nails in the
structure having geometry as depicted in Fig. 5. The square nails
have characteristic dimension, lc, height, hc, and are spaced dc

apart. Square-shaped connections were utilized due to the ease of
constructing the FE mesh for each model revision. The joints were
considered an isotropic material having a Young’s modulus six
orders of magnitude greater than the facing plates. This selection
eliminates the possibility of local deformation in the joint itself as
compared to the full sandwich structure.
3.2. Comparison of the undamped eigenfrequencies

Following each selection of connection distance dc, the equiva-
lent elastic constants of the sandwich structures were computed
using the FE models described in Section 2. The exact sandwich
panel geometry and material properties employed were those
provided in Table 1. The punctuated element characteristic
dimension was fixed at lc¼2 mm.
Fig. 5. Modeling of punctuated connection between facing sheets and core layer,

facing sheet removed from image to visualize the connection geometry.



Table 4
Computed elastic constants as a function of dc/L (% differences computed from dc/L¼0).

dc/L Ex (GPa) Ey (GPa) Gxy (MPa) Gxz (MPa) Gyz (MPa) vx

0 2.199 (–) 1.377 (–) 331.3 (–) 46.68 (–) 0.6164 (–) 0.2458 (–)

0.019 1.800 (�8.1%) 1.331 (�3.34%) 291.1 (�12.1%) 18.05 (�61.3%) 0.2820 (�54.2%) 0.2393 (�2.64%)

0.036 1.810 (�17.7%) 1.330 (�3.41%) 281.8 (�14.9%) 9.350 (�79.9%) 0.2226 (�63.8%) 0.2403 (�2.24%)

0.066 1.827 (�16.9%) 1.332 (�3.27%) 286.5 (�13.5%) 4.872 (�89.5%) 0.1475 (�76.0%) 0.2402 (�2.28%)

0.090 1.833 (�16.6%) 1.332 (�3.27%) 272.8 (�17.6%) 3.164 (�93.2%) 0.1475 (�76.0%) 0.2407 (�2.07%)
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Fig. 6. Effect of punctuated connection spacing on the computation of equivalent

bending stiffness, Ex, and transverse shearing stiffness, Gxz.
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Table 4 presents the change in the equivalent elasticity
parameters as a function of the spacing between the punctual
connections. As the spacing parameter dc increases, the equiva-
lent parameters are all observed to decrease from the continuous-
contact case, dc¼0. This trend is intuitive since the core layer is
the primary component strengthening the full sandwich struc-
ture; therefore, fewer connections between the facing panels and
the core reduce the stiffness of the composite panel. Apart from
the Poisson’s ratio, vx, the parameters least affected by the
discontinuous connection are the bending stiffnesses, Ex and Ey.
Since the FE models utilize rigid elements at the ends for
application of the necessary moments, the facing plates are not
capable of significant sliding relative to the intermediary layer.
Therefore, the bending stiffnesses are mostly a function of the
sandwich panel geometry itself as opposed to the specific manner
in which the sandwich structure is bonded together. More
specifically, as demonstrated by Buannic et al. [10], the mem-
brane and bending behaviors are driven mainly by the thickness
of and the distance between the facing sheets, respectively. In
contrast, the parameter most influenced by the decrease in
contact between the facing panels and the sandwich core is Gxz.
This is an intuitive result since shearing forces in the x direction
attempt to tear or peel the facing plates away from the inter-
mediary layer. Greater concentration of discrete connections
bonding the three layers therefore yields a greater shearing
stiffness Gxz.

Fig. 6 depicts the variation of the equivalent elastic constants
Ex and Gxz as a function of the ratio dc/2p. In the figure, the solid
curves were determined from a linear least–squares fit to the
computed elastic constants. It is readily apparent that Gxz is highly
sensitive to changes in the punctuated connection spacing.
A spacing equal to one period of the sandwich structure, i.e.,
dc/2p¼1, decreases the shearing stiffness by more than an order
of magnitude whereas Ex is relatively unchanged.

Once the seven equivalent elastic constants were calculated
for each case of joint spacing dc, a new 2-D FE model was
constructed of a panel having such anisotropic elasticity para-
meters. The panel dimensions were those provided in Table 1.
Meanwhile, a full 3-D FE model of the actual sandwich structure
was constructed using the known elastic constants for the facing
sheets and core layer reported in Table 1. The resulting undamped
eigenvalue problems were then solved for the first three modes of
structure with boundary conditions described above.

Figs. 7–9 plot the results of the change in the lowest three
undamped natural frequencies against the normalized connection
spacing parameter, dc/L. Data points marked by red circles denote
results from the equivalent 2-D FE model whereas the blue
crosses denote those from the full 3-D FE model. The percentage
shift in the eigenfrequencies is computed using as a reference
results from the full 3-D FE model with continuous connections
between the layers, as reported in Table 2.

Each of the lowest three eigenfrequencies is observed to
decrease rapidly as the distance between the connections
increases. The frequencies calculated from the equivalent 2-D
anisotropic panel are uniformly less than those of the full 3-D FE
models in the presence of discontinuous contact between the
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Table 5
Properties of the materials used to form the three structures.

Material E (GPa) r (kg m�3) n Thickness (mm)

Aluminum 70 2700 0.35 2

Oak 12 630 0.35 0.0857, 0.857, 8.57

Cork 0.1 250 0.15 21.6

Table 6
Properties of the gases used to fill in the cavities of the structures.

Gas r (kg m�3) cf (m s�1) Total mass (kg)

Helium 0.16 927 0.24

Neon 0.90 435 1.32

Air 1.21 343 1.78

Argon 1.45 323 2.13

Krypton 3.75 220 5.50

Xenon 5.89 169 8.65

Sulfur Hexafluoride 6.12 151 8.99
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facing plates and core layer. This may be attributed to the uniform
reduction in the equivalent stiffnesses as dc/L increased, indicated
in Table 4. However, Table 3 showed that the eigenfrequency
solutions converged as the spacing was decreased to the point of
continuous contact, dc/L¼0. Thus, while an equivalent 2-D ana-
lysis may be appropriate for continuous connection between the
layers, the inclusion of discrete connections amongst the layers
quickly compromises the agreement between the equivalent 2-D
and the full 3-D FE analyses. In the event of sparse connections
between the core layer and facing sheets of a realistic structure,
one must cautiously use the present approach for computing
equivalent elasticity parameters.
10-4 10-3 10-2 10-1
10-3

10-2

Mg/Ms

Pe
r

Fig. 10. Percentage difference between the first natural frequencies of the

structures computed in vacuo and with gas in the cavities as a function of the

ratio of the total mass of gas enclosed by the structure to the total mass of

the structure. Aluminum (J), cork (B), oak with total mass of 205 kg (&), oak

with a total mass of 20.5 kg (� ), and oak with total mass of 2050 kg (þ).
4. Vibro-acoustic coupling

In many applications, sandwich structures are lined with
fibrous or elastic porous materials to increase their acoustic-
and thermal-insulation performance. For instance, in building
construction, stud-framed walls often have their cavities filled
with fiberglass wool. On the other hand, most numerical studies
on the eigenproperties of sandwich structures assume in-vacuo
conditions within the continuous medium and thus neglect
the potential effects of a cavity–filling fluid or material on the
structural response. Such effects are of interest and are investi-
gated in this section.

4.1. Effect of a gas-filled cavity on the structural response

The undamped eigenproperties of sandwich structures, where
cavities are filled in with various gases, were computed. The
structures have the same geometry and boundary conditions as in
the analysis of Section 2 but were fully enclosed, i.e., not being
open-ended as shown in the FE model diagrams of Fig. 2. First,
three structures are considered where each structure is made of
one isotropic material with uniform thickness for facing sheets
and core layer such that the total mass, Ms, of the structure is
always equal to 205 kg. Table 5 reports the properties of the
materials used to form the three structures. Second, one material
(oak) is selected for which the thickness of the core and facing
elements is changed so that the total mass of the structure is
successively decreased to 20.5 kg and increased to 2050 kg. Seven
gases are considered here, ranging from light (e.g., helium) to
heavy (e.g., sulfur hexafluoride) gases. The properties of these
gases and the total mass, Mg, of gases enclosed in the cavities are
listed in Table 6. It is obvious that the parameters in this analysis
are not intended to be representative of realistic building struc-
tures but were selected solely for the purpose of conducting
a parameter study. The study is therefore more representative for
such sandwich structures which may be far more susceptible to
choice of the gas within the cavity. For example in the packaging
of MEMS, gas-filled cavities plays a pivotal role in the damping of
the devices heavily influencing the dynamics of the MEMS device
in question [13,14].

For this fluid–structure interaction problem, interface bound-
ary conditions were prescribed such that: (i) the facing sheets of
the structure were loaded with a force per unit area equal to the
pressure loading induced by the fluid and (ii) the particle accel-
eration of the fluid was equal to the structural acceleration of the
facing sheets. Note that fluid–structure interaction was ignored at
the interfaces between the fluid and core layer.

The first natural frequency of a structure filled with a gas is
computed and compared to that of the structure in vacuo. Results
are depicted in Fig. 10 for various structure-gas configurations. In
the figure, all curves are nearly linear and superimpose. This
result demonstrates that the logarithm of the change in the
structural natural frequency that is induced by the presence of
the gas in the cavities is linearly proportional to the logarithm of
the total mass of gas added to the system and is independent of
the elastic properties of the components forming the structure.
Similar results (not plotted here) are observed for higher order
modes. For all structures with a total mass of 205 kg considered in
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the analysis, air induces a change in the first natural frequency
that is less than 0.5%. Given the trend of the curves, a 10%
percentage change in the first natural frequency would be
expected if the structure was enclosing air and its total mass
would be 9 kg.

These results indicate that the assumption of in-vacuo condi-
tions when computing the equivalent elastic parameters of
sandwich structures is seen to be a valid one, with the exception
of extremely lightweight structures.

Fig. 11 depicts the first three modes of the aluminum structure
with air enclosed in the cavities. In the first mode (also observed
for the structure in vacuo), the structure deforms in a global
fashion as one uniform continuum would. The second and third
modes correspond to deformations of the facing sheets only (local
behavior). These additional modes are not observed for in-vacuo
conditions and thus are clearly induced by the presence of gas in
the cavities and the geometry of the cavities themselves. The
amplitudes of these local deformations are insignificant (smaller
by at least one order of magnitude) compared to the global
deformation observed in the first mode. The effect of these
cavity-induced modes on the frequency response of the structure
to a point-force excitation is described next.

4.2. Effect of a porous material on the structural response

The cavities of the aluminum structure described above are
now filled with a porous elastic material. It was demonstrated
that for this structure, the effect of air-filled cavities on the
structural eigenproperties are insignificant. Therefore, the porous
material is modeled as a structural element and the analysis
collapses to the interaction between two structures with signifi-
cantly different elastic properties. The properties of polyurethane
foam are selected for this analysis [15]: Young’s modulus
E¼17�105 Pa, Poisson ratio n¼0.4, loss factor Z¼0.27, and
density r¼30 kg m�3. The ratio of the total mass of foam
enclosed by the structure to the total mass of the structure is
Mode 1

Mode 2 f2 = 17.17 Hz De

Mode 3

Def1 = 11.45 Hz

Def3 = 17.34 Hz

Fig. 11. First three modes of the aluminum st
equal to 0.2. A loss factor Z¼5�10�3 is used to characterize
structural damping in the aluminum structure at low frequencies.

For this structure–structure interaction problem, matching
of the structural velocity was enforced at the interface of the
elements forming the aluminum structure and the porous mate-
rial. The frequency response function (FRF) is computed at the
junction of a facing sheet and the core layer. The excitation is
provided near a corner of the structure by a unit magnitude point
force, from 1 to 100 Hz in steps of 1 Hz. Fig. 12 shows the
geometry of the structure with the positions of the point force
and virtual accelerometer. The FRF at the virtual accelerometer is
shown in Fig. 13, for the case of the structure in vacuo (solid blue
curve), with foam inside the cavities (dashed orange curve), and
with air inside the cavities (crosses).

The FRF for the in-vacuo panel is highly resonant, character-
istic of the lightly-damped aluminum sandwich structure. The
inclusion of air in the cavities amplifies certain portions of the FRF
since the additional gas acts in effect like a distributed spring
between the two facing sheets, as shown by Pretlove [16] in the
study of the vibration of a plate backed by a closed rectangular
cavity. This is particularly evident at the 36 Hz resonance, which
is amplified by approximately 2 dB. This spring-like resonant
formation: z-displacement [m]

formation: z-displacement [m]

formation: z-displacement [m]

ructure with air enclosed in the cavities.
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effect, which alters the magnitude of the FRF, is dependent on
frequency and on the geometry of the individual cavity with
which the gas interacts. However, apart from this minor and
localized amplification, the presence of air in the cavities does not
notably influence the overall FRF.

To a similar end, the presence of the foam within the cavities
is also seen to alter the amplitude of several resonances. Most
apparent is the amplification at the 12 Hz resonance. At higher
frequencies, the tendency of the embedded foam is to dampen the
structure through a combination of mass loading and viscous
damping. Since the foam mass represents an increase of 20% to
the total structural mass, this inclusion exerts substantial inertial
resistance on the vibration of the sandwich structure and thereby
dampens and lowers in frequency many of the higher resonances.
In summary, the embedded foam material generally modifies the
FRF response of the sandwich panel by damping the structural
response. As most building construction scenarios would realis-
tically include foam-like materials within the sandwich structure,
the numerical approach described in this paper may compensate
for this by prescribing a greater level of overall damping to the
equivalent 2-D continuum.
5. Conclusions

A study of realistic features of sandwich panels, not otherwise
accounted for in typical methods for computing the equivalent
elasticity parameters, was carried out to determine the overall
importance of these features on the applicability of the method.
The analysis and convenient FE models to compute the equivalent
elasticity parameters of sandwich structures were presented in
detail. Computation of eigenfrequencies and eigenmodes for a
sample sandwich panel was found to be in close agreement
between the equivalent 2-D continuum and the full 3-D structure.

Realistic interfacial connections between the facing sheets and
core layer were then considered. It was shown that such discrete
connections generally reduce the various equivalent stiffness
parameters of the sandwich panel, corresponding to a reduction
in the computed eigenfrequencies with respect to the idealized
sandwich structure having continuous connections between the
facing sheets and core layer. As the discrete connections between
core and facing materials were spaced further apart, eigenfre-
quencies of the equivalent 2-D panel were found to significantly
deviate from solutions computed for the 3-D sandwich panel
geometry, suggesting care must be taken when employing the
equivalent 2-D method depending on the anticipated continuity
between the facing and core layers of the studied structure.

For fully enclosed sandwich panels, the adequacy of in-vacuo
assumptions in the approach for computing equivalent elasticity
parameters was considered. It was shown that this assumption
falters only when the structural mass is reduced to the point that
the gas inside the sandwich panel cavities is substantial, �10% of
the panel mass. In conventional building construction, the cavities
of sandwich structures are filled with acoustic and/or thermal
insulation materials and this inclusion was considered. Elastic
material within the panel cavities was found to act as both a
distributed mass and stiffness affecting the host structure in a
manner dependent on the embedded material properties and the
cavity geometry. In general, the presence of an elastic material
damped the structural response, which may be compensated for
by modeling the equivalent 2-D continuum with greater overall
damping.
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