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A Disturbance Cancellation
Perspective on Vibration Control
Using a Bistable Snap-Through
Attachment
One approach to vibration control is to apply a force to a primary structure that opposes
the excitation, effectively canceling the external disturbance. A familiar passive example
of this approach is the linear-tuned mass absorber. In this spirit, the utility of a bistable
attachment for attenuating vibrations, especially in terms of the high-orbit, snap-through
dynamic, is investigated using the harmonic balance method and experiments. Analyses
demonstrate the fundamental harmonic snap-through dynamic, having commensurate fre-
quency with the single-frequency harmonic excitation, may generate adverse constructive
forces that substantially reinforce the applied excitation, primarily at lower frequencies.
However, both analyses and experiments indicate that such high-orbit dynamics may be
largely destabilized by increased bistable attachment damping. Destructive forces, which
substantially oppose the excitation, are unique in that they lead to a form of vibration
attenuation analogous to strictly adding damping to the host structure, leaving its spec-
tral characteristics largely unaltered. The experiments verify the analytical findings and
also uncover nonlinear dynamics not predicted by the analysis, which render similar
attenuation effects. [DOI: 10.1115/1.4026673]
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Introduction

Structural vibration control is a well-established yet still devel-
oping field in engineering. There are a variety of ways to attenuate
the vibrations of a structure via dynamic attachments to achieve
damping or vibration absorption [1–4]. An emerging strategy is to
use passive attachments with nonlinear characteristics in hopes of
exploiting the more intricate responses to greater advantage than
linear devices. Attachments with hardening stiffness nonlinearities
[5,6], strategies involving mode localization with essential (nonli-
nearizable) stiffness nonlinearities [7,8], and targeted energy
transfer from a linear structure to an attached nonlinear energy
sink having an essential stiffness nonlinearity [9] have been
studied extensively by experiment and analysis. Others have
investigated attachments with a different type of nonlinearity—
bistability—with the aim of controlling a linear structure’s vibra-
tions. It is anticipated that the energetic snap-through motions,
when the inertial mass rapidly crosses the unstable equilibrium
once per driving period, may be highly effective for vibration con-
trol. Bistable systems have been shown to achieve high and adapt-
able damping [10]. The possibility of designing nonlinear normal
modes of high localized amplitude within the attached bistable
truss was demonstrated [11], and these modes were shown to have
stability across a relatively wide frequency range [12]. Quasiperi-
odic (i.e., multiharmonic) response regimes were predicted to be
common for the snap-through attachment [13], and the effective-
ness in attenuating transient vibrations has also been evaluated
[14].

The past studies provided intent focus and interesting results on
the dynamic characterization of a linear structure coupled with a
bistable attachment. On the other hand, they have not assessed in
detail the vibration attenuation capability of the bistable

attachments in controlling the linear host structure under harmonic
excitations, as compared to a baseline response without the attach-
ment, especially in terms of the high-orbit dynamic. Furthermore,
experimental demonstration has yet to be performed. To shed new
light on the problem, the investigation presented in this paper
evaluates the effectiveness of a bistable attachment and snap-
through dynamics from the perspective that an effective attach-
ment necessarily must provide an opposing or destructive
dynamic force, i.e., an induced force that is mostly in opposition
to the applied excitation. As seminally detailed by den Hartog
[15] for linear vibration absorbers, the force applied to the primary
structure by the attachment is “equal and opposite to the external
force,” leaving the primary structure “standing still”. The ideal
case would be an example of a perfectly opposing dynamic
force—one that matches the applied excitation in frequency and
amplitude and is exactly 180 deg out of phase. Analysis of this
phenomenon reveals that the undamped linear absorber relative
displacement also responds out of phase with the excitation, an
anticipated result given the linear relationship between displace-
ment and force. The addition of damping to the absorber introdu-
ces a phase shift to the reactive force such that it is not perfectly
in opposition to the excitation, permitting some oscillation of the
host structure at the excitation frequency but enhancing system
robustness by providing modal damping [15].

The bistable oscillator has some potentially challenging charac-
teristics when it comes to achieving opposing dynamic force,
especially for the high-orbit, snap-through response. A recent
study demonstrated that a directly excited bistable oscillator
responds in the energetic high-orbit, snap-through dynamic only
when the response displacement is in phase with the applied force.
Otherwise, the high-energy, snap-through response destabilizes
and the result is a low-orbit, intrawell oscillation [16]. In addition,
the displacement-force curve of a bistable system is highly nonlin-
ear and includes a region of negative stiffness. It is also well
known that bistable oscillators may permit coexisting solutions,
where more than one response dynamic is possible at a particular
forcing frequency and amplitude. These features of a bistable
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attachment for the purpose of disturbance cancellation were not
examined by the prior research. That is, whether destructive forces
can be effectively provided by a bistable attachment for vibration
suppression has not been rigorously examined and verified.

The objective of this research is to evaluate the effectiveness of
an attached bistable oscillator to suppress the vibration of a linear
host structure via direct cancelation of the excitation, especially in
terms of the snap-through dynamic. As mentioned above, the
theme is that effective vibration suppression is achieved via a de-
structive force applied by the bistable attachment. In contrast, a
reinforcing or constructive dynamic force that acts in the same
direction as the excitation would be undesirable. These are eval-
uated analytically first by a harmonic balance solution of a bista-
ble oscillator attached to a harmonically excited linear host
structure, a schematic of which is depicted in Fig. 1. The ampli-
tude and phase relationships of the displacement and force pro-
duced for different designs of the attachment give insight into its
performance. Experimental efforts are also carried out; test results
verify the analytical findings and shed light on solution regions
that are not captured by the analysis.

Analytical Formulation

In Fig. 1, a bistable attachment, denoted by subscript 1, is con-
nected to a primary linear host structure, denoted by subscript 2,
whose vibration we wish to attenuate. The motion of the bistable
attachment is described by x(s), which is the relative displacement
of the bistable inertial mass with respect to the host structure mass
as a deviation from the central unstable equilibrium position of
the bistable attachment at x¼ 0. The absolute displacement of the
primary structure is described by y(s). System parameters are
prescribed as follows: m1 and m2 represent mass, parameters
d1 and d2 represent damping constant, k2 represents stiffness,
dU=dx ¼ �k1xþ k3x3 is the bistable spring force, s is time, and
overdots represent derivatives with respect to time. A periodic
external force PexðsÞ ¼ Po cos Xs is applied to the host structure.
The governing equations of motion are therefore

m2€yþ d2 _yþ k2y� d1 _xþ k1x� k3x3 ¼ Po cos Xs (1a)

m1 €xþ €yð Þ þ d1 _x� k1xþ k3x3 ¼ 0 (1b)

We nondimensionalize and rearrange Eqs. (1a) and (1b), yielding

y00 þ c2y0 þ y� lf c1x0 þ lf 2x� lf 2bx3 ¼ pcosxt (2a)

x00 þ 1þ lð Þf c1x0 � 1þ lð Þf 2xþ 1þ lð Þf 2bx3 � c2y0 � y

¼ �pcosxt (2b)

where x2
1 ¼ k1=m1, x2

2 ¼ k2=m2, nondimensional time t ¼ x2s,
excitation amplitude p ¼ Po=k2, excitation frequency x ¼ X=x2,

mass ratio l ¼ m1=m2, tuning frequency ratio f ¼ x1=x2, nonli-
nearity strength b ¼ k3=k1, and damping c1 ¼ d1=m1x1 and
c2 ¼ d2=m2x2. Apostrophes indicate derivatives with respect to
nondimensional time. The harmonic balance method is applied to
solve for the responses x and y. Tseng and Dugundji [17] analyti-
cally and experimentally demonstrated that the one-term, simple
harmonic motion solution provides an accurate estimation of
response for a base excited bistable oscillator. Equations (3a) and
(3b) therefore represent the assumed Fourier series expansion of
the displacements of the bistable and linear components,
respectively.

x tð Þ ¼ c1 tð Þ þ a1 tð Þ sin xtþ b1 tð Þ cos xt (3a)

y tð Þ ¼ a2 tð Þ sin xtþ b2 tð Þ cos xt (3b)

The amplitude coefficients a1, a2, b1, b2, and c1 are assumed to
vary slowly. Equations (3a) and (3b) and time derivatives are sub-
stituted into Eqs. (2a) and (2b). Neglecting higher-order harmon-
ics and equating the coefficients of constant terms cos xt and sin
xt, the following system of five equations for the five unknown
amplitude coefficients is produced:

�c2a02 þ 2xb02 þ lf c1a01 ¼ 1� x2
� �

a2 � c2xb2 � lf 2Ka1

þ lf c1xb1 (4a)

�2xa02 � c2b02 þ lf c1b01 ¼ c2xa2 þ 1� x2
� �

b2 � lf c1xa1

� lf 2Kb1 � p (4b)

� 1þ lð Þf c1c01 ¼ 1þ lð Þf 2 �1þ b c2
1 þ

3

2
r2

1

� �� �
c1 (4c)

c2a02� 1þlð Þf c1a01þ2xb01¼�a2þc2xb2þ 1þlð Þf 2K�x2
� 	

a1

� 1þlð Þf c1xb1 (4d)

c2b02 � 2xa01 � 1þ lð Þf c1b01 ¼ �c2xa2 � b2 þ 1þ lð Þf c1xa1

þ 1þ lð Þf 2K� x2
� 	

b1 þ p

(4e)

where K ¼ �1þ b 3c2
1 þ 3

4
ða2

1 þ b2
1Þ

� �
. To find the steady-state

values of the amplitude coefficients, we set time derivatives to
zero and reduce the equation system to a single modulation equa-
tion. At steady state and after defining r2

1 ¼ a2
1 þ b2

1 and
r2

2 ¼ a2
2 þ b2

2, Eq. (4c) yields

c2
1 ¼

1

b
� 3

2
r2

1

0

8<
: (5)

and, consequently,

K ¼
2� 15

4
br2

1 ; c2
1 ¼

1

b
� 3

2
r2

1

�1þ 3

4
br2

1 ; c2
1 ¼ 0

8>><
>>:

(6)

More explicitly, if the offset amplitude c2
1 6¼ 0, then oscillations

occur around one of the nonzero stable equilibria, indicating low-
orbit oscillations. On the other hand, if c2

1 ¼ 0, then oscillations
are around the unstable equilibrium at zero relative displacement,
which indicates high-orbit motion.

Equations (4a) and (4b) are solved in terms of a2 and b2 then
substituted into Eqs. (4d) and (4e). The latter are squared and

Fig. 1 Excited linear structure with bistable device attachment
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summed to produce the following third-order polynomial for the
bistable attachment relative response amplitude r2

1:

p2x4 ¼ f 2 � 1þ lð Þf 2x2
� �2þ f 2c2x

� �2
h i

K2
n

þ �2f 2x2 1� x2
� �

1� 1þ lð Þx2
� �

þ c2xð Þ2
n oh i

K

þ x2 1� x2
� �2

x2 þ f c1ð Þ2 1� 1þ lð Þx2
� �2

h

þ f c1c2ð Þ2þ c2xð Þ2þ2lf c1c2x
2


 �
x2
io

r2
1 � ar2

1 (7)

Equation (7) can be solved for the positive, real roots of r2
1. Using

Eqs. (4a)–(4d), the amplitude coefficients are expressed in terms of K

a1 ¼
px3

a
f 2c2K� c2x

2 þ f c1 1� 1þ lð Þx2
� �� 	

(8a)

b1 ¼
px2

a
f 2K 1� 1þ lð Þx2
� �

�f c1c2x
2 � 1� x2

� �
x2
	�

(8b)

a2 ¼
1

q
k1a1 þ k2b1 þ c2xð Þp½ � (8c)

b2 ¼
1

q
�k2a1 þ k1b1 þ 1� x2

� �
p

� 	
(8d)

with terms q, k1, and k2 defined as

q ¼ 1� x2
� �2þ c2xð Þ2 (9a)

k1 ¼ 1� x2
� �

lf 2K
� �

þ c2xð Þ lf c1xð Þ (9b)

k2 ¼ c2xð Þ lf 2K
� �

� 1� x2
� �

lf c1xð Þ (9c)

Once the amplitude coefficients have been determined, their sta-
bility must be assessed. Real and stable solutions represent physi-
cally realizable system dynamics. Stability of the solutions is
determined by rewriting Eqs. (4a)–(4d) in state form and comput-
ing the eigenvalues of the Jacobian of the state matrix [18]. If all
eigenvalues have negative real parts, the corresponding solution is
predicted to be stable.

Equations (2a) and (2b) may be rewritten as

x tð Þ ¼ c1 tð Þ þ r1 tð Þ cos xt� /1½ � (10a)

y tð Þ ¼ r2 tð Þ cos½xt� /2� (10b)

where the phase lag of the responses behind the applied force are
/1 ¼ tan�1 a1=b1ð Þ and /2 ¼ tan�1 a2=b2ð Þ. The nondimensional
force applied by the bistable attachment to the structure is

Patt tð Þ ¼ lf c1x0 � lf 2xþ lf 2bx3 (11)

Substituting Eq. (10a) and its first time derivative into Eq. (11)
and neglecting higher-order harmonics, we obtain

Patt tð Þ ¼ Pa1cosðxt� U1Þ (12)

where the attachment force amplitude and phase are

Pa1 ¼ lfr1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fKð Þ2þ xc1ð Þ2

q
(13a)

U1 ¼ tan�1 f Ka1 � xc1b1

xc1a1 þ f Kb1

� �
(13b)

Equation (12) can be trigonometrically summed with the excita-
tion force applied to the host structure, p cos (xt), to yield the
total force applied to the host structure,

Ptot tð Þ ¼ A1cosðxt� w1Þ (14)

where the total force amplitude and phase are

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

a1 þ 2Pa1p cos U1 þ p2

q
(15a)

w1 ¼ tan�1 Pa1 sin U1

Pa1 cos U1 þ p

� �
(15b)

If A1 is close to zero, it is a consequence of the bistable attachment
supplying a destructive force that substantially cancels the input.

Analytical Investigation

The displacement and force responses of the structure and bista-
ble attachment are investigated in this section, with the goal of
using these quantities to evaluate the effectiveness for attenuation
of the bistable attachment and particularly for the snap-through
dynamic. Figure 2 presents a study of the system response for dif-
ferent levels of the frequency tuning ratio f with p¼ 0.2, l¼ 0.3,
b¼ 1, and c1¼ c2¼ 0.05. Force amplitude p and nonlinearity
strength b are selected in accordance to past work [17], having
validated response forms of a practical bistable buckled beam
structure determined via a fundamental harmonic balance solution
for such parameter values. Relatively small damping constants are
set, since a small amount of damping is always present in real
world systems. In all cases, the solid lines represent a snap-
through response, the dashed lines represent a low-orbit response,
and thin gray lines correspond to unstable dynamics. The distinc-
tion between high- and low-orbit responses is clear in the attach-
ment response amplitude plots presented in Fig. 2(a). At lower
frequencies, low- and high-orbit solutions coexist. In some fre-
quency regions, it appears that no stable solution exists. Similar
lack of stable solutions was evident in studies of an excited linear
structure with monostable nonlinear oscillator attachment [2,19];
the conclusion drawn is that multiharmonic response would be
prevalent in the bandwidths where stable solutions were absent in
a fundamental harmonic investigation. The comparable lack of
stable solutions for the coupled system, particularly for frequen-
cies around x¼ 1 in Fig. 2, encourages further examination by
ensuing experiments to verify this hypothesis for the coupled
system.

At a glance, Fig. 2(c), which represents the response amplitude
of the host structure, shows that the snap-through dynamic of the
bistable attachment increases the response amplitude of the pri-
mary structure over significant frequency ranges when compared
to its uncoupled response—the response of the host structure with-
out the attachment (black dotted line). This adverse influence for
vibration control consistently occurs despite changing tuning ratio
f, one traditional design parameter for a linear vibration absorber.
As Fig. 2(a) shows, this region of host amplification is associated
with the greatest attachment displacement amplitudes. On the
other hand, in a narrow frequency region near the uncoupled reso-
nance frequency (x¼ 1), certain values of f, namely f¼ 0.5 in
Fig. 2, yield high-orbit response, which supplies some vibration
suppression of the main structure. Figure 2(a) indicates the dis-
placement amplitude is noticeably lower than the snap-through
motion at relatively lower frequency. To explore these two
regions further, the attachment force amplitude and phase accord-
ing to Eq. (13) as well as the total force amplitude applied to the
structure according to Eq. (15a) are presented in Fig. 3. Figure
3(b) demonstrates two distinct types of high-orbit responses. In
the region below x¼ 0.85, the force phase is mostly below
90 deg, explaining the amplification of the host structure response.
In the frequency region near x¼ 1, the force phase is mostly
greater than 90 deg, lending a measure of attenuation of the host
structure vibration. The magnitude of the vector sum of the
applied excitation and attachment force is given in Fig. 3(c). This
presents a clear picture of the constructive and destructive force
regions produced by the attachment. Note that the displacement
and force phase lag may not closely correspond as shown by com-
paring Figs. 2(b) and 3(b). For example, in the region of high-
orbit response for f¼ 0.5 just above x¼ 1, the displacement phase
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lag is an isolated, small segment of nearly� 30 deg (Fig. 2(b)) and
the force phase lag is an isolated but nearly vertical segment that
varies widely between about �45 deg and �170 deg (Fig. 3(b)).

The opposing force dynamic exhibits similar resonance charac-
teristics and frequency as the uncoupled case as in Fig. 2(c) near
x¼ 1. That is, the bistable attachment snaps through, but apart
from a reduction in the primary structure response, the character-
istic resonance frequency is not shifted from the original linear
structure natural frequency, even though there are two distinct
degrees of freedom; this phenomenon was also recently reported
in Ref. [20]. Except for the break in the stability of the solution in
this region, the effect on the host structure is quite similar in
appearance to adding damping to the host structure, though the
system actually constitutes two degrees of freedom. This is benefi-
cial for vibration control applications, where it is difficult to
enhance the damping of a primary structure while retaining its
original spectral response.

Figure 4 presents a study of the response of the system for dif-
ferent levels of the mass ratio l with p¼ 0.2, f¼ 0.25, b¼ 1, and

c1¼ c2¼ 0.05. Mass ratio is varied from moderate to relatively
high values (l¼ 0.1, 0.4, and 1.0) for the purposes of illustration,
since a larger attachment is commonly able to supply a more
effective reactive force. The maximum frequency of stable con-
structive snap-through is tailored by adjusting l, evidenced most
clearly in Fig. 4(a)—as mass ratio increases, the maximum stable
frequency of this dynamic decreases. Near x¼ 1, regions of
favorable destructive snap-through may exist. In this region, vary-
ing the mass ratio has a much smaller effect on the stable band-
width of the response compared with the constructive region.
Even at extremely high values of mass ratio, there is still a break
in the stability of the region of destructive force near x¼ 1. Addi-
tionally, increasing the mass ratio causes a more effective force
cancellation, as shown in Fig. 4(b).

Figure 5 presents a study on varying the attachment damping
constant c1 with other parameters set to p¼ 0.2, f¼ 0.25, b¼ 1,
l¼ 0.3, and c2¼ 0.05. As the damping constant is increased, the
undesirable constructive high-orbit motion becomes less stable,
spanning less bandwidth for c1¼ 0.25 than c1¼ 0.05, and eventu-
ally vanishes, for example, due to c1¼ 0.5. Also, as c1 increases,

Fig. 2 System dynamics as tuning ratio f varies. (a) Bistable
attachment displacement amplitude, (b) bistable phase lag, and
(c) host system disp. amp.

Fig. 3 (a) Force amplitude applied by attachment, (b) attach-
ment force phase, and (c) total (attachment 1 excitation) force
amplitude applied to structure for different levels of tuning ratio
f. Unstable solutions omitted.
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the destructive high-orbit dynamic is increasingly stabilized near
the uncoupled resonance frequency, as demonstrated in the inset
of Fig. 5(a). Adding viscous damping to a system typically shifts
the phasing of the response relative to the input. In Figs. 5(b) and
5(c), as damping increases, the attachment force phase approaches
180 deg out of phase in the frequency region where the attachment
force amplitude is nearly equal in magnitude to the input force, so
as to maximize vibration-control effectiveness. The net effect of
the forces working on the host structure is displayed in Fig. 5(d),
where the total force applied to the host structure is minimized for
increased damping constant. Loosely speaking, this is the opposite
effect of increasing the damping of a linear vibration absorber,
where increasing damping drives the force phase away from the
ideal 180 deg out of phase at the tuned frequency of the attach-
ment. Finally, although the attached bistable device is oscillating
in high-orbit motion, its effect on the host structure is similar to
simply adding damping to the host structure, as observed near
x¼ 1 in Figs. 2(c), 4(a), and 5(a).

Experimental Investigation and Findings

This section seeks to experimentally validate the complex rela-
tionships predicted in the analytical investigations, notably the
possibility of attenuation of host structure vibration via a destruc-
tive force. The previous section indicates that employing a bista-
ble device as a vibration control implement is possible for some
device configurations and over some frequency ranges, though it
is not a straightforward task due to the variety of possible
response types as well as coexisting solutions. Additionally, it is
well-known that coupled nonlinear systems are more prone to
induce multiharmonic responses [2,13,18,19], making a direct
comparison against a linear absorber difficult if the bistable
attachment diffuses the single-frequency input energy to other fre-
quencies. Nevertheless, analysis indicates that a properly designed

bistable attachment may be capable of high-orbit, snap-through
oscillations that provide a measure of destructive force upon the
primary structure near its resonance frequency. This may be
accompanied by constructive snap-through forces at lower fre-
quencies that may reinforce the excitation to the system and

Fig. 4 System dynamics as mass ratio l varies. (a) Host dis-
placement amplitude and (b) total force applied to host struc-
ture. Unstable solutions omitted.

Fig. 5 System dynamics as damping constant c1 varies. (a)
Host structure displacement amplitude, (b) attachment force
amp, (c) attachment force phase, and (d) total force amp.
applied to host structure. Unstable solutions omitted.
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amplify the host structure vibration, depending on system
parameters.

The test configuration is shown in Fig. 6. A host linear oscilla-
tor (rectangular frame) is attached to an electrodynamic shaker
platform via a low-friction translational bearing and spring.
Another oscillator mass is attached to the host structure via an
additional translational bearing and inclined spring. To induce a
bistability for the attachment, the spring is precompressed in its
upright position while guiding rods prevent twisting of the spring
as the bistable device snaps through. The excitation signal to the
shaker is a slowly swept sinusoid (þ0.0092 Hz/second). A potenti-
ometer measures the displacement of the shaker platform, and
accelerometers measure the vibration of the oscillator inertial
masses. Tests are conducted with and without the bistable attach-
ment coupled to the host oscillator. The attachment has a mass ra-
tio of l� 0.39 and tuning ratio of f� 0.3. The resonance
frequency of the uncoupled linear oscillator is computed to be
5.20 Hz based on the known linear spring constant (960 N/m) and
mass (0.90 kg).

Direct comparison of results between the force-excited system
of the analysis and the base-excited system of the experiment is
possible. Consider the governing equation for the physical system
of Fig. 1, excepting that the force excitation is replaced by ground
acceleration, €z,

m2 €vþ €zð Þ þ d2 _vþ k2v� d1 _u� _vð Þ þ k1 u� vð Þ � k3 u� vð Þ3¼ 0

(16a)

m1 €uþ €zð Þ þ d1 _u� _vð Þ � k1 u� vð Þ þ k3 u� vð Þ3¼ 0 (16b)

Displacement coordinates are defined such that v is the displace-
ment of the host structure and u is the displacement of the bistable

attachment, both relative to the moving ground. The bistable coor-
dinate is defined such that the inertial mass is in the unstable equi-
librium position when both u¼ 0 and v¼ 0. Rearranging terms in
Eq. (16),

m2€vþ d2 _vþ k2v ¼ �m2€zþ d1 _u� _vð Þ � k1 u� vð Þ þ k3 u� vð Þ3
h i

(17a)

m1 €uþ €zð Þ ¼ � d1 _u� _vð Þ � k1 u� vð Þ þ k3 u� vð Þ3
h i

¼ �Fatt

(17b)

Subsequently, Eq. (17a) becomes

m2€vþ d2 _vþ k2v ¼ �m2€z� m1 €uþ €zð Þ ¼ Fex þ Fatt (18)

In order to compare the base-excited system with the force-
excited system, we rearrange Eq. (1b),

m1 €xþ €yð Þ ¼ � d1 _x� k1xþ k3x3
� 	

¼ �Patt (19)

and thereafter express Eq. (1a) as

m2€yþ d2 _yþ k2y ¼ Po cos Xs� m1 €xþ €yð Þ ¼ Pex þ Patt (20)

Equations (18) and (20) show that the force-excited system of the
analysis and the base-excited system of the experiment are mathe-
matically equivalent. The summation of excitation and bistable
attachment forces (Fex and Fatt, respectively) in experimental sys-
tem Eq. (18) work upon the relative vibration of the host structure
v, whereas their counterpart forces (Pex and Patt) in analytical sys-
tem Eq. (20) work upon the absolute response of the host system
y. Therefore, to verify the analytical development of this work, we
experimentally consider system Eq. (18). Equations (18) and (20)
also make clear that cancellation of input into the host system of
coordinates v and y, respectively, is thus achieved when the right-
hand side is zero. Note that comparing systems in Eqs. (18) and
(20) indicates that following normalization of the equations, we
would conclude that parameters x1,2, l, f, c1,2, and b have identi-
cal interpretations between the systems, and thus dynamical phe-
nomena related to changes in these values from analysis likewise
will have direct counterpart in the experiment.

Using the experimental data of base acceleration €z (computed
from the second time derivative of the potentiometer output) and
the absolute acceleration of the bistable attachment €uþ €z, we may
evaluate the two forces and compare their phase relationships for
constructive or destructive superposition upon the host structure
relative vibration v. This coordinate v is plotted in Fig. 7 as the
acceleration frequency response function (frf) amplitude for three
different levels of root-mean-square (rms) base excitation ampli-
tude: 1.07 m/s2 (a), 1.35 m/s2 (b), and 1.60 m/s2 (c). Different
amplitudes are investigated since nonlinear response can change
significantly depending on excitation level. The uncoupled system
exhibits a strong resonance around 5.20 Hz, as predicted. For the
coupled system around 2.5 to 3 Hz for each case of base accelera-
tion, the bistable attachment snaps through with large amplitude
in-phase displacements relative to the host system. Time series of
the forces are plotted in Fig. 8 to verify force behavior, using a
base acceleration of 1.07 m/s2. Figure 8(a) shows that the bistable
attachment force Fatt ¼ �m1 €uþ €zð Þ is constructive with the exci-
tation force Fex ¼ �m2€z. Note the large difference in magnitudes
between the forces, the left vertical axis corresponding to the exci-
tation and the right vertical axis corresponding to the attachment,
indicating that the attachment applies a much greater force to the
structure than the input force. The large constructive force
explains the resulting large amplification of the host oscillator
response in the frequency range around 2.5–3 Hz. This also serves
to validate the analytical formulation, since it was also found that,
at frequencies less than the host structure uncoupled resonance,

Fig. 6 Test configuration to evaluate vibration control capabil-
ity of nonlinear attachments
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the snap-through dynamic may provide a constructive force, lead-
ing to a large amplification in the host structure response.

Figures 2(b) and 2(c) indicate that, as forcing frequency is
increased, the constructive snap-through forces may persist as the
frequency approaches the uncoupled linear oscillator resonance
and adversely amplify the host-system response. However, the
present experimental configuration was not capable of sustaining
such high-energy dynamics for frequencies greater than about 3
Hz and instead returned to small intrawell oscillations. As excita-
tion frequency approaches 5 Hz, the coupled system is observed
to undergo resonance-like behavior, during which time the bista-
ble attachment exhibits two distinct responses, indicated in Fig. 7
as squares (out-of-phase snap-through displacements, indicated as
OOP) or circles (period-2 snap-through, indicated as P2). Initial
conditions determine which response form is produced, and it was
experimentally observed from numerous trials that both responses
appeared with near-equal probability; in fact, physical impulses
into the system around these frequencies could repeatably transi-
tion the system response from P2 to OOP and back again. In the
case of the coupled OOP dynamic, the unstable equilibrium posi-
tion of the bistable attachment is observed to become mostly sta-
bilized around 5–5.25 Hz. The bistable inertial mass has little
motion with respect to a fixed, inertial reference frame but is still
oscillating relative to the shaker base, which is the important ref-
erence frame to consider. The resulting induced attachment force
is of comparable magnitude with the applied excitation. This is
conducive for effective vibration cancellation, although Fig. 8(b)
indicates that the attachment force response is partially diffused
into an order-3 harmonic such that ideal out-of-phase disturbance
cancellation is not obtained. Figure 7 also indicates that the pri-
mary influence for the OOP response is a damping-like effect
upon the original host-structure resonance with no shift in spectral
characteristics. This suggests that the bistable spring enables the
attachment to behave as a purely damping device instead of like
an additional degree of freedom.

As the excitation frequency increases slightly to 5.75 Hz, the
bistable attachment exhibits pronounced OOP snap-through. The
forces induced by the bistable attachment as shown in Fig. 8(c)
are partially destructive with the excitation force. Approximately
one-half of each excitation period in Fig. 8(c) indicates opposing
forces, and the remaining portion of the period suggests substan-
tial reinforcement of the excitation load. However, the trend of
the OOP response plotted in Fig. 7 is in good agreement with our
analytical findings in Fig. 2(c) for f¼ 0.25. The analyses predict
that the coupled system would undergo a resonance feature in this
bandwidth, which could reduce the resonance peak of the

uncoupled linear system; the OOP dynamic in Fig. 7 demonstrates
a similar reduction in peak amplitude as compared with the reso-
nance peak of the uncoupled system, as the attachment force is
partially destructive with the excitation. The attenuation observed
near the uncoupled host-structure resonance peak during OOP
snap-through is similar to the expected effect of directly adding
damping to the host structure, though actually a dynamic system
has been attached. This observation is in good agreement with an-
alytical findings.

A second and repeatable dynamic leading to attenuation of host
structure motion is observed near the uncoupled linear system res-
onance frequency. Figure 8(d) shows the time series of the force
induced by this dynamic, during which the bistable oscillator
vibrates primarily with a period-2 times that of the excitation,
while the host system vibrates mostly at the driving frequency.
Figure 8(d) indicates several moments during a forcing period
when the bistable attachment and excitation forces are destructive,
providing explanation for similar attenuation results as the OOP
dynamic. Another explanation for this attenuation is that the net
harmonic energy of the coupled system is more readily diffused
from the host structure into the bistable attachment in the form of
the strong period-2 harmonic. This is a similar nonlinear vibration
control methodology as employed by other researchers [9],
sometimes classified as “energy pumping.”

Analyses predict that the snap-through dynamic that produces
constructive forces may induce a dramatic amplification of the
primary structural vibration over a broad band of frequencies, for
example, Fig. 2(c), in which case the amplification could reach or
exceed the amplitude of the uncoupled primary system resonance.
However, we experimentally observe in Fig. 7 that this response
is destabilized prior to the point at which such extreme amplifica-
tion occurs. Inherent damping in the test setup could be the rea-
son. Revisiting the analysis in Fig. 5, an increase in damping
constant c1 leads to a decrease in the stability bandwidth and the

Fig. 7 Relative acceleration frf magnitude of host system with
and without the bistable attachment for various base accelera-
tion amplitudes: (a) 1.07 m/s2, (b) 1.35 m/s2, and (c) 1.60 m/s2

Fig. 8 Time series of forces as computed via measured data
and Eq. (13). Forces plotted correspond to: (a) constructive
snap-through at 2.62 Hz, (b) destructive snap-through during
near-stabilization of unstable equilibrium at 5.25 Hz, (c) destruc-
tive snap-through at 5.75 Hz, and (d) P2 snap-through at
5.75 Hz.
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eventual vanishing of the constructive high-orbit dynamic. These
results indicate that inherent damping in the experimental system
may have suppressed the band of stability of the constructive
snap-through region, providing explanation as to why the meas-
ured high-orbit responses in the 2.5–3-Hz region of Fig. 7 were
destabilized prior to reaching the large peaks earlier observed in
analyses, Fig. 2(c).

Conclusions

The effectiveness of a bistable attachment is explored by har-
monic balance analysis and subsequent experiments for the pur-
pose of supplying an opposing force to cancel disturbance and
suppress the vibration of a host structure under harmonic excita-
tion. Analysis and experiment both show that high-amplitude
snap-through, which is stable at relatively low frequencies, gener-
ates forces that reinforce the excitation. Therefore, in this region,
the hypothesis that energetic snap-through may be harnessed for
vibration control purposes would not be valid. On the other hand,
in a frequency region near the natural frequency of the original
host structure, the bistable system may respond in snap-through
motion and produce forces that oppose the applied excitation. The
effect of the opposing force dynamic on the structure typically is
similar to a direct increase of host-structure damping. As a result,
the attachment effectively allows a structure to maintain its origi-
nal design, in terms of spectral distribution for instance, with the
appearance of enhancing the damping characteristics. The experi-
mental investigation verifies analytical findings and also uncovers
regions of period-2 oscillations in the attachment, which are also
shown to suppress the amplitude of the host structure near its
original (without attachment) natural frequency.
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