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Predicting Non-Stationary
and Stochastic Activation of
Saddle-Node Bifurcation
Accurately predicting the onset of large behavioral deviations associated with saddle-
node bifurcations is imperative in a broad range of sciences and for a wide variety of
purposes, including ecological assessment, signal amplification, and microscale mass
sensing. In many such practices, noise and non-stationarity are unavoidable and ever-
present influences. As a result, it is critical to simultaneously account for these two fac-
tors toward the estimation of parameters that may induce sudden bifurcations. Here, a
new analytical formulation is presented to accurately determine the probable time at
which a system undergoes an escape event as governing parameters are swept toward a
saddle-node bifurcation point in the presence of noise. The double-well Duffing oscillator
serves as the archetype system of interest since it possesses a dynamic saddle-node bifur-
cation. The stochastic normal form of the saddle-node bifurcation is derived from the
governing equation of this oscillator to formulate the probability distribution of escape
events. Non-stationarity is accounted for using a time-dependent bifurcation parameter
in the stochastic normal form. Then, the mean escape time is approximated from the
probability density function (PDF) to yield a straightforward means to estimate the point
of bifurcation. Experiments conducted using a double-well Duffing analog circuit verifies
that the analytical approximations provide faithful estimation of the critical parameters
that lead to the non-stationary and noise-activated saddle-node bifurcation.
[DOI: 10.1115/1.4034128]

Keywords: non-stationary and stochastic saddle-node bifurcation, normal form,
double-well Duffing oscillator analog circuit

1 Introduction and Motivation

The saddle-node bifurcation is the focus of a substantial body
of research, since it is one of the most commonly encountered
phenomena that induce sudden, drastic changes in the global
behavior of systems. It is well documented that activation of the
saddle-node bifurcation is strongly influenced by non-determinis-
tic and non-stationary factors. For example, stochastic processes
may result in noise-activated saddle-node bifurcations [1–5],
which enable earlier sudden transitions before the key parameter
reaches the critical value, which trigger deterministic bifurcations.
Such properties of noise-induced bifurcations are strongly rele-
vant for a broad range of scientific efforts which encounter the
saddle-node. For example, the effective utilization of Josephson
junction circuits to amplify minute changes in current level is
dependent on various measurement noise effects [6–10] and
switching-based employment of mechanical micro-/nano-mechan-
ical oscillators requires careful understanding of stochastic sensi-
tivities for reliable operation [11–13]. In life and biological
sciences, systems characterized as exhibiting saddle-node-type
phenomena reveal similar sensitivities to stochastic perturbations.
This has been demonstrated for neural action potential dynamics
[14–16], noise-activated escapes from ecological equilibria
[17–19], and climate balance and tipping estimation [20–22].

While noise alone may prematurely induce a bifurcation, non-
stationarity of the governing parameters may delay it [23–26].
When the system parameter varies at a finite rate through the

critical value corresponding to adiabatic bifurcation, the actual
transition may occur after the parameter passes through the adia-
batic value. As a result, the system may remain at or near the orig-
inal state instead of immediately undergoing the large qualitative
shift in behavior, which is described to be a type of memory effect
[27,28]. Delayed (also termed deferred) bifurcation phenomena
have drawn special attention in laser turn-on dynamics related to
the pitchfork bifurcation [27,29,30]. Delayed saddle-node bifurca-
tions have been observed in various contexts such as in chemical
reactions [31–33] and in tribological processes where they denote
the influence of stick slip [34–36]. Qubit readouts for quantum
computing are also subject to delayed saddle-node bifurcation
which is a critical factor to understand for the useful implementa-
tion of such technologies [9,37].

Recently, great attention has been devoted to the development
of robust and sensitive microscale bifurcation-based sensors due
to the ease of activating strongly nonlinear behaviors on such a
length scale, including the pitchfork [38–40] and saddle-node
bifurcations [41–44]. By leveraging unmistakable and sudden
variations in sensor behavior due to subtle perturbations to the
system which induce the bifurcation, the bifurcation-based sens-
ing methods yield significantly enhanced resolution and sensitiv-
ity compared to conventional, linear dynamics-based detection
methods. To introduce these novel and high performance detec-
tion principles into the context of meso-/macro-scale mechanical
and civil structural health and condition monitoring, the authors
recently integrated double-well Duffing circuits with the moni-
tored systems [45,46]. In this way, small changes in the (assumed)
linear dynamics of the monitored structures may activate more
dramatic shifts in the circuit behaviors, providing a robust and
sensitive framework for structural monitoring. For all scales of
bifurcation-based sensing, noise and non-stationary influences are
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oftentimes unavoidable, and the viability and effectiveness of
these detection principles are critically tied to an understanding of
the coupled, adverse phenomena.

To exemplify the importance of simultaneously taking into
account the influences of non-determinism and non-stationarity on
saddle-node bifurcation, the following representative experimen-
tal results are provided which leverage the saddle-node invested
in a double-well Duffing analog circuit oscillator. The double-
well Duffing oscillator is considered here since a dynamic saddle-
node bifurcation occurs as the excitation amplitude increases
while the excitation frequency is fixed below the linear resonance
frequency. As a result, the steady-state intrawell oscillations con-
fined to one of the wells of potential energy suddenly transition to
interwell dynamics that span both potential wells [47–49], as illus-
trated in Fig. 1. Moreover, it is the double-well Duffing analog cir-
cuit that has been recently utilized as a bifurcation-based sensing
device for detecting structural changes and damage in macroscale
structures [45,46]. Thus, the analysis on stochastic and dynamic
activation of the bifurcation directly provides an important means
of characterizing the dynamics of practical bifurcation-based
sensor platform. These bifurcations of the double-well Duffing
oscillator may be activated either by variation in the harmonic
excitation frequency using an appropriate amplitude of excitation
or by variation in the excitation amplitude using an appropriate
excitation frequency; in this work, the latter method is employed.
Complete details on the experimental circuit fabrication and its
faithful reconstruction of double-well Duffing oscillator character-
istics are given in Sec. 2.

In these first experiments, the input voltage to the circuit is
prescribed to be a 500 Hz sinusoid that steadily increases in ampli-
tude from 0.3 V to 0.35 V which was identified to be an excitation
form and amplitude range capable of activating the saddle-node
bifurcation that demarcates the intrawell and interwell oscillation
regimes. Various rates of sweeping the input voltage amplitude
are employed. In addition, several intensities of Gaussian white
noise are added to the input signal. This combined harmonic and
stochastic input voltage excites the circuit and the mean harmonic
amplitudes of circuit output voltage for 100 experimental trials
are plotted according to the input voltage amplitude in Fig. 2.
When the excitation is effectively a pure harmonic signal, the
comparison of output voltage amplitudes in Fig. 2(a) shows the
influence of changing the input voltage sweep rate from quasi-
static conditions to a rate of 2.5 V/s. As observed in Fig. 2(a) by
the sudden increase in the output voltage, the saddle-node bifurca-
tion is triggered at a quasi-statically varied harmonic input voltage
amplitude of approximately 0.328 V. Note that although an escap-
ing phenomenon is shown in Fig. 2(a), experimentally the dynam-
ics thereafter transition to a still higher output voltage amplitude
which is characteristic of the interwell vibrations. In contrast to
the quasi-static finding, as the sweep rate becomes positive and
finite, the activation of the saddle-node bifurcation becomes
delayed such that greater input voltage amplitude is needed to
induce the event. When the sweep rate is 2.5 V/s, the activation of
the bifurcation occurs at input voltage amplitude of 0.341 V.

In other words, a delay of 4% with respect to the quasi-static
bifurcation condition is induced by the non-stationary variation in
the input voltage amplitude.

To exemplify the role of stochastic fluctuations in the input
voltage amplitude, Fig. 2(b) presents the measurements when
the input voltage amplitude is corrupted using various levels of
additive white noise; here, the input voltage amplitude is swept at
a finite rate of 0.1 V/s. The measurements in Fig. 2(b) clearly
show that the stochastic fluctuations may induce either premature
or delayed activation of the saddle-node escape. It is seen that for
finite sweeping rate and low noise, a delayed activation occurs,
whereas increased noise intensity may cause the bifurcation to
occur prematurely using the same sweeping rate. Collectively,
these results illustrate the severe sensitivities of activating the
saddle-node bifurcation in the presence of non-stationary and non-
deterministic excitations. Therefore, it is critical to accurately
characterize the parameters which are more likely to induce the
saddle-node bifurcation by directly accounting for attendant noise
levels and parameter sweep rates. Without this understanding, the
true approach and triggering of a saddle-node bifurcation may be
incorrectly predicted, which could compromise the application
such as a bifurcation-based sensing scheme or a model of ecologi-
cal balance.

A number of researchers have explored the adverse coupling of
non-stationary and non-deterministic influences on the activation
of the saddle-node bifurcations by introducing scaling laws
[50–52] and by analytically and numerically integrating the asso-
ciated Fokker–Plank equation of the stochastic normal form [53].
Recently, the distribution of the escape events induced by
saddle-node bifurcations has been approximately derived and
numerically validated by Miller and Shaw [54]. On the other
hand, this advancement requires an updated, intricate computation
of the mean escape time in consequence to each change in the
non-stationary and non-deterministic parameters. As a result, the
computation of such statistics may become considerably involved
and expensive. To overcome the limitation, this research derives a
new approximate solution strategy to determine the escape
statistics of non-stationary and non-deterministic activation of

Fig. 1 Potential energy of a double-well Duffing oscillator
(solid curve). Illustrative dynamic trajectories for (a) intrawell
and (b) interwell steady-state oscillations.

Fig. 2 Experimentally measured output voltage amplitudes of
the circuit (a) as input voltage amplitude sweep rate varies and
(b) in the presence of different levels of additive Gaussian white
noise with a fixed sweep rate of 0.1 V/s. The critical input volt-
age amplitudes that activate bifurcations are presented for each
case.
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saddle-node bifurcations. By validating the approach with experi-
mental results obtained using a double-well Duffing analog cir-
cuit, the findings of this research exemplify that the approximate
analytical solution provides a straightforward method to estimate
the stochastic and non-stationary activation of the delayed saddle-
node bifurcations.

The following sections present investigations that accomplish
these goals through a collection of theoretical and experimental
efforts. First, the experimental circuit is described in detail in Sec.
2, and it is shown that the circuit is faithfully modeled using the
conventional governing equation form of the classical double-well
Duffing oscillator which exhibits dynamic saddle-node bifurca-
tions. In Sec. 3, the stochastic normal form of dynamic saddle-
node bifurcation for the oscillator is derived to characterize the
system dynamics on the slow center manifold. Using this formula-
tion, the approximate mean escape time is derived to serve as a
predictive tool for the many applications and studies for which
non-stationary and stochastic triggering of the saddle-node bifur-
cations are crucial factors. Sec. 4 provides numerical and experi-
mental investigations using the double-well Duffing circuit to
verify the accuracy of the analytical predictions in estimating the
input voltage amplitude that activates the saddle-node bifurcation
for single-frequency excitations.

2 Experimental Double-Well Duffing Analog

Circuit Oscillator

A schematic of the experimentally fabricated double-well Duff-
ing analog circuit oscillator is shown in Fig. 3(a). The static and
dynamic bistability of the circuit are facilitated by the nonlinear
feedback loop among the idealized op-amp and diodes. By apply-
ing Kirchhoff’s laws, the governing equation for the circuit is
derived to be

LC €Vo þ RC _Vo þ FcirðVoÞ ¼ ViðtÞ (1)

where L, C, R, and Fcir represent the circuit inductance, capaci-
tance, resistance, and a nonlinear voltage function, respectively;
ViðtÞ and VoðtÞ, respectively, indicate the input voltage of the
oscillator circuit and the output voltage which exhibits bistability;
and the overdot indicates the time derivative. Note that the output
voltage is the generalized displacement of the oscillator circuit in

Eq. (1). To derive Eq. (1) for the double-well Duffing analog

circuit shown in Fig. 3(a), it is assumed that R3 �
ffiffiffiffiffiffiffiffiffi
L=C

p
, which

is a condition satisfied experimentally. Here, the op-amp is a
LM741CN while the diodes are 1N4148. The other relevant cir-
cuit parameters are given in Table 1.

The qualitative piecewise-linear characteristics of the nonlinear
voltage function FcirðVoÞ verify the close similarity of the analog
circuit to the conventional double-well Duffing oscillator which
has a restoring force expressed by a cubic polynomial composed
using negative linear and positive cubic terms [48,55,56]. The
voltage function is determined by measuring the output voltage Vo

as a DC input voltage Vi;DC is quasi-statically varied within the
range that encompasses the two local minima of potential energy.
Thus, by Eq. (1), the quasi-static variation of the DC input
voltage by Vi;DC is equal to the voltage function: Vi;DC ¼ FcirðVoÞ.
Figure 3(b) illustrates the experimentally measured nonlinear
voltage function FcirðVoÞ with respect to the output voltage Vo.
Starting from large negative values, when the DC input voltage is
quasi-statically increased beyond 0.32 V, denoted as point A in
Fig. 3(b), the output voltage Vo undergoes a sudden transition
from approximately �0.36 V to þ1.30 V. Then, as the voltage
function is reduced in value (by quasi-statically reducing the DC
input voltage), the bifurcation is activated at point B. By minimiz-
ing the squared difference between the analytically estimated
mean escape time (detailed in Sec. 3.2) and the experimentally
measured escape time, a cubic polynomial fit is obtained to
approximate the nonlinear voltage function using

FE
cirðVoÞ ¼ �aEVo þ bEV3

o (2)

where aE ¼ 0:552 and bE ¼ 0:365. Figure 3(b) shows the polyno-
mial fit (solid curve) to the experimental measurements of the
voltage function (square points). The range of output voltages
shown in Fig. 3(b) accounted for in the fitting procedure, the poly-
nomial fit realizes a high R2 value of 86.6% which means the fit
effectively emulates the global characteristics of the exact voltage
function. In addition, the critical amplitude of the voltage function
amplitude that experimentally triggers the quasi-static bifurca-
tions, �0.32 V, is closely reconstructed by the polynomial fit,
�0.33 V. Then, by substituting Eq. (2) into Eq. (1) and rescaling
parameters, the governing equation for the circuit output voltage
becomes

€x þ 2fE _x � KExþ GEx3 ¼ PEðtÞ (3)

xðtÞ ¼ VoðtÞ (3a)

fE ¼ R

2L
(3b)

KE ¼ aE

LC
(3c)

GE ¼ bE

LC
(3d)

PE tð Þ ¼ Vi tð Þ
LC

(3e)

Equation (3) is evidently in the conventional form of the
governing equation for the double-well Duffing oscillator where

Fig. 3 (a) Analog circuit diagram employed in the theoretical
and experimental investigation. (b) Experimentally measured
(squares) nonlinear voltage function with respect to output volt-
age amplitude. The cubic polynomial fit (solid curve) has R2 fit-
ness of 0.866.

Table 1 Experimental system parameters of the double-well
Duffing circuit

L (mH) C (lF) R (X) R1 (kX) R2 (kX) R3 (kX)

10.24 0.96 82 9.07 9.08 10
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the conservative restoring forces include terms having negative
linear and positive cubic powers of the generalized coordinate x
[47–49]. This analytical foundation verifies that the experimental
circuit platform faithfully reconstructs the relevant dynamic
saddle-node bifurcation phenomena exhibited by such Duffing
oscillators.

3 Theoretical Analysis on the Saddle-Node

Bifurcation

3.1 Stochastic Saddle-Node Bifurcation Normal Form. To
investigate the non-deterministic and non-stationary influences on
the activation of saddle-node bifurcations, the stochastic normal
form of the saddle-node bifurcation can be derived from the
double-well Duffing oscillator governing equation as (see the
Appendix for derivation)

_x ¼ lþ mx2 þ Dn (4)

where n is Gaussian white noise with autocorrelation hnðtÞnð~tÞi
¼ 2dðt� ~tÞ and D is the effective noise strength. By scaling the
variable with y ¼ mx, the stochastic normal form for the steady-
state saddle-node bifurcation of the double-well Duffing oscillator
is found to be

_y ¼ gþ y2 þ en (5)

with the bifurcation parameter g ¼ ml and noise strength
e ¼ mD. When the parameter g < 0 quasi-statically increases, the
system becomes unstable as the saddle-node bifurcation occurs at
g ¼ 0 annihilating the fixed points y ¼ 6

ffiffiffiffiffiffiffi�g
p

. Thus, the non-sta-
tionary influence on the saddle-node bifurcation can be assessed
by examining the system stability with respect to a time-
dependent bifurcation parameter gðtÞ. For a common case of
broad practical importance, the parameter sweep rate is assumed
to be constant such that

gðtÞ ¼ g0 þ rt (6)

The bifurcation parameter is swept from g0 < 0 at a sweep rate of
r > 0, which is ultimately related to the excitation amplitude P
variation through the transformations and relations given in the
Appendix. By substituting Eq. (6) into Eq. (5), the non-stationary
and non-deterministic influences on the activation of saddle-node
bifurcations can be investigated in terms of both the bifurcation
parameter sweep rate and the additive noise level. Since the bifur-
cation parameter gðtÞ varies linearly in time, the time can be
scaled according to the rate of parameter change. New variables
are introduced [57]

s ¼ gr�2=3 (7a)

z ¼ yr�1=3 (7b)

and substituted into Eq. (5) to yield

z0 ¼ sþ z2 þ an (8a)

a ¼ e=r2=3 (8b)

where ðÞ0 indicates differentiation with respect to scaled time s.
As a result, the stochastic and non-stationary influences on the
activation of saddle-node bifurcation may be investigated using a
single parameter, scaled noise a in Eq. (8).

3.2 Analytical Approximation of the Dynamic Saddle-
Node Bifurcation. In this research, a new approximate solution
strategy is developed to estimate the escape statistics of the

stochastic and non-stationary activation of saddle-node bifurca-
tions. First, the probability density of the escape events is derived
from the stochastic normal form of Eq. (8). By employing the
approach recently introduced by Miller and Shaw [54], the
approximate PDF of the escape time T is obtained

P1 Tð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p5a2B4

i �Tð Þ
ðT

�1
A4

i �sð Þds

s

� exp � A2
i �Tð Þ=B2

i �Tð Þ

4p2a2

ðT

�1
A4

i �sð Þds

2
64

3
75 (9)

where Ai, Bi are the standard Airy functions. Since the bifurcation
parameter s, rescaled as the time according to Eq. (7a), is forward
and linearly swept, the escape time T is defined to be the time at
which the dynamic saddle-node bifurcation is activated as the
system loses stability. In other words, the escape time T is when
the response of Eq. (8) becomes unbounded such that z!1. The
PDF in Eq. (9) is subject to the constraints a� 1 and 1:17 < s <
3:27 [54]. For example, when a ¼ 0:1, the mean value of the
escape time hTi is obtained by numerically integrating the PDF in
Eq. (9) to be approximately 2.33. In this way, the mean escape
time hTi for every different case is taken by numerically solving
Eq. (9) for the corresponding scaled noise level a, which encom-
passes the stochastic and non-stationary parametric changes.

Then, using this previously developed foundation, the first
step toward a new derivation for the mean escape time is to
approximate the PDF in Eq. (9) as a Gaussian distribution. Since
the system is subjected to additive Gaussian white noise perturba-
tions, the probability density of the escape time as shown in Fig. 4
is comparable to a Gaussian. As a result, Eq. (9) is then approxi-
mated to be Gaussian using

P1 Tð Þ � 1ffiffiffiffiffiffi
2p
p

rT

exp � ke T � lTð Þ2

2r2
T

" #
1

pB2
i �Tð Þ (10a)

r2
T ¼ 2p2a2

ðT

�1
A4

i ð�tÞdt (10b)

where lT , rT , and ke are the approximate mean and standard
deviation of the escape time, and the scaling coefficient, respec-
tively. The exponential numerator in Eq. (9), denoted as FðTÞ, is
approximated by a quadratic polynomial fit in Eq. (11) [58], and
is plotted in Fig. 5 in comparison to the actual numerator

F Tð Þ ¼ Ai �Tð Þ
Bi �Tð Þ

 !2

� tan2 2

3
T3=2 þ p

4

� �
� ke T � lTð Þ2 (11)

To determine lT , the minimum of the approximate FðTÞ is
derived, from which the mean value lT is computed

Fig. 4 Probability density of escape time T when a 5 0.1
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dF

dT

����
lT

� 2l1=2
T tan

2

3
l3=2

T þ p
4

� �
tan2 2

3
l3=2

T þ p
4

� �
þ 1

� �
¼ 0

(12a)

lT ¼
9p
8

� �2=3

(12b)

Therefore, the mean escape time of the delayed saddle-node bifur-
cation can be accurately and simply obtained as lT for a� 1
instead of numerically solving the PDF in Eq. (9) for every scaled
noise level. The total processing time, for example, required more
than 3 h to numerically solve the PDF and obtain the mean escape
time for 100 different sweep rates (0.005–50 V/s) and noise levels
(0.01–100 mV), respectively. The simulations were conducted on
a standard personal computer, with an Intel Core 3.4 GHz and 16
GB of RAM. On the other hand, the mean escape time can be
immediately obtained by the proposed analytical approximation
(Eq. (12b)).

Since the bifurcation parameter is swept linearly in time, the
critical parameter value that activates the bifurcation is directly
related to the escape time. For prescribed noise level and parame-
ter sweep rate, the escape excitation amplitude Pesc, which acti-
vates the saddle-node bifurcation, can be determined from the
escape time T by a series of substitutions into the above derived
expressions. For example, the actual escape time tesc is obtained
from the scaled escape time T by substituting Eq. (6) into Eq. (7a)
such that tesc ¼ 1=rðTr2=3 � g0Þ. The escape bifurcation parameter
gesc from Eq. (6) at time tesc is scaled to lesc ¼ gesc=m and substi-
tuted into Eq. (A5b) to yield the escape excitation amplitude
Pesc ¼ Pcr þ 2f=mðg0 þ rtescÞ. By substituting tesc into Pesc, it is
found that

Pesc ¼ Pcr þ
2f
m

Tr2=3 (13)

As a result, an accurate estimation of the mean escape excitation
amplitude hPesci can be obtained by utilizing the analytical
approximation of mean escape time lT in Eq. (12b).

In summary, the key result is that instead of numerically inte-
grating Eq. (9) to obtain the mean of escape time hTi for each

noise strength a, the mean escape time for the delayed saddle-
node bifurcation may be more straightforwardly obtained using
Eq. (12b). By straightforward back-calculation, the mean escape
time can be used to determine the expected value of the escape
excitation amplitude in Eq. (13). This escape amplitude is there-
fore a meaningful criterion related to the stochastic and dynamic
saddle-node bifurcation in the double-well Duffing oscillator.
Thus, the analytical approximation can serve as a simple tool for
estimating the escape events. It is worth summarizing and
commenting upon the assumptions employed to arrive at this new
analytical approximation of the mean escape time: (i) small scaled
noise a ; (ii) weakly damped Duffing oscillator; (iii) Gaussian
white noise as stochastic influence; (iv) linearly swept bifurcation
parameter. Since the standard deviation of the escape events dis-
tribution decreases and the escape events are predominantly dis-
tributed near the mean value for small scaled noise a [57], the
mean escape time can effectively represent the escape time distri-
bution and becomes the significant guide toward assessing escape
events. As a result, this research is focused on estimating the
mean escape time. Additionally, the inclusion of the noise leads to
an effective series of random “initial conditions” for this nonlinear
system, which reduces the importance of accounting for initial
conditions toward predicting the saddle-node bifurcation events
[54]. The concise analytical prediction of the mean escape time
and the current employment of the above assumptions to arrive at
this theoretical tool are validated through numerical and experi-
mental investigations in Sec. 4.

4 Statistics of Non-deterministic and Non-stationary

Activation of the Saddle-Node Bifurcation

The accuracy of the analytical approximation of mean escape
time is assessed using experimental and numerical efforts. The
experimental investigation is conducted by employing the double-
well Duffing analog circuit introduced in Sec. 2. The double-well
Duffing analog circuit is harmonically excited at 500 Hz and
the input voltage amplitude is increased by sweeping across the
bifurcation point starting from 0.3 V to 0.35 V. In addition to the
ambient noise level, three different levels of Gaussian white noise
are added to the excitation input voltage to examine the stochastic
influences on the saddle-node activation. The root mean square
(RMS) amplitude of the ambient noise in the experiment is
0.015 mV. The input voltage amplitude sweep rates and the addi-
tive noise levels applied in the experiment are given in Table 2.
Each condition with various sweep rates and noise levels is con-
sidered 100 times. The escape input voltage amplitude Vesc that
activates dynamic saddle-node bifurcation is recorded and utilized
to determine the escape time tesc ¼ ðVesc � V0Þ=sV , where sV is
the input voltage sweep rate. The escape time is then substituted
into Eq. (13) to yield the scaled escape time T.

For the numerical evaluation, the mean escape time hTi is
obtained by numerically solving the PDF in Eq. (9). In addition, a
Monte-Carlo-based solution of the mean escape time is obtained
by solving the stochastic normal form in Eq. (8a) using the
Euler–Maruyama method [59] 1000 times and taking the mean of
the resulting escape time values. For both numerical solution

Fig. 5 The polynomial fit ke(T 2 lT)2 (solid) of F(T) (dotted
curve)

Table 2 The scaled noise level a for each input voltage amplitude sweep rate and additive noise level (RMS amplitude) applied in
the experiment to examine the stochastic dynamic bifurcation in the double-well Duffing circuit

Sweep rate (V/s)

0.05 0.1 0.25 0.5 1 2.5 5

Noise level (mV) 0.015 0.0521 0.0328 0.0178 0.0112 0.0071 0.0038 0.0024
1 3.47 2.19 1.19 0.748 0.471 0.256 0.161

10 34.7 21.9 11.9 7.48 4.71 2.56 1.61
20 69.4 43.8 23.8 15.0 9.43 5.12 3.22
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forms, the computation is conducted for each scaled noise level a
given in Table 2.

Figure 6 compares the new approximated solution (solid curve)
of the mean escape time with those obtained by numerically
solving the PDF in Eq. (9) (dashed curve), the Monte-Carlo
simulation (square), and experimental measurements (circle) as a
function of scaled noise level a. It can be observed that the
approximated mean escape time is comparable to the numerically
and experimentally obtained mean escape time distributions for
small a, which represents a low level of stochastic excitation
compared to the bifurcation parameter sweep rate. Stated more
concretely, when the parameter is swept relatively quickly toward
the bifurcation point compared to the low level of noise perturba-
tions, the system evolves correspondingly quickly such that the
basin of attraction is more likely to disappear before the noise has
opportunity to prematurely activate the bifurcation. As a result,
the saddle-node bifurcation is likely to be delayed in this case of
small a, and the escape time becomes fairly insensitive to the low
level of noise. On the other hand, the analytic prediction deviates
from the numerical and experimental results when the scaled
noise level is high. This error may stem from the large level of
noise that violates the assumption of small perturbation near the
bifurcation point to maintain the normal form valid. Therefore,
the analytical approximation of the mean escape time as a con-
stant is strongly justified under such conditions.

Figure 7 provides a comparison of two representative examples
that demonstrate the high accuracy of the analytical escape time
prediction with respect to acquired experimental and numerical
data. In order to numerically reconstruct the voltage response of
the circuit from the normal form of the saddle-node bifurcation,
the amplitude zðsÞ is first obtained by solving Eq. (8a) using the
Euler–Maruyama method. Substituting zðsÞ into Eq. (7b) and

applying the scaling y ¼ mx yields xðsÞ ¼ ð1=mÞr1=3zðsÞ. The out-
put voltage VoðsÞ ¼ c�cr þ aðsÞcos xs is then obtained by applying
a coordinate transform aðsÞ ¼ a�cr þ xðsÞ and substituting it into
Eq. (A2). For the numerical reconstructions, a negative value of
c�cr is selected to reflect the corresponding experimental measure-
ments which initially oscillate around the negative-valued static
equilibrium in the examples shown in Fig. 7. In this figure, the
numerically simulated output voltages (dashed curves) of the cir-
cuit are plotted as a function of the input voltage amplitude and
compared with the experimental measurement (solid curves) of
the circuit response. Finally, the analytically determined mean
escape input voltage amplitudes hVesci are plotted as dotted verti-
cal lines in Fig. 7. The analytical prediction of the mean escape
time lT in Eq. (12b) is applied to Eq. (13) assuming lT � hTi,
which yields the mean escape input voltage amplitude hVesci
dimensionalized via Eq. (3e).

Figure 7(a) presents the output voltage of the circuit for a case
when the input voltage amplitude is swept at a rate of 0.1 V/s
without additive noise; here, the ambient noise level is 0.015 mV

which is negligible with respect to the harmonic excitation
component. Figure 7(b) compares the analytical, numerical, and
experimental results when the input voltage amplitude is increased
at a faster rate of 2.5 V/s in the presence of a greater additive noise
level, 10 mV. For both representative examples in Fig. 7, the out-
put voltage of the double-well Duffing circuit initially exhibits
intrawell oscillations around a static equilibrium; as the saddle-
node bifurcation is activated, one or more interwell oscillations
are induced. It is seen that the bifurcation activation is delayed
from approximately 334 mV to 339 mV when the input voltage
amplitude sweep rate is increased from 0.1 V/s to 2.5 V/s, seen
comparing Figs. 7(a) and 7(b), respectively. Importantly, it is seen
that the analytical approximation is in strong agreement with the
experimental and numerical data, even for these two very different
cases of sweep rate and additive noise.

For a comprehensive evaluation of the analytical method
accuracy with respect to the experimental data, the mean escape
input voltage amplitude hVesci that induces the dynamic saddle-
node bifurcation is analytically estimated for a broad range of
parameter sweep and noise conditions, as detailed in Table 2.
Then, Fig. 8 plots all of the results comparing the predicted
mean escape excitation voltage amplitudes as a function of the
inverse of the scaled noise strength 1=a for a variety of additive
noise levels. The analytical predictions are given by dotted
curves whereas the experimental results are the circle data
points connected with solid curves. Each experimental data
point is the mean of 100 experimental trials. As shown in
Fig. 8, as the input voltage amplitude sweep rate increases, the
activation of the saddle-node bifurcation is consistently delayed;
this is evident from the increase in the escape voltage amplitude
for increasing sweep rate. Also, the mean escape input voltage
amplitudes decrease in consequence to the noise-activated
escape that results from the increase in noise level. Figure 8
illustrates that the analytical approach accurately predicts the
mean escape input voltage amplitudes that are observed experi-
mentally, particularly for smaller additive noise levels (greater
inverse scaled noise levels 1=a). It is seen that the analytical

Fig. 6 The analytical approximation (solid curve) of the mean
escape time is presented with the results obtained by numeri-
cally solving the PDF (dashed curve), Monte-Carlo simulation
(square), and experimental measurement (circle) with respect
to the scaled noise level a

Fig. 7 Comparison of analytical, numerical, and experimental
results of activating the dynamic saddle-node bifurcation of the
double-well Duffing circuit. For (a) the input voltage amplitude
is swept at rate of 0.1 V/s with 0.015 mV additive noise level,
while for (b) the sweep rate is 2.5 V/s using 10 mV level noise.
Analytically estimated mean escape input voltage amplitude
hVesci for both cases is presented as dotted vertical lines.
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prediction error develops at greater levels of noise and slower
sweep rates. The source of such error may be the assumption of
small perturbations from the dynamic steady-state in the normal
form formulation, which is potentially in conflict with the large
degree of deviations induced due to the greater noise near the
saddle-node. Nevertheless, the analytical estimates still achieve
good agreement at high levels of noise when the sweep
rate increases. Overall, the accuracy of the analytical approach
across such a wide range of bifurcation parameter sweep
rates and noise levels supports and validates the analytical
approximation given by Eq. (12b). By such a straightforward
relation and simple series of back-calculations to predict
and determine parameters to induce escape, the analytical
approximation derived herein provides a valuable new means
for predicting the onset of saddle-node bifurcation under the
non-stationary and non-deterministic conditions common to a
variety of contexts.

5 Conclusion

The non-stationary and stochastic influences on the activation
of saddle-node bifurcation are investigated to develop a new ana-
lytical prediction strategy for critical parameters that induce
escape from a stable equilibrium. The double-well Duffing oscil-
lator serves as the archetypal system of interest due to its ability
to exhibit a dynamic saddle-node bifurcation. The stochastic nor-
mal form of the saddle-node bifurcation is derived from the gov-
erning equation of the oscillator and is utilized to formulate the
escape probability density. A new, concise approximation of the
mean escape time is formulated, yielding straightforward and
effective means to predict the escape excitation amplitude that
activates the bifurcation. Numerical and experimental investiga-
tions conducted using a double-well Duffing analog circuit verify
the accuracy of the analytical approximation. The findings more-
over exemplify the critical roles of non-stationarity and non-
determinism on the activation of the saddle-node bifurcation.
Based upon the broad applicability and relevance of saddle-node
bifurcation phenomena across many scientific and technical disci-
plines, the analytical method developed here may be utilized for
simple and accurate determination of critical operating environ-
ments that influence the susceptibility of the system to being
pushed beyond the “tipping point” [19].
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Appendix: Derivation of the Stochastic Normal Form of

Saddle-Node Bifurcation

This appendix provides a detailed derivation of the stochastic
normal form of the saddle-node bifurcation from the double-well
Duffing oscillator governing equation. When the oscillator is har-
monically excited, the analog circuit Eq. (3) is expressed using a
comparable form

€X þ 2f _X � KX þ GX3 ¼ P cos xt (A1)

where XðtÞ, f, P, and x are, respectively, the generalized coordi-
nate, dissipation factor, amplitude of excitation, and excitation
frequency. K and G are linear and nonlinear stiffness coefficients,
respectively. In Eq. (A1), an overdot indicates a differentiation
with respect to time t. Depending upon the harmonic excitation
amplitude P, the steady-state response of the system may evolve
from intrawell oscillations around one of the two stable equilibria
X� ¼ 6

ffiffiffiffiffiffiffiffiffiffi
K=G

p
to interwell oscillations, which cross the unstable

equilibrium X� ¼ 0, or evolve in the opposite trend. The harmonic
balance method [49,60–62] is applied to approximately represent
the steady-state dynamics of Eq. (A1) for sufficiently small
damping 0 < f� 1. As a result, the steady-state response of the
oscillator is assumed as a single-term Fourier series expansion

X ¼ cðtÞ þ aðtÞcos xt (A2)

The term cðtÞ is necessary to represent the intrawell oscillation of
the system. Substituting Eq. (A2) into Eq. (A1), assuming that the
contribution of higher harmonics is negligible, and balancing the
constant terms and the harmonic terms, the following equations
are obtained:

2f _c þ Gc3 þ 3

2
Ga2c� Kc ¼ 0 (A3a)

2 _axþ 2fax ¼ 0 (A3b)

2f _a � ax2 � Kaþ 3Gac2 þ 3

4
Ga3 ¼ P (A3c)

where the fixed points of system (A3), ðc�; a�Þ, yield a trivial
result for a� via Eq. (A3b). Although the system exhibits two
saddle-node bifurcations as the amplitude of single-frequency
excitation is subsequently increased and decreased, for consis-
tency this investigation focuses on the saddle-node bifurcation
that separates the low amplitude intrawell from the high amplitude
interwell dynamics which occurs for increasing amplitude of the
excitation. Thus, the system is assumed to initially exhibit intra-
well oscillation, which is representative of the nonzero fixed point

c� ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK=GÞ � ð3=2Þa�2

p
found by solving Eq. (A3a). The

sign of c� is arbitrarily selected based upon assumption of the ini-
tial stable equilibrium around which the intrawell oscillations
occur. By substituting the positive value of c� into Eq. (A3c) and
introducing a small perturbation, x̂ ¼ a� a�, the local dynamics
around the fixed point a� are described by

_̂x ¼ x2 � 2K

2f
þ 45

8f
Ga�2

� �
x̂ þ 45

8f
Ga�x̂2 þ 15

8f
Gx̂3 (A4)

Since the stability of the response at the fixed point a� is deter-
mined by the first term on the right-hand side of Eq. (A4), the
saddle-node bifurcation occurs at fixed point a�cr with critical
amplitude of excitation Pcr to induce the steady-state bifurcation

a�cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

45G
2K � x2ð Þ

r
(A5a)

Fig. 8 Experimentally measured (data points with solid
curves) and analytically estimated (dotted curves) mean escape
input voltage amplitudes are presented with respect to the
inverse of the scaled noise level a for each different additive
noise level given next to each curve
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Pcr ¼ 2K � x2ð Þa�cr �
15

4
Ga�cr

3 (A5b)

When Eqs. (A5a) and (A5b) are substituted into Eq. (A3c) and a
coordinate transform, q ¼ P� Pcr, is applied, the equation shifts
to the origin such that the bifurcation occurs when q ¼ 0

_x ¼ lþ mx2 þ Oðx3Þ (A6a)

l ¼ q
2f

(A6b)

m ¼ 45

8f
Ga�cr (A6c)

When additive white noise is assumed to work on the system (A6)
and the higher order effects are neglected, we finally have the
Langevin equation of the perturbed system as shown in Eq. (4).
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