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Coupled Linear-Bistable System
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In this research we study the dynamics of a coupled linear oscillator-bistable energy har-
vester system. The method of harmonic balance and perturbation analysis are used to
predict the existence and stability of the bistable device interwell vibration. The influen-
ces of important parameters on tailoring the coupled system response are investigated to
determine strategies for improved energy harvesting performance. We demonstrate ana-
lytically that for excitation frequencies in a bandwidth less than the natural frequency of
the uncoupled linear oscillator having net mass that is the combination of the bistable
and linear bodies, the bistable harvester dynamics may be substantially intensified as
compared to a single (individual) bistable harvester. In addition, the linear-bistable
coupled system may introduce a stable out-of-phase dynamic around the natural fre-
quency of the uncoupled linear oscillator, enhancing the performance of the harvester by
providing a second interwell response not possible when using a single bistable har-
vester. Key analytical findings are confirmed through numerical simulations and experi-
ments, validating the predicted trends and demonstrating the advantages of the coupled
system for energy harvesting. [DOI: 10.1115/1.4026555]
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1 Introduction

1.1 Background. In recent years the proliferation of portable
electronics and wireless sensors has grown rapidly due to advan-
ces in microelectronic technology. Many of the devices are pow-
ered by batteries which have a finite lifespan. This can inhibit the
use of such electronics in remote or inaccessible environments
because replacing batteries may be costly if not impossible.
Hence, the concept of exploiting self-powered or energy harvest-
ing devices as an alternative to batteries has attracted much atten-
tion from researchers [1].

Energy harvesting commonly refers to the process of convert-
ing a renewable environmental energy resource into electrical
power. El-Hami et al. [2], Roundy et al. [3], and Mitcheson et al.
[4] proposed early solutions for the conversion of vibrating
potential to electric energy. Much of the initial research focused
on linear resonant vibration harvesters which are most effective at
a specific frequency. If the excitation frequency shifts, the per-
formance of the harvester will drop dramatically. This limits the
utility of such designs due to the broad bandwidth of energy in the
environmental vibration spectrum [3]. Therefore, considerable
study has focused on broadening the frequency range for vibra-
tional energy harvesters [5,6]. Inspired by the field of vibration
control [7,8], research in vibrational energy harvesting has also
explored linear multidegree-of-freedom (MDOF) dynamic sys-
tems to enhance the operational bandwidth and increase the num-
ber of attainable dynamic features. Configurations such as
multimode harvesters [9,10], “dynamic magnifier” [11–13], and
dual-mass harvesters [14,15] have exemplified the benefits of a
systems-level design approach to yield harvesting performance
extending beyond that achievable with single degree-of-freedom
(SDOF) elements.

Bistable devices have been explored for energy harvesting
performance and bandwidth enhancement due to advantageous
interwell or high-energy dynamics: a dynamic response during
which the inertial mass oscillates between its two equilibria
[16–22]. Additionally, they are more robust to manufacturing
defects and may be more useful in realistic vibration environ-
ments than linear or monostable nonlinear harvester designs
[17,23]. Owing to these advantages, bistable harvesters have
recently experienced a drastic increase in attention [24].

Taking a cue from related energy harvesting literature that stud-
ied the advantage of auxiliary add-on DOF for harvester enhance-
ment [25], Harne et al. [26] investigated the dynamics of an
excited bistable harvester with an appendage linear oscillator. It
was demonstrated that the benefit of this design methodology was
an intensifying of the snap through, interwell dynamics. Given
this promising result and in light of the advantages obtained when
adopting a system-level perspective for linear MDOF harvesters
[9–13], we consider a new approach to the bistable energy
harvester system in expectation of attaining both amplified high-
energy vibration and new dynamics that are not achievable in pre-
vious studied configurations.

1.2 Problem Statement and Research Objectives. Our pres-
ent holistic approach to the bistable harvester system follows that
of linear dynamic magnifier energy harvesting investigations
[11–13]: we utilize a linear resonator between the excitation and
the bistable harvester, depicted in Fig. 1. Tuned appropriately, the
coupled system should be capable of achieving high-orbit or high-
energy dynamics when otherwise the individual bistable oscillator
attains only low-orbit or low-energy response. As compared to the
different add-on configuration and framework discussed in [26],
we seek to uncover new dynamics that have not been observed or
studied previously, in a manner similar to the multimode response
of linear dynamic magnifier harvesters. While the proposed idea is
intuitively reasonable, a thorough study is needed to examine
the feasibility of the concept, provide guidelines for system syn-
thesis, and develop insights to enhance the energy harvesting
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performance. The present investigation seeks to achieve these
technical objectives, employing harmonic balance (HB) and Jaco-
bian analysis together with experimental and numerical studies.

2 Mathematical Formulation of the Coupled Linear

Oscillator-Bistable Energy Harvester System

2.1 Governing Equations. As depicted in Fig. 1, consider an
electromagnetic bistable oscillator of moving magnetic mass m1

which is coupled to a linear oscillator of mass m2. It is assumed
that motion of the bistable harvester does not encounter stroke
limitations by way of its integration to or within the linear oscilla-
tor. The linear element is harmonically excited through base
acceleration €z sð Þ ¼ �Z0 cos Xsð Þ. The axial restoring force is
given by

F xð Þ ¼ kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ l2

p
� lo

� �
sin hð Þ (1)

where kb, l0 are the stiffness and free length of the spring; l is
the vertical distance between linear frame and bistable mass; and
h is the inclination of the spring measured from the unstable
equilibrium position of the bistable harvester (x ¼ 0), where

sin hð Þ ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ l2
p

, indicated in Fig. 1. Assuming x=l� 1, by a
binomial series expansion, the restoring force can be simplified to

F ¼ kb 1� lo

l

� �
xþ kblo

2l3
x3 þ O x5

� �
(2)

The governing equations for the system are then expressed as

m1 €xþ €yþ €zð Þ þ d1 _x� k1xþ k3x3 þ Cc ¼ 0 (3)

m2 €zþ €yð Þ þ d2 _yþ k2y� d1 _xþ k1x� k3x3 � Cc ¼ 0 (4)

Le _cþ Rec ¼ C _x (5)

where x is the relative displacement between the linear oscillator
mass and bistable inertial mass; y is the relative displacement
between the linear oscillator and base; c is the current flow
through resistance Re which represents the load of a generalized
energy harvesting circuitry; Le is the inductance of electromag-
netic generator; C is an electromagnetic coupling constant; d1 and
d2 are mechanical damping; k1 ¼ kb ðlo=lÞ � 1ð Þ and k3 ¼ ðkblo=2l3Þ

are linear and nonlinear stiffness of the bistable harvester, respec-
tively; and the overdot is differentiation with respect to time s.

After substitution of Eqs. (4) and (5) into Eq. (3) and nondimen-
sionalization, the governing equations become

x00 þ 1þ lð Þf c1x0 � 1þ lð Þf 2xþ 1þ lð Þf 2bx3

� c2y0 � yþ 1þ lð Þehc ¼ 0 (6)

y00 þ c2y0 þ y� lf c1x0 þ lf 2x� lf 2bx3 � lehc ¼ p cos xt (7)

c0 þ qc ¼ hx0 (8)

where the parameters are defined as

x2
1 ¼ k1=m1; x2

2 ¼ k2=m2; l ¼ m1=m2;

f ¼ x1=x2; p ¼ Z0=x
2
2c1; c1 ¼ d1=m1x1

c2 ¼ d2=m2x2; h ¼ C=Le; q ¼ Re=Lex2;

e ¼ Le=m1x
2
2; x ¼ X=x2; b ¼ k3=k1; t ¼ x2s

and the operator ðÞ0 represents a derivative with respect to nondi-
mensional time t.

2.2 Solution Formulation by Harmonic Balance. The
method of harmonic balance is applied to solve the governing
Eqs. (6)–(8) [27]. To capture the most fundamental dynamics,
relative responses of the bistable and linear oscillators and current
flow in the circuit can be approximated as

x tð Þ ¼ c1 tð Þ þ a1 tð Þ sin xtð Þ þ b1 tð Þ cos xtð Þ (9)

y tð Þ ¼ a2 tð Þ sin xtð Þ þ b2 tð Þ cos xtð Þ (10)

c tð Þ ¼ a3 tð Þ sin xtð Þ þ b3 tð Þ cos xtð Þ (11)

with slowly varying coefficients. Substituting Eqs. (9)–(11) and
their derivatives into (6)–(8), eliminating higher order terms, and
grouping the constant, sin xtð Þ and cos xtð Þ terms yield seven
equations for the coefficient s,

� c1c01 ¼ f Kcc1 (12)

�c2a02 þ 2xb02þ lf c1a01 ¼�leha3þ 1�x2
� �

a2 � c2xb2

� lf 2Ka1þ lf c1xb1 (13)

�2xa02 � c2b02 þ lf c1b01 ¼ �lehb3 þ c2xa2 þ 1� x2
� �

b2

� lf cxa1 � lf 2Kb1 � p (14)

c2a02 � 1þ lð Þf c1a01 þ 2xb01 ¼ 1þ lð Þeha3 � a2 þ c2xb2

þ
X

a1 � 1þ lð Þf c1xb1 (15)

c2b02 � 2xa01 � 1þ lð Þf c1b01 ¼ 1þ lð Þehb3 � c2xa2

� b2 þ 1þ lð Þf c1xa1 þ
X

b1

(16)

� a03 þ ha01 ¼ qa3 � xb3 þ hxb1 (17)

� b03 þ hb01 ¼ xa3 þ qb3 � hxa1 (18)

where the terms are defined as

Kc ¼ �1þ b c2
1 þ

3

2
r2

1

� �
; K ¼ �1þ b 3c2

1 þ
3

4
r2

1

� �
;

X
¼ 1þ lð Þf 2K� x2; r2

1 ¼ a2
1 þ b2

1

The steady-state response of the system is determined by
solving Eqs. (12)–(18). From Eqs. (17) and (18), a3 and b3 can be
expressed in terms of a1 and b1,

Fig. 1 Base-excited linear oscillator with attached bistable
energy harvester having transduction mechanism and corre-
sponding harvesting circuit
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a3 ¼ U xa1 � qb1ð Þ (19)

b3 ¼ U xa1 þ qb1ð Þ (20)

where U ¼ hx= q2 þ x2ð Þ. Substituting Eqs. (19) and (20) into
(15) and (16), a2 and b2 can be determined in terms of a1 and b1

a2 ¼
1

D
C1a1 þ C2b1 þ c2xð Þp½ � (21)

b2 ¼
1

D
�C2a1 þ C1b1 þ 1� x2

� �
p

	 

(22)

where the terms are defined as

D ¼ 1� x2
� �2þ c2xð Þ2

C1 ¼ l 1� x2
� �

f 2Kþ ehxU
� �

þ c2xð Þ f c1xþ ehqUð Þ
	 


C2 ¼ l c2xð Þ f 2Kþ ehxU
� �

� 1� x2
� �

f c1xþ ehqUð Þ
	 


Substituting Eqs. (19)–(22) into (13) and (14), squaring and sum-
ming the resulted equations yield a characteristic equation for r2

1

p2 1þ c2xð Þ2
h i

¼ jr2
1 (23)

where j is defined as

j ¼ 1� 1þ lð Þx2
� �2þ c2xð Þ2
h i

f 2Kþ ehxU
� �2

� 2x2 1� x2
� �

1� 1þ lð Þx2
� �

þ c2xð Þ2
h i

f 2Kþ ehxU
� �

þ
h

1� 1þ lð Þx2
� �2þ c2xð Þ2
n o

f c1xþ ehqUð Þ2

þ 2lc2x
5 f c1xþ ehqUð Þ þ x4 c2xð Þ2þx4 1� x2

� �2
i

Eq. (23) contains two unknowns c1 and r2
1. The constant term may

be obtained by solving the steady-state response of Eq. (12). If the
bistable device undergoes interwell or high-energy oscillation, the
corresponding c1 is zero. If the response is intrawell oscillation,
oscillation around one of its stable equilibria, c2

1 is found to be

c2
1 ¼

1

b
� 3

2
r2

1 (24)

Depending on the dynamics one is interested in, a unique c1 is
substituted into K such that Eq. (23) is a function only of r2

1. The
roots of Eq. (23) can then be determined. Solutions are considered
to be physically meaningful if the roots are positive, real numbers.
Coefficients a1 and b1 are explicitly computed after obtaining r2

1

a1 ¼
p

j

n
1þ lð Þc2x

3 f 2Kþ ehxU
� �

þ 1� 1þ lð Þx2 þ c2xð Þ2
h i

� f c1xþ ehqUð Þ � c2x
5
o

(25)

b1 ¼
p

j

n
1� 1þ lð Þx2 þ c2xð Þ2
h i

f 2Kþ ehxU
� �

� 1þ lð Þc2x
3 f c1xþ ehqUð Þ � 1� x2 þ c2xð Þ2

� �
x2
o

(26)

The average power density generated by the bistable harvester is
then computed as

P1 ¼
1

1þ l
1

2
q a2

3 þ b2
3

� �� �
¼ q

2 1þ lð Þ
h2x2

x2 þ q2ð Þ r
2
1 (27)

In the following Secs. 3.1 and 3.2 we employ dimensionless
parameters q ¼ 2500, h ¼ 10, and e ¼ 0:6 representative of an
electromagnetic generator design having small inductance and
moderate transducer coupling constant [23].

To take phase relationships into consideration, steady-state
response of Eq. (9) can be alternatively expressed as

x ¼ c1 þ r1cos xt� u1ð Þ; tan u1ð Þ ¼ a1=b1 (28)

2.3 Stability Analysis. To determine the stability of physi-
cally meaningful solutions, Eqs. (12)–(18) are cast into the form
Ax0 ¼ F xð Þ, where vector x is defined by x ¼ a1; b1; c1; a2;½
b2; a3; b3�T . Stability of response solutions may then be
determined by assessing the eigenvalues of the Jacobian of
G ¼ A�1F xð Þjx¼xss

[28].

3 Analytical Investigation of Coupling Influences

3.1 Effect of Bistable Harvester Mass Ratio. In this section
we investigate how the dynamics and energy harvesting perform-
ance of the system are influenced by the ratio of bistable harvester
to linear oscillator masses: l ¼ m1=m2. The responses are deter-
mined using the system characteristics p ¼ 0:2, f ¼ 0:2, b ¼ 1,
and c1 ¼ c2 ¼ 0:001. Previous studies have found that the
“magnifier” mass of coupled 2DOF linear harvester systems may
be required to be on the order of or greater than that of harvesting
element [11–13]; the researchers show that the consequence of the
coupled system is not simply amplification of the resonant dynam-
ics but the introduction of new dynamics from which to harvest.
Taking the prior insight into account, we consider a large range of
mass ratios l ¼ 0:5; 1; 5½ � that reflect the design principles of the
earlier work (l < 1) as well as an alternative design approach
(l > 1) that represents a smaller linear magnifier mass added into
the harvesting system. Because steady-state energy harvesting
with bistable devices is best accomplished via high-energy
dynamics [24], we only consider responses corresponding to inter-
well vibration. For comparison to the benchmark of the single
bistable harvester, we compute the individual bistable device
response from its governing equation nondimensionalized using
the time of the coupled system t ¼ x2s

x00 þ f c1x0 � f 2xþ f 2bx3 þ ehc ¼ p cos xtð Þ (29)

The corresponding electrical response equation for the single
bistable harvester is the same as Eq. (8). Power density is deter-
mined from

P1 ¼
q

2l
h2x2

x2 þ q2ð Þ r
2
1

Since our focus is on the energy harvesting potential of the bista-
ble element of the coupled system, for conciseness we omit the
corresponding linear oscillator responses. In this and Sec. 3.2
numerically computed results are provided for several of the
parameter cases studied. The values are obtained by long-time nu-
merical integrations of the governing Eqs. (6)–(8) and (29) using
randomly generated initial conditions. The response amplitudes of
the bistable harvester are then computed from the fast Fourier
transform of the last 5% of the simulations. The results of 20 sim-
ulations yielding single periodic interwell responses are averaged
for each data point in Figs. 2 and 3. When more than one form of
single periodic interwell response exists at a given excitation fre-
quency, the averaging separates such values for individual deter-
mination of amplitudes.

Figure 2 shows the response amplitude and phase between the
bistable harvester and linear oscillator and the average power den-
sity generated by the bistable harvester component. The response
of the individual bistable harvester, without the linear oscillator,
relative to base is provided for comparison. Since mass ratio l is
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not presented in Eq. (29), change in l will not affect the response
amplitude of the single bistable harvester. Figure 2(a) shows that
the coupled system increases the response of the bistable harvester
above the baseline of the single bistable device in a frequency
band below x� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

(see Sec. 4 for more detailed discus-
sion). As the mass ratio l increases from 0.5 to 5, the amplifica-
tion of the bistable response for the coupled system becomes more
substantial with the trade-off that high-energy dynamics destabi-
lize at lower frequencies. Numerical results are in good agreement
with this finding. The reason for destabilization is indicated by the
phase relationship. Figure 2(b) shows that as driving frequency
nears the point at which high-energy dynamics are destabilized,
the bistable harvester approaches a 90� phase lag relative to the

linear oscillator. Thus the system approaches an in-phase reso-
nance, similar to the lowest mode of a classical linear 2DOF sys-
tem. We may interpret the influence of the linear oscillator as a
variable gain excitation source acting upon the bistable harvester
that is dependent on the tuning and mass ratios. Recent work has
shown that a bistable harvester cannot sustain large-displacement
high-energy dynamics if its response lags the excitation source by
more than 90 deg [29]. Since the bistable device high-energy dy-
namics approach this critical phase lag for the in-phase responses
as observed in Fig. 2(b), this explains the cause of destabilization
of the high-energy response. We also find in Fig. 2(a) that the
relative amplitude of the bistable device for stable in-phase
response remains greater than 1 (greater than the amplitude
between the two stable equilibria, determined to be 1=

ffiffiffi
b
p

using
the definitions from Sec. 2), indicating a snap-through action as
opposed to simply moving in-phase with the same response
magnitude of the linear resonator. Similar to response amplitude,
Fig. 2(c) demonstrates that as mass ratio l increases, the amplifi-
cation of the power density for coupled system compared with the
baseline of the single bistable device becomes more prominent.
This trend is opposite of that observed for 2DOF linear dynamic
magnifier energy harvesting studies [11–13] where it was found
that larger added linear DOF (here, l < 1) serve the greatest bene-
fit to harvesting performance. On the other hand, even for small
mass ratio, there still exists a frequency bandwidth where the

Fig. 2 High-energy dynamics as mass ratio l varies. Bistable
harvester (a) displacement amplitude (r1); (b) phase lag (u1);
and (c) average power density (P1).

Fig. 3 High-energy dynamics as tuning ratio f varies. Bistable
harvester (a) displacement amplitude (r1); and (b) average
power density (P1).
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coupled bistable harvester average power density exceeds that
achieved by the single bistable device.

As the excitation frequency approaches the linear oscillator
natural frequency (x ¼ 1, another branch of stable high-energy
dynamics is predicted for the coupled systems, only now they
represent out-of-phase response. Increasing mass ratio l reduces
the out-of-phase snap-through response but broadens the stable
frequency range. Even though the bistable harvester has exceeded
the critical 90 deg phase lag, its snap-through response is charac-
terized by much smaller amplitude unlike the prior high-energy
dynamics observed and therefore appears to be a unique phenom-
enon. We find that in some cases, the bistable harvester response
magnitude may be close to the amplitude between the stable and
unstable equilibria r1 ¼ 1, for example Fig. 2(a) lower amplitude
stable branches around x ¼ 0:8. Since the bistable oscillator
exhibits such small snap-through vibrations, this represents a sta-
bilization of the unstable equilibrium position [30–32]. Past study
of an appendage linear oscillator for bistable energy harvesting
enhancement [26] did not uncover similar advantageous out-of-
phase energy harvesting dynamics. This justifies the holistic
design perspective as investigations below further support. Lastly,
the overall good agreement between numerical and analytical
results justifies the effectiveness of utilizing a single term har-
monic expansion to capture the essential dynamics of the coupled
linear-bistable energy harvesting system.

3.2 Effect of Bistable Harvester Tuning Ratio. To explore
the influence of tuning ratio f , we retain parameters of the prior
investigations but now consider l ¼ 1 and f ¼ 0:1; 0:2; 0:5½ �.
Figure 3 presents the high-energy dynamics of the bistable har-
vester with the responses of the corresponding individual bistable
device for comparison.

Figures 3(a) and 3(b) show that two distinct regions of stable
high-energy dynamics can be identified: amplified bistable har-
vester dynamics in a frequency region less than x� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

and out-of-phase response around x ¼ 1 (see Sec. 4 for more
detailed discussion). Regardless of the tuning ratio, the amplifica-
tion effect induced by coupling is observed to be most prominent
for frequencies approximately around x � 0:7 with system
response destabilized at the same frequency. Simulated results
also confirm the trends of amplified response and destabilized
interwell dynamics at approximately the same frequency. These
findings suggest that the frequency at which in-phase high-energy
dynamics of the coupled system are destabilized is primarily con-
trolled by the mass ratio while the tuning ratio principally deter-
mines the response amplitude and the rate at which the response
asymptotically grows prior to destabilization. The bandwidth of
enhanced average power density for the coupled system is like-
wise unaffected by change in tuning ratio.

As shown in Fig. 3(a), tuning ratio is also an important parame-
ter controlling the existence of out-of-phase dynamics for the
coupled system around x ¼ 1. The relative response amplitude
between the bistable and linear oscillators of the out-of-phase
dynamic is found to decrease as tuning ratio f increases, to the
extent that stable response is eventually not possible should tuning
ratio become too large. For example, Fig. 3(c) predicts that power
density generated by the out-of-phase dynamic near x ¼ 1 is
greatest for a tuning ratio of f ¼ 0:1, less substantial for f ¼ 0:2,
but is not possible for f ¼ 0:5 since the dynamic is no longer sta-
ble. The simulated results likewise corroborate the analytical find-
ings on the influence of tuning ratio in tailoring the existence of
out-of-phase response for the coupled system near x ¼ 1.

3.3 Effect of Bistable Harvester Electromechanical
Coupling and System Damping. The influence of electrome-
chanical coupling h is investigated using system parameters
p ¼ 0:2, f ¼ 0:2, b ¼ 1, l ¼ 1, c2 ¼ 0:001, c1 ¼ 0:001,
q ¼ 2500, and e ¼ 0:6. The coupling is varied over the range
h ¼ 5; 10; 20½ � and represent inductive generator designs having

moderate to high transducer constants [33], more readily realized
for macroscale systems. Figure 4 shows that a drastic degradation
on the stable bandwidth of high-energy orbit for the individual
bistable harvester is observed as electromechanical coupling h
increases, which is more evident in Fig. 4(b). For example, analy-
sis predicts the high-energy orbit of an individual device is sus-
tainable up to approximately x ¼ 2 with coupling h ¼ 5 but only
possible for x < 0:6 with h ¼ 20. This result exemplifies the
robustness of the coupled linear-bistable harvester system: for
designs utilizing higher electromechanical coupling strengths, the
frequency range of high-energy orbit for the coupled system may
be greater than that of the single device. The fact that in-phase
response of the coupled system destabilizes at the same frequency
and grows asymptotically at a similar rate prior to destabilization
suggests electromechanical coupling h is not as important in mod-
ifying in-phase dynamics of the bistable harvester as compared to
the influence of mass ratio l and tuning ratio f . Another observa-
tion should be made that greater coupling strength h also plays a
role in stabilizing the out-of-phase dynamics. For example,
Fig. 4(a) predicts that the response remains stable for h ¼ 20
throughout the entire range of frequencies around x ¼ 1.

In light of experimental findings in Sec. 5, we lastly consider
the consequences of both higher electromechanical coupling
h ¼ 20 and increased mechanical damping in the linear oscillator
c2 for the high-energy dynamics of the coupled system. We vary
c2 from 0.001 to 0.1. The in-phase high-energy orbit of the bista-
ble harvester destabilizes at lower frequency as damping of the
linear oscillator c2 increases, Fig. 5. As a result, the magnitudes of

Fig. 4 High-energy dynamics as electromechanical coupling h
varies. Bistable harvester (a) displacement amplitude (r1); and
(b) average power density (P1).
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in- and out-of-phase responses become much closer in amplitude.
Overall, this and the prior findings suggest that the magnitude
of in-phase high-energy dynamics is governed by the damping
influences of the linear oscillator while the amplitude of the out-
of-phase high-energy dynamics is primarily influenced by damp-
ing effects of the bistable harvester, which may represent either
mechanical or electromechanical dissipations.

4 Interpretation of the Induced Frequency Response

The analytical investigations show that the coupled linear
oscillator-bistable harvester system yields unique frequency
response characteristics. However, like a linear 2DOF system, two
resonancelike phenomena are observed when the system has bist-
ability corresponding to the in- and out-of-phase snap-through
features apparent in Sec. 3. Figure 2 gives evidence that the mass
ratio l plays a role in determining the frequency at which the first
resonance feature appears and that the second resonance effect
seems to be fixed around the natural frequency of the uncoupled
linear system. Here we confirm this observation, develop guide-
lines for designing the frequency response characteristics of the
coupled linear-bistable harvester system, and provide a new inter-
pretation of the snap-through phenomena.

Bistable snap through may be characterized as a nonresonant
phenomenon because any form or frequency of excitation may
induce a switching of the mass from one stable state to the other.
For a linear 2DOF system, a nonresonant oscillator of finite mass
coupled to an excited subsystem may be realized in one of two
ways: when the natural frequency of the nonresonant body
approaches zero or infinity, f ! 0 or f !1. For the prior case,
the nonresonant oscillator has an infinitesimally small natural fre-
quency, while in the latter case it is infinitely stiff such that it
appears to be “welded” to the excited subsystem. Therefore, we
may interpret the manner in which the bistable device interacts
with the linear oscillator during snap through as being analogous
to a linear device of f ! 0 and f !1.

These perspectives are supported by considering the
limiting cases of the undamped linear 2DOF system frequency
response [34] as compared to the present results. The charac-
teristic equation governing the resonances of the linear 2DOF
system is

x4 � 1þ f 2 1þ lð Þ
� �

x2 þ f 2 ¼ 0 (30)

where f and l are defined as the frequency and mass ratios,
respectively, with respect to the excited linear subsystem. Using
Eq. (30), a linear body of f ! 0 splits the original system reso-
nance into two normalized frequencies x� ¼ 0 and 1. Thus, the
out-of-phase snap-through response can be interpreted as the
response of a linear oscillator with zero natural frequency coupled
to an excited linear oscillator since it does not shift the resonant
frequency from the uncoupled resonance of the linear system, as
observed in Sec. 3. Likewise, for the limiting case f !1, only
terms multiplied by f 2 in Eq. (30) are appreciable. In this event
there are no longer two resonant features but one resonance asso-
ciated with the composite mass at frequency x� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

.
Hence, in-phase snap-through dynamics of the coupled system
may be interpreted as the response of a linear oscillator with infi-
nite natural frequency coupled to the excited linear oscillator since
the resonance phenomenon occurs at a frequency associated
with the net mass of the system. This defines the frequencies at
which the two resonant features of the undamped coupled linear-
bistable harvester system occur: one resonant peak at the
uncoupled linear natural frequency x� ¼ 1 associated with out-of-
phase snap through and a second due to the summation of the
masses of the linear and bistable oscillators, x� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

asso-
ciated with in-phase snap through.

We validate this perspective by computing the undamped,
purely mechanical system dynamics using the model of Sec. 2
with p ¼ 0:01, f ¼ 0:25, b ¼ 1. Figure 6 shows the bistable har-
vester response over a range of mass ratios l. The frequencies at
which the lower resonance characteristics occur are identical to
those determined from the expression x� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p

, also con-
firming earlier observation in Sec. 3.1 that mass ratio predomi-
nantly governs where this resonance feature appears; deviation
from this exact frequency is therefore a consequence of system
damping influences. This shows that snap-through phenomena
may be tailored for energy harvesting advantage in the coupled
linear-bistable system by adjustment of the mass ratio l to locate
the in-phase high-energy dynamics which amplify the generated
power above that achievable by the single bistable harvester. The
resonance feature associated with out-of-phase snap through,
which occurs at the uncoupled natural frequency of the linear
oscillator x ¼ 1, is attained without specific design requirements,
as had been observed in Sec. 3.3 even in the presence of high
damping in both components of the system. Since the previously
studied energy harvester configuration employed a directly

Fig. 5 High-energy dynamics of the bistable harvester in the
coupled system as damping in the linear oscillator c2 varies

Fig. 6 High-energy dynamics of the bistable harvester in the
undamped coupled system as mass ratio l changes. Bold
curves: stable solutions. Thin lines: unstable solutions. Dashed
lines represent the predicted frequency of the in-phase snap-
through resonance feature.
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excited bistable harvester with add-on linear oscillator [26], and
given that a directly excited bistable system may lag its excitation
source by no greater than 90 deg to sustain large-displacement
high-energy dynamics, the previously studied harvester configura-
tion [26] cannot obtain the advantageous out-of-phase high-
energy response of the present system. This exemplifies the per-
formance enhancement and versatility of the present coupled
linear-bistable harvester system approach.

5 Experimental Investigation

The results of Sec. 3 indicated the coupled linear oscillator-
bistable harvester system could (i) amplify low excitation
levels to intensify in-phase snap through and also (ii) yield an out-
of-phase snap through response around the linear oscillator
uncoupled natural frequency. These two results can enhance
energy harvesting performance and are shown to be tailored for
fixed excitation level by adjusting mass ratio l, electromechanical
coupling h, and tuning ratio f . Here we validate these key analyti-
cal trends by experiments.

A photograph of the test setup is shown in Fig. 7. The linear
oscillator mass is composed of the machined aluminum frame,
bottom bearing mass, and bistable oscillator bearing guide rail.
The bistable mass is composed of the bearing mass in the middle
of the photograph along with the hardware necessary to affix the
mass to the attached spring. The bistable oscillator is developed
by precompressing the spring (in its upright position) between the
bistable inertial mass and a rotational pivot affixed to the linear
oscillator. Therefore, the two stable equilibria for the bistable
mass are to the right and left of the central unstable position.
Guide rods are used to prevent the precompressed spring from
bending or twisting as the inertial mass snaps from one stable
state to the other. Both linear and bistable oscillators utilize
low-friction linear slide bearings. An adjustable, translational
pneumatic damper is used to modify the damping between the lin-
ear oscillator and bistable harvester. The coupled system is
mounted to an electrodynamic shaker table activated in the hori-
zontal left–right direction. The linear oscillator natural frequency
is approximately 6 Hz. The shaker excitation during tests is a
slowly forward swept sinusoid from 1 to 9 Hz (þ0.025 Hz/s). To
compare the dynamics of a single bistable oscillator to the same
input conditions, the linear oscillator is locked to the shaker

platform by preventing motion of the bottom linear bearing. Three
accelerometers measure the dynamics of the shaker platform and
linear and bistable oscillators.

5.1 Effect of Bistable Harvester Electromechanical
Coupling. For inductive vibration generators when the inductance
is small (i.e., the electrical natural frequency is substantially
greater than the mechanical natural frequency) which is common
for many macroscale electromagnetic harvesters, the governing
equations may be reduced by direct substitution of the electrical
response Eq. (8) into Eqs. (6) and (7) by the relation c ¼ h=qð Þx0
[35]. Defining a coupling factor jc ¼ h=q the effect of electrome-
chanical responses on bistable harvester dynamics is then modeled
as additional damping, where the total damping is c ¼ c1 þ j2

c .
Consequently, in the following experiments, we investigate the
influence of changing electromechanical coupling by adjustment
of total damping c between the linear oscillator and bistable
harvester.

Figure 8 plots the measured acceleration frequency response
functions (frf) as the bistable damping c varies. For the single
bistable oscillator, this is the ratio of relative accelerations
between the bistable inertial mass and shaker table to the shaker
input acceleration; for the coupled system, this is the ratio of the
relative acceleration between the bistable and linear elements to
the shaker acceleration. Only high-energy dynamics are plotted.
The sweep test is conducted with input rms acceleration of
2.83 m/s2. As depicted in Fig. 8, the high-energy response of the
single bistable device destabilizes at progressively lower frequen-
cies as damping increases. In contrast, the in-phase dynamics of
the coupled system are much less sensitive to increase in the
damping, in agreement with analytical trend predicted in Fig. 4.

While the single bistable system exhibits only low-energy
dynamics for excitation frequencies greater than the maximum
sustainable interwell oscillation frequency (4 to 5 Hz), the coupled
systems undergo another energetic out-of-phase high-energy
dynamic around the natural frequency of the linear oscillator. As
bistable damping increases, the peak vibrational amplitude of this
dynamic decreases, confirming model predictions in Sec. 3.3.
Lastly, Fig. 8 shows that the magnitudes of in- and out-of-phase
high-energy dynamics of the bistable oscillator are on the same
order of magnitude. As was explored in Sec. 3.3, this indicates
that the levels of damping are relatively high in both the linear
and bistable oscillator bearings.

Fig. 7 Photograph of linear-bistable coupled system showing
elements of system configuration and test setup

Fig. 8 Relative acceleration frf of the bistable oscillator inertial
mass as a function of damping between linear oscillator and
bistable harvester
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5.2 Effect of Bistable Harvester Mass. As observed in Secs.
3 and 4, mass ratio l is important in terms of determining the
frequency at which in-phase snap through destabilizes. In this
investigation we validate the trend by changing bistable mass.
However, direct change in mass in experiments additionally influ-
ences the bistable linear natural frequency and thus changes other
nondimensional parameters such as f , c1, and e. To facilitate com-
paring trends between analysis and experiment, we first plot in
Fig. 9(a) the analytically predicted response amplitude of the
bistable harvester as bistable mass varies. The bistable harvester
vibration amplitude for the coupled system is always enhanced as
compared to the single bistable harvester. As the bistable mass
increases, in-phase interwell dynamics destabilize at lower fre-
quency for both the coupled and single bistable systems. In con-
trast, out-of-phase dynamics for the coupled system are less
sensitive to change in bistable mass as compared with change in
mass ratio l as found in Fig. 2(a).

Having an understanding of the specific influence of bistable
mass as predicted by analysis, Fig. 9(b) plots the measured accel-
eration frequency response functions (frf) as bistable mass varies
with input rms acceleration of 2.07 m/s2. Each of the prior analyti-
cal trends can be verified from the data. First, a frequency range
may consistently be found where response amplitude for the
coupled system is amplified above that of the single bistable

device. Next, the in-phase response for both coupled and single
bistable systems destabilize at progressively lower frequency as
the bistable mass increase. Lastly, the out-of-phase response for
the coupled system is insensitive to the change of bistable mass.
These findings thoroughly support the analyses and help to dem-
onstrate the advantages of the coupled linear-bistable system con-
figuration for more robust energy harvesting performance.

6 Conclusion

This paper presented an analytical, numerical, and experimental
study of the synthesis of a coupled linear oscillator and bistable
energy harvester system. Investigations revealed that with the
coupled system, in-phase interwell vibration and power density of
the bistable harvester are enhanced dramatically for excitation fre-
quencies in a bandwidth less than the resonant frequency of the
linear oscillator having a mass that is the sum of linear and bista-
ble bodies. It was found that mass ratio l primarily determines the
frequency at which the coupled system loses the capability to sus-
tain in-phase high-energy dynamics while tuning ratio f mainly
determines the response magnitude and rate at which the amplifi-
cation grows close to the in-phase snap-through feature. When the
excitation frequency is close to the resonance of the uncoupled
linear oscillator, a second stable out-of-phase high-energy
dynamic may be induced. It is shown that as electromechanical
coupling h increases, the bistable harvester dynamics of the
coupled system remain relatively unaffected as compared to the
reduced response bandwidth of the individual bistable harvester,
providing an opportunity to harvest more energy from the coupled
system. Numerical simulations and experiments validated key an-
alytical trends observed throughout analyses. The results of this
work justify the holistic design approach in developing linear-
bistable coupled systems for enhancing the performance and
robustness of bistable energy harvesters.
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