
INTRODUCTION
Changes in inertial parameters of road vehicles have a 
significant effect on ride quality, performance, handling, and 
energy efficiency. As automotive subsystems become 
increasingly automated, accurate knowledge of inertial 
parameters is critical to ensuring passenger safety while 
delivering improved vehicle performance. Therefore, it is 
evident that vehicle mass and road grade are two parameters 
related to critical loads that must be estimated accurately and 
reliably.

For successful operation, various controllers require accurate 
identification of vehicle mass, but passenger and cargo loading 
may cause variations in mass of up to 50% for small cars from 
trip to trip. The difference between accurate real-time 
identification of mass and its assumption of constant value 

throughout all operating conditions directly reflects a reduction 
in the accuracy and performance of automotive controls. 
Meanwhile, light trucks and cargo vans may vary in mass by 
400% depending on payload conditions. Vehicle mass is 
directly related to tire normal forces, which influence lateral and 
longitudinal tire force generation [1]. Consequently, active 
safety technologies such as anti-lock braking systems, collision 
avoidance, and stability control can benefit from accurate 
knowledge of vehicle mass [2, 3]. It has been shown that for 
typical passenger vehicles, a 10% increase in vehicle mass 
corresponds to a 2.4% to 4.1% increase in energy usage [4]. 
Neglecting mass variations negatively affects the accuracy of 
distance-to-empty predictions and compromises effective 
battery management of hybrid electric or battery electric 
vehicles. The presence of road grade can introduce a 
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significant load to the powertrain. Transmission shift scheduling, 
adaptive cruise control, and hill start assist [5] are technologies 
that benefit from accurate knowledge of road grade.

While various controllers on-board a vehicle can independently 
estimate relevant parameters, it may be advantageous to have 
a single, accurate, on-line estimate of vehicle mass and road 
grade applied across controller platforms. This avoids 
redundant computations and conflicting parameter estimates, 
which is crucial when a supervisory controller is coordinating 
the behavior of multiple control systems [6]. While there have 
been numerous studies for inertial load estimation which 
employ various prediction methods and modeling approaches 
[3, 7, 8, 9, 10], many previous efforts toward on-line mass and 
grade estimation using existing on-board sensor systems have 
been based on vehicle longitudinal dynamics models due to 
the many common driving scenarios for which such models 
apply. Estimation approaches include recursive least squares 
(RLS) with multiple forgetting factors [11, 12, 13], extended 
Kalman filtering (EKF) [5], a dynamic grade observer (DGO) 
[14] requiring only longitudinal acceleration and an estimate of 
powertrain torque, and grade estimation using kinematic 
information provided by a longitudinal accelerometer [15]. As 
developed in this paper, kinematic information may also be 
used to estimate mass without explicit calculation of road 
grade: a parallel mass and grade estimation.

Mass and grade estimation methods reported in literature are 
not widely employed in production automotive controls at 
present. In addition, there are few reported efforts which 
directly compare such estimation approaches using data that 
represents a range of driving conditions [13], nor have they 
been comprehensively studied and compared using consistent 
experiments. A study to evaluate existing estimation schemes 
side-by-side may yield critical information regarding the 
accuracy and reliability of each method, may highlight 
impediments to their implementation which explain the lack of 
industry adoption, and may also uncover novel approaches by 
which the existing methods could be integrated or improved 
upon. Therefore, the goal of this research is to compare the 
existing real-time mass and grade estimation approaches, seek 
insights regarding suitable method implementation, and 
propose new solutions which advance the state-of-the-art of 
real-time vehicle load parameter estimation. The existing 
longitudinal dynamics-based RLS, EKF, and dynamic grade 
observer (DGO) methods are compared alongside a parallel 
mass and grade (PMG) estimation approach. Various driving 
data sets are employed to evaluate estimator reliability and 
accuracy. While global positioning (GPS)-based estimation 
approaches are reported in the literature [16, 17], comparison 
of such approaches is omitted because GPS information is not 
necessarily available or reliable as compared to vehicle 
sensors requiring only local access of dynamic information.

The remainder of this paper is structured as follows: The first 
section introduces the longitudinal dynamics model used by all 
the estimation methods. Then, the on-line estimation methods 
compared in this study are described. Experiments to evaluate 

these methods are detailed and the results are presented. A 
mass selection algorithm for use with simultaneous mass and 
grade estimation methods is proposed and validated using the 
convergence of parameters under several different initial 
conditions. Then, the independent mass and grade estimation 
methods are assessed. Finally, the last section summarizes the 
conclusions and discusses future research opportunities.

LONGITUDINAL DYNAMICS MODEL
For typical driving scenarios, longitudinal motion is dominant 
and its measurement provides a near-continuous data set that 
can be used for real-time estimates of vehicle loads. 
Interruptions of estimation may occur during gear shifts, 
braking, and periods of significant vehicle yaw and roll because 
such events are not easily captured by conventional 
longitudinal dynamics modeling. The forces influencing 
automotive longitudinal dynamics are shown in Figure 1. The 
tractive force due to tire-road interactions is Fw. This study 
assumes no tire slip and that the tractive force may be 
accurately determined by Fw = Tw/rw, where Tw is wheel torque 
and rw is tire radius. Forces opposing longitudinal motion 
include aerodynamic drag Faero, rolling resistance Fµ, grade 
forces Fgrade and braking Ffb if present.

Figure 1. Illustration of forces influencing vehicle longitudinal dynamics, 
including tractive force Fw, aerodynamics drag force Faero, grade force 
Fgrade, rolling resistance force Fµ and friction brake force Ffb.

From these assumptions, the longitudinal dynamics of a 
vehicle may be expressed through Newton's 2nd law as

(1)

where m is vehicle mass; vx is longitudinal velocity; ρ is the 
density of air; Cd is the vehicle's drag coefficient; Af is the 
vehicle's frontal area, g is the gravitational constant, µ is the 
vehicle's rolling resistance, and β is road grade. The wheel 
torque Tw may be computed from a measurement on the 
driveline, combined with a driveline model that considers 
losses due to friction and inertial effects. Making the 
substitution βµ = tan−1 µ allows equation (1) to be written as:

(2)
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Equation (2) separates the loading effects of vehicle mass and 
road grade, and is used as the basic dynamic equation to 
which mass and grade estimation methods are applied in this 
study.

If the vehicle is equipped with a longitudinal accelerometer, 
road grade is computed from equation (3) relating measured 
acceleration ax to the differentiated longitudinal velocity . On 
a horizontal surface, these two quantities are identical. 
However, if the accelerometer is tilted due to road grade or 
vehicle pitch, it also captures the vector projection of gravity 
along the axis of sensor measurement. If the accelerometer is 
tilted from the horizontal plane by β and vehicle pitching is 
absent, then g sin(β) is the component of gravity projected onto 
its measurement axis [15, 17].

(3)

ON-LINE ESTIMATION METHODS
This section presents mass and grade estimation methods that 
are evaluated and compared in this study. They include 
simultaneous mass and grade estimation approaches (RLS 
and EKF), a dynamic grade observer (DGO) that only 
estimates grade, and a parallel mass and grade (PMG) 
estimator which uses a longitudinal accelerometer. For more 
detailed information on the development of these estimation 
methods, readers are encouraged to reference the applicable 
sources cited in the following subsections.

Recursive Least Squares (RLS) with Multiple 
Forgetting Factors
Recursive least squares is a well-established method for 
estimating parameters in real time. It may be used with 
forgetting factors to account for parameters that are slowly-
varying [18]. Vahidi et al. [12] presented a form of RLS that 
uses multiple forgetting factors for mass and grade, to reflect 
the fact that mass is constant while grade may slowly vary. 
Thus, this method simultaneously estimates vehicle mass and 
road grade. The approach is summarized below.

Equation (2) is rewritten more compactly as

(4)

where

(5a)

(5b)

(5c)

(5d)

Two different forgetting factors, λ1,λ2 < 1, are applied to the 
RLS update equations for mass and grade respectively. These 
forgetting factors influence parameter update gains as well as 
convergence of the covariance matrix. A forgetting factor of 1 is 
used when the estimated parameter is assumed to be 
constant, in which case all prior information is applicable for 
identifying the parameter's current value. Consequently, the 
mass forgetting factor λ1 should be defined very close to unity 
because mass is assumed to be essentially constant for the 
duration of a trip. The forgetting factor for grade λ2 should be 
less than λ1 since grade is more likely to vary over the course 
of a continuous driving event as compared to vehicle mass 
loading. Together λ1,2 represent tuning parameters for RLS 
mass and grade estimation and detailed evaluation of their 
influence may be found in [12].

Extended Kalman Filter (EKF)
Kalman filters are used extensively in state estimation, and can 
be implemented for simultaneous mass and grade estimation if 
these two parameters are treated as system states with low 
variance. Due to the effects of aerodynamic drag, equation (1) 
is not linear in vx. Thus the extended Kalman filter [19] must be 
used to linearize the system about an operating velocity. An 
EKF discretized by distance to estimate constant mass and 
grade was presented by Winstead et al. [5] in the context of 
adaptive cruise control, but was not explored for varying grade 
as is investigated in this study. In this paper a discrete-time 
filter is formulated using an Euler approximation for the 
following state vector at time k.

(6)

vx is longitudinal vehicle velocity while θ1 and θ2 are defined in 
equation (5). The system propagates in one time step as

(7)

with differentiate state transition model

(8)

and process noise
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(9)

Ts is the sampling period, and process noise w(k) is assumed 
to be zero-mean with diagonal covariance matrix Q. Velocity is 
the observable quantity, thus the observation model is

(10)

The observation matrix H is [1 0 0] and v(k + 1) represents 
observation noise with zero mean and covariance R. The 
model described in equations (7,8,9,10,11) may be 
implemented with the extended Kalman filter. A thorough 
explanation of the filter, including linearization and equations 
for the prediction and update step, is found in [13].

Dynamic Grade Observer (DGO)
If mass is known, grade is the only unknown parameter in 
equation (1). McIntyre et al. [14] formulate vehicle longitudinal 
dynamics as in the manner of equation (4) and propose an 
observer to update estimates of grade, related to θ2. Therefore, 
the DGO method only estimates grade and does not 
independently provide a vehicle mass estimate.

Consider the observation error between measured and 
modeled velocity

(11)

Modeled velocity is found by integrating modeled acceleration 
based on estimated road grade, and the error derivative

(12)

The following observer is proposed

(13)

k1 and k2 are observer gains. The proof and conditions for 
convergence, and a demonstration of the DGO in combination 
with an RLS estimator for mass, can be found in [14].

Parallel Mass and Grade (PMG) Estimator Using 
a Longitudinal Accelerometer
A parallel mass and grade estimation approach is devised here 
which independently estimates mass and grade when a 
longitudinal accelerometer is available on-board the vehicle. An 
increasing number of vehicles on the road today are equipped 
with reliable and accurate longitudinal accelerometers. These 
sensors capture a vehicle's longitudinal acceleration but also 
measure the component of gravity along the measurement axis 

due to tilting caused by grade and body pitch, as described in 
equation (3). This allows direct extraction of road grade 
information with only two signals assuming that vehicle pitching 
is absent from the vehicle dynamics, as has been earlier 
recognized in the literature [15, 17].

Because the accelerometer signal is affected by noise factors 
including vehicle bounce and pitch motions, equation (3) may 
not always be accurate for computation of road grade. To 
mitigate these effects, this research utilizes a weighted moving 
average filter based on signal variance over a buffer length. 
Since grade is a slowly varying parameter, large signal 
variance during a short buffer period indicates significant 
bounce and pitch motion, and the grade estimate update 
during this time is treated with lower confidence. In this 
manner, grade is independently estimated using available 
vehicle data and the accelerometer. During periods of constant 
acceleration, vehicle pitching may cause the grade estimate to 
be biased. Although the proposed PMG approach neglects this 
behavior, a pitch correction factor may be determined either 
experimentally by measuring steady state pitch angles under a 
range of constant accelerations on flat ground. Alternatively, 
this pitch correction factor can be determined analytically as a 
function of longitudinal acceleration if suspension parameters 
are known.

Once an estimate of grade is obtained, a longitudinal 
accelerometer also allows for a parallel estimation of vehicle 
mass. We achieve this by rearranging equation (1), and 
assuming the rolling resistance to be unaffected by road grade 
(µ cos(β) ≅ µ). This leads to

(14)

(15)

(16)

where Φ is the right hand side of equation (15). Noting that 
situations may arise when the numerator and denominator of 
equation (16) are both zero, it is necessary to introduce a 
method that updates mass to account for this.

Mass estimates are updated using a single variable recursive 
least squares algorithm. In this study, we employ a formulation 
of the RLS algorithm for a single forgetting factor as described 
by Johnson [18]. Here, we improve and extend the RLS 
algorithm to consider cases where the right hand side of 
equation (16) is nearly indeterminate. A potential approach to 
resolve this concern is to introduce a variable forgetting factor. 
However, since vehicle mass is considered to be a stationary 
parameter over the course of a trip, the forgetting factor should 
already be close to unity. A variable forgetting factor also 
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affects RLS convergence. Instead, the estimate  is updated 
depending on ρax,Φ

, which is the correlation between measured 
acceleration and measured torque.

(17)

Kk is the gain calculated within the RLS algorithm, and is 
multiplied by the correlation between the numerator and 
denominator of equation (17). This ensures that when they are 
poorly correlated, the estimator reduces the contribution to the 
new mass estimate. Therefore, the proposed PMG method 
independently estimates both mass and grade assuming 
availability of an on-board accelerometer.

EXPERIMENTAL MEASUREMENTS AND 
DATA PROCESSING
Experimental data was collected using a 2011-MY Ford Taurus 
SHO at Ford's Dearborn Development Center. Figure 2 
summarizes the data flow amongst the sensors, data 
acquisition system, and computer for the evaluation of mass 
and grade estimation methods.

Figure 2. Flow of data during experiment and post processing

The vehicle was equipped with strain gauge sensors to 
measure torque on the driver's side and passenger's side 
half-shafts. These measurements were used instead of 
calculating wheel torque from the engine torque as estimated 
by the Powertrain Control Module (PCM). This prevented 
uncertainties in torque calculations from affecting the 
evaluation of the selected estimation methods. Implementation 
in a production vehicle may require use of PCM-calculated 
engine torque or another appropriate torque measurement 
along the driveline. Mass and grade estimation accuracy would 
then also depend on the fidelity of the drivetrain model and 
accuracy of the calculated engine output torque. The average 
of the two undriven wheel speeds was used to determine 

vehicle velocity and longitudinal acceleration. Longitudinal 
acceleration as used in the RLS and EKF estimators was 
calculated by differentiating the average of the undriven wheel 
speeds. A seat track-mounted longitudinal accelerometer was 
used to carry out PMG estimation. The vehicle's drag and 
rolling resistance coefficients were estimated by using the 
vehicle model in equation (2) and coast-down test data sets. 
Data was collected either directly from sensors or via the 
Controller Area Network (CAN) to an ATI data acquisition 
module, and stored on a laptop computer running ATI's Vision 
software before being exported to MATLAB. Offline 
computation and data processing methods were acausal to 
accurately replicate the constraints of real-time estimation. 
Sensor sampling rates varied; therefore, all data was 
resampled at 30 Hz which represented the slowest sampling 
rate of the system.

The vehicle mass was measured before and after the test 
procedure, and the small difference attributed to fuel use. The 
average of the initial and final mass measurements, 2309 kg, is 
used here as the true vehicle mass. Several launch events were 
performed on flat ground in which the vehicle started at rest and 
accelerated under constant accelerator input. Flat ground testing 
took place in both directions on the low- and high-speed 
straightaways at Ford's Dearborn Development Center in order 
to account for environmental factors such as wind. Launches 
were performed under both fixed gear and variable gear, and 
with a variety accelerator positions. Grade estimation 
performance was evaluated by launching on flat ground and 
ascending an 11.8% grade hill, reflecting a grade change that 
may be encountered in locations with rich topography.

Although road grade is typically given as a percentage, it 
indicates the absolute grade and not a grade error. For a slope 
making angle β radians with the horizontal plane, the grade is 
defined as 100(tan−1 β), or the change in elevation as a 
percentage of horizontal distance traveled. This convention is 
used in the following presentation of experimental results.

EVALUATION AND COMPARISON OF 
ESTIMATION METHODS
In this section, the two simultaneous mass and grade 
estimation methods (RLS and EKF) are evaluated using 
vehicle launches at constant accelerator pedal angle and a 
mass selection scheme is proposed to identify a converged 
mass estimate. Then, all methods (RLS, EKF, DGO, and PMG) 
are evaluated on flat ground and on a sloped hill.

The estimators were implemented on data if the following 
instantaneous conditions were met which represent satisfaction 
of the assumptions in the modeling of longitudinal dynamics by 
equation (1). 

1. v > vmin: Vehicle speed above minimum threshold. 
2. Brake not applied. 
3. Gear shift not in progress. 
4. δ < δmax: Steering angle below a maximum threshold.
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While any of the above conditions were not met, estimation 
was paused and restarted upon satisfaction of the conditions. 
The on-line mass and grade estimates determined at the time 
of paused estimation were maintained during this interval.

Since grade estimation in the PMG method does not require 
calculation of tractive forces, the four conditions for estimator 
implementation were not applied. Because the data sets 
included only horizontal line driving, it was assumed that 
vehicle roll, yaw, and pitch motions were negligible. However, 
in real-world application, an additional condition would be 
necessary for implementation of longitudinal dynamics-based 
estimation that would omit data with excessive vehicle rotations 
about the center of gravity.

Evaluation of Simultaneous Mass and Grade 
Estimation Methods
The two simultaneous mass and grade methods, RLS and 
EKF, are evaluated. RLS forgetting factors are 0.995 and 0.95 
for mass and grade respectively, while the covariance matrix is 
initialized as a 2×2 diagonal matrix with diagonal elements 
(0.001,10). For the EKF method, the initialized process noise 
covariance matrix Q is set as a 3×3 diagonal matrix with 
entries (10−1, 10−5, 25) and R, the observation noise covariance 
is set as 100. The first entry in Q is to account for 
discrepancies between measured and modeled velocity due to 
modelling assumptions and has units (m/s)2. The second and 
third entries are the process variances for θ1 and θ2, 
respectively. Since θ1 the inverse of mass in kg, its process 
noise is small in magnitude. The observation noise variance R 
implies a standard deviation of 10 m/s in measured velocity. 
This relatively large value is to ensure measurement noise has 
a negligible effect on mass and grade estimates. These values 
were tuned to allow similar performance in terms of settling 
time and accuracy, as well as similar speed in tracking the 
grade change from 0% to 11.8%.

Estimation on Flat Ground
The simultaneous estimation methods are initially compared for 
ability to estimate a constant mass and grade when the vehicle 
is launched from rest. No constraints are placed on gear 
shifting, but estimation is paused during shifts. A representative 
velocity profile for this test is shown in Figure 3.

Figure 3. Velocity profile for results shown in Figures 4, 5, 6, and 7

Figure 4. Simultaneous (a) mass and (b) grade estimates with accurate 
initial guesses. 10 data sets are plotted.

Figure 4 presents mass estimate error and absolute road grade 
plotted as a function of time. The results from 10 data sets of 
near-identical launch events are shown. Accurate initial 
guesses for vehicle mass and road grade were provided and 
the two parameters are tracked well by both the RLS and EKF 
estimators. A scatterplot summarizing the results after 25 
seconds is shown in Figure 5. Note that the mass estimates 
are within 30 kg of the actual mass (2309 kg), which is denoted 
by the vertical dashed line. This corresponds to a mass error of 
less than 1.5%. The grade estimates after 25 seconds are 
between 0.2% and 0.6% (0.1 and 0.4 deg). Keeping in mind 
that the estimators were initialized with correct values of mass 
and grade, the errors of the estimates from actual values are 
likely due to acquired data which are not perfectly modeled by 
equation (1) (e.g., small tire slip or imperfectly known tire 
radius).

Figure 5. Scatterplot showing mass and grade estimates from Figure 4 
at 25 seconds

The results presented in Figures 4 and 5 represent 
straightforward simultaneous mass and grade estimation for 
tracking constant parameters, and demonstrate that accurate 
initial guesses lead to fairly accurate predictions. Yet, 
performance under poor initial estimates must necessarily be 
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considered. Such a situation represents ordinary vehicle 
loading condition changes from trip to trip. Figure 6 shows 
estimation results using the same 10 test data sets as before, 
but with initial guesses of 1800 kg and −2 deg respectively. 
This corresponds to an initial error of −22% in mass and a 
grade error of −3.5%.

Figure 6. Simultaneous (a) mass and (b) grade estimates with 
inaccurate initial guesses. 10 data sets are plotted

The mass estimates adjust very quickly, then remain fairly 
constant during the remainder of the test. Meanwhile, grade 
estimates slowly adjust to the true value. This is due to mass 
given a much lower covariance in the EKF and RLS algorithm 
initializations, reflecting the fact that it is a constant 
parameter. Figure 7 presents the mass and grade estimates 
after 25 seconds.

Figure 7. Scatterplot summarizing mass and grade estimates from 
Figure 6 at 25 seconds

With poor initial guesses, the variation in mass estimates as 
seen in Figure 7 is much greater than found in Figure 5 for 
accurately initialized parameters. Figure 7 shows that after 25 
seconds, settled estimates range from 2200 to 2600 kg, with 
RLS providing a better mass estimate but a poorer grade 
estimate than the EKF, potentially due to estimator tuning of 
the forgetting factors. Sensitivity to initial guesses is a 

significant shortcoming to simultaneous mass and grade 
estimation methods. If vehicle loads are changed significantly 
between trips, neither RLS nor EKF can quickly estimate the 
new loads. Thus, if rapid parameter convergence is required by 
vehicle control systems, simultaneous mass and grade 
estimation cannot be reliably employed unless initial guesses 
are accurate. If rapid convergence is not essential, 
simultaneous estimation may be employed given sufficient 
excitation of vehicle longitudinal dynamics, as demonstrated in 
the following section.

Mass Selection Method
Simultaneous mass and grade estimation methods are able to 
accurately track constant parameters when provided with good 
initial guesses. However, as seen in Figure 6, simultaneous 
estimation during a single acceleration event produces settled 
mass estimates that may have significant error.

A longer data set may allow for more accurate settled 
estimates, but it is necessary to decide when an estimate may 
be considered accurate. A mass estimate that remains 
constant for a certain period of time is not necessarily an 
indication of accuracy and in practice no “true value” of mass 
may be pre-determined for evaluation of estimation 
convergence and accuracy. To address this issue, this research 
proposes a mass selection method and validates its successful 
employment on a data set spanning a greater length of time.

The proposed method relies on the convergence of several 
EKF estimation algorithms running in parallel, but with different 
initializations. Every five seconds, a new EKF algorithm is 
begun with re-initialized covariance. Mass and grade are 
initialized to the most recent estimate. This permits a rapid 
mass estimate adjustment, similar to the behavior observed at 
the start of each test run in Figure 6.

Figure 8. Velocity profile #2 with acceleration and braking events

Figure 8 shows a velocity profile for a data set collected on flat 
ground. The profile consists of acceleration and deceleration 
events, including numerous shifts of gear, as well as periods of 
constant speed travel. Figure 9 shows the proposed method 
implemented with the velocity profile from Figure 8. Initial mass 
and grade guesses are poor. The initial guess for vehicle mass 
has 55% error and the initial guess for road grade is −5%. 
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Each new instance of the EKF algorithm with reset covariance 
is denoted by a circle and runs concurrently with all previous 
estimators. The concurrent estimates do not, however, interact 
with exception that each new iteration begins with initial values 
representing the instantaneous estimates of mass and grade of 
the algorithm iteration begun just prior.

In comparing Figures 8 and 9, it is seen that each acceleration 
and deceleration event coincides with a notable shift in mass 
estimate. This is due to estimation being paused during the 
braking deceleration and restarted at a significantly different 
velocity, resulting in a linearization about a new operating point 
and requiring the EKF to adjust the mass estimate accordingly. 
This behavior is particularly evident around 50, 175, and 200 
seconds. In the absence of these dramatic excitations, the 
mass estimates remains relatively constant, as seen in Figure 
9 between 60 s and 130 s. The five concurrent EKF algorithms 
all have static mass estimates during this period, but with 
errors ranging from 2% to 10%. At 175 s, during a sharp 
acceleration event, the mass estimates in Figure 9(a) converge 
to almost the same value. Once this occurs, the difference 
between true mass and estimated mass is less than 4% for all 
estimators. Convergence of estimators with different initial 
conditions to the same vehicle mass is an indication that the 
estimated value of mass satisfies equation (1) in such a way 
that all EKF algorithms update identically thereafter. Thus, the 
EKF algorithm implementations should agree to any further 
changes in mass and grade estimates, which is apparent in 
Figure 9(a).

Figure 9. Parallel estimation using EKF approach for velocity profile 
shown in Figure 8. (a) Mass estimates with unique dots representing 
different initial conditions. (b) Grade estimates.

Estimates are considered to have converged to the same value 
if the following condition is met:

(18)

cv is the coefficient of variation, a dimensionless number 
defined as the sample variation divided by the sample mean. 

 is a tunable threshold for converged mass estimates. Table 
1 summarizes estimation results for velocity profile #2 (Figure 
8) with  under a variety of initial guesses. Note that 
the convergence of estimates tends to coincide with excitation 
of vehicle longitudinal dynamics.

Table 1. Time until mass estimate convergence under different initial 
guesses for mass and grade.

Mass estimates eventually converge to the true value after 
several acceleration events shown in Figure 8. If initial 
parameter guesses are poor, it is necessary to provide 
significant excitation of longitudinal dynamics before the 
coefficient of variation is below the threshold to consider the 
mass estimate to be accurate. Highway driving at constant 
speeds may not provide numerous events of notable excitation 
to the longitudinal dynamics; in this case, the proposed method 
for mass and grade estimation may not be suitable. Further 
assessment of the method is needed to form more decisive 
conclusions to its efficacy amongst various driving scenarios 
and vehicle loading conditions.

Evaluation of All Mass and Grade Estimation 
Methods

Estimation on 11.8% Grade Hill

Figure 10. Velocity profile #3 for results shown in Figures 11,12,13. 
Shaded regions indicates approximate time of transition between zero 
grade and 11.8% grade as estimated by kinematic approach.
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This section assesses the performance of the simultaneous 
estimation methods (RLS and EKF) in addition to the dynamic 
grade observer (DGO) and parallel mass and grade (PMG) 
approaches. The driving profiles began on a zero-grade 
surface and then climbed a constant grade of 11.8%. The 
velocity profile for the test results presented in this section is 
shown in Figure 10.

Figure 11. (a) Mass and (b) grade estimation on 0% grade and 11.8% 
grade. Thin solid lines indicate actual mass and the two known grades. 
Shaded region indicates transition between 0% and 11.8% grade. All 
methods are provided accurate initial guesses where needed.

Figure 11 shows that all methods are able to track changes in 
grade to a similar degree of accuracy when given correct initial 
guesses. Mass estimates stay within 5% of the true mass, 
indicating that the simultaneous mass and grade methods 
(RLS and EKF) are able to effectively separate the dynamic 
effects of mass and grade while the parallel estimation of the 
PMG approach can likewise follow dynamically changing 
grades and maintain good estimates of mass throughout the 
transitions. (Recall that the DGO approach does not estimate 
mass and therefore its accurate initial guess remains constant).

However, as was the case for constant, zero-grade data sets, 
the simultaneous estimation methods are less accurate in 
terms of mass prediction when initial guesses are poor for the 
present data set involving dynamic grade change. This is 
illustrated in Figures 12 and 13, which present results for two 
different inaccurate initial guesses: −22% and 3.5% errors for 
mass and grade, respectively in Figure 12 and 72% and 3.5% 
errors for mass and grade, respectively in Figure 14. In these 
events, the accuracy of mass predictions by RLS and EKF 
degrades substantially due to poor initial guesses, in spite of 
the significant excitation provided to the vehicle by way of the 
transient grade profile (and hence longitudinal dynamics 
excitations). This is a significant shortcoming of the RLS and 
EKF methods.

Figure 12. (a) Mass and (b) grade estimation on 0% grade and 11.8% 
grade. Thin solid lines indicate actual mass and the two known grades. 
Shaded region indicates transition between 0% and 11.8% grade. The 
initial mass guess had an error of −22%, and the initial grade estimate 
was 3.5%.

Figure 13. (a) Mass and (b) grade estimation on 0% grade and 11.8% 
grade. Thin solid lines indicate actual mass and the two known grades. 
Shaded region indicates transition between 0% and 11.8% grade. The 
initial mass guess had an error of 72%, and the initial grade estimate 
was 3.5%.

Figures 12 and 13 illustrate the sensitivity of the DGO method 
to an incorrect assumption of vehicle mass. If the mass 
parameter is wrong, it is compensated for by the grade 
estimate to satisfy equation (1).

In great contrast to RLS, EKF, and DGO methods, the PMG 
estimator developed in this work is shown in Figures 12 and 13 
to yield accurate estimates of mass and grade regardless of 
the initialized values of mass. Mass estimates from the PMG 
method converge rapidly to true vehicle mass and are 
unaffected by changing grade. Furthermore, the ability of the 
accelerometer to capture the effects of longitudinal acceleration 
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as well as road grade means no differentiation of vehicle 
velocity is necessary, which is a data processing benefit as 
relates to real-time application of the approach. Given an 
on-board longitudinal accelerometer, the accurate and robust 
estimation of the PMG method indicates that mass-
compensated controls may be successfully realized. One of the 
most significant advantages to grade estimation using this 
approach is that it is not subject to the on/off constraints on 
longitudinal dynamics that apply to all other methods, since 
kinematic data is available regardless of vehicle velocity or the 
state of the transmission or friction brakes. The trend towards 
more advanced and comprehensive vehicle sensor sets 
suggests that availability of such an accelerometer is more 
likely in the future and supports the viability of the PMG 
estimation approach.

SUMMARY AND CONCLUSIONS
Knowledge of vehicle inertial loads is crucial to the success of 
many automotive controllers for performance, economy, and 
passenger safety. In order to reduce computational effort and 
inconsistency amongst controllers, it is beneficial to provide 
unified and accurate estimation of inertial loads governed by 
the vehicle mass and road grade. Nevertheless, integration of 
real-time vehicle mass and grade estimation to vehicle 
technologies is not widely observed in today's vehicles.

To help explain the reasons for the lack of adoption of real-time 
vehicle inertial parameter estimation and to propose alternative 
methods and improvements to existing approaches, this paper 
evaluates several vehicle mass and road grade estimation 
methods present in the literature. The accuracy and reliability 
of these methods are evaluated using numerous experimental 
data sets. Simultaneous mass and grade estimation methods 
are found to be effective at tracking a constant mass and 
changing grade within 5% and 2% respectively, if accurate 
initial guesses are provided. When these initial guesses are 
inaccurate, estimates may converge to values that retain 
significant residual error.

In order to address this shortcoming and identify conditions 
under which a mass estimate may be considered accurate, a 
mass selection algorithm using the coefficient of variation of 
multiple estimator initializations is proposed. It is implemented 
with the EKF method and the results show good promise for 
accurate mass estimation in spite of poor estimation parameter 
initialization. Further study is required to form more decisive 
conclusions regarding the utility of the approach to a wider 
range of driving scenarios.

The most reliable and accurate estimation results are shown to 
be obtained by parallel mass and grade (PMG) estimation 
using a longitudinal accelerometer as developed in this 
research. The kinematic information provided by the 
accelerometer decomposes the influence of road grade on 
longitudinal dynamics, enabling reliable mass and grade 
estimates with rapid convergence in spite of poor initial 

guesses. Given automotive trends towards more advanced 
sensor technologies and present increasing adoption of 
high-quality accelerometers in vehicles to date for use with 
other control systems, the PMG estimation approach 
demonstrates the greatest potential for successful real-time 
mass and grade estimation to advance the performance, 
economy, and reliability of future vehicle controls.
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