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Excitation-Induced Stability
in a Bistable Duffing Oscillator:
Analysis and Experiments
The excitation-induced stability (EIS) phenomenon in a harmonically excited bistable
Duffing oscillator is studied in this paper. Criteria to predict system and excitation condi-
tions necessary to maintain EIS are derived through a combination of the method of har-
monic balance, perturbation theory, and stability theory for Mathieu’s equation.
Accuracy of the criteria is verified by analytical and numerical studies. We demonstrate
that damping primarily determines the likelihood of attaining EIS response when several
dynamics coexist while excitation level governs both the existence and frequency range
of the EIS region, providing comprehensive guidance for realizing or avoiding EIS dy-
namics. Experimental results are in good agreement regarding the comprehensive influ-
ence of excitation conditions on the inducement of EIS. [DOI: 10.1115/1.4026974]
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1 Introduction

For many years, the bistable Duffing oscillator has attracted
considerable attention due to its rich dynamical behavior and
numerous embodiments in mechanical, chemical, and engineering
systems [1–11]. The double-well Duffing equation was derived,
by a single mode approximation, as a mathematical model to
describe the transverse deflection of a buckled beam [1]. Holmes
[2] theoretically analyzed the chaotic dynamics of a bistable oscil-
lator that is experimentally realized using a ferromagnetic cantile-
ver beam deflected from a central position by a surrounding pair
of attractive magnetic fields [3,4]. Since then, great focus has
been put toward understanding and characterizing the onset of
chaotic dynamics of double-well systems [5–8]. In parallel with
the extensive research on “strange” behaviors of bistable systems,
a number of researchers have studied the steady-state harmonic
responses. Tseng and Dugundji [9] analytically and experimen-
tally considered intrawell (low-energy orbit) and regular interwell
(high-energy orbit) dynamics of a buckled beam with clamped
ends and determined the “snap-through” threshold. Szempli�nska-
Stupnicka and Rudowski [10] generalized these results by provid-
ing approximate closed-form criteria for intrawell and regular
interwell oscillations and for cross-well chaos. Harne et al. [11].
recently proposed a set of straightforward conditions that govern
interwell responses in the context of bistable vibration energy har-
vesting systems.

Holmes [2] demonstrated that when forcing level exceeds a
threshold value, the unstable saddle fixed point on the Poincar�e
map could stabilize itself through a pitchfork bifurcation. Such
dynamic stabilization or excitation-induced stability (EIS) is com-
monly observed for systems under parametric excitation [12]. A
classic system that may exhibit EIS is the parametrically-forced
pendulum [13–15]. Comparatively fewer studies have focused on
EIS in a double-well Duffing system. Blair et al. [16]. documented
the phenomenon on a forced bistable Duffing oscillator that was
later experimentally demonstrated by analog circuit studies
through bifurcation analysis by Kim et al. [17,18]. Recent studies
in vibration energy harvesting [19,20] and vibration control [21]
also observed similar dynamical behaviors on single or two
degree-of-freedom systems including bistable members. Since

both regular interwell and EIS dynamics are oscillations around
the unstable equilibrium position, criteria governing inducement
of EIS are valuable for preferred utilization of a bistable Duffing
oscillator, which models many real-world systems.

Despite the importance, explicit criteria that determine system
and excitation parameters defining the EIS region remain unre-
ported and validation of such criteria through experimental inves-
tigations with mechanical bistable systems are outstanding.
Validation through experimentation with mechanical oscillators is
important to demonstrate their utility for the many structural and
engineered bistable systems, surveyed above. On the one hand,
for applications that benefit from large amplitude regular interwell
responses like vibration energy harvesting [22,23], criteria may
provide guidance to design the bistable oscillator to avoid activa-
tion of EIS dynamics. On the other hand, for systems that require
low dynamic stiffness like vibration isolation [24], following the
criteria can help sustain small amplitude EIS response and pre-
serve system integrity.

Hence, to provide guiding principles in realizing or avoiding
EIS dynamics, the present paper aims to complement previous
work by deriving criteria to predict the existence and sustainable
range of EIS for a bistable Duffing oscillator. First, a perturbation
to steady-state response solutions is applied that results in a
Mathieu’s equation. The criteria are then determined by combin-
ing the stability theory of Mathieu’s equation and closed-form
expression of steady-state response. The influences of key param-
eters on the inducement of EIS dynamics are investigated. Analyt-
ical findings on system dependence on excitation conditions are
experimentally validated using a classical bistable mechanical
system: the buckled ferromagnetic cantilever beam.

2 Mathematical Formulation

2.1 Governing Equation. The nondimensional governing
equation of a harmonically excited bistable Duffing oscillator may
be written as

€xþ c _x� xþ x3 ¼ pcosðxtÞ (1)

where x is the normalized relative displacement between an iner-
tial frame and the oscillator mass as measured from the central
unstable equilibrium, c is the damping factor, p is the excitation
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level, and the operator ð_Þ represents the derivative with respect to
nondimensional time t. Previous studies [9,11,20,25] indicate
that the most fundamental, periodic vibration of a bistable
oscillator can be captured by a single term Fourier expansion
x tð Þ ¼ c tð Þ þ r tð Þcos xt� / tð Þð Þ. The offset term cðtÞ is selected
as zero or nonzero based on whether the dynamics of interest are
intrawell (oscillations orbiting a stable equilibrium position) or
interwell (oscillations crossing the unstable equilibrium position
twice per excitation period). Therefore, the symmetry of the
response about the unstable equilibrium serves as an important
criterion to distinguish the dynamical responses. Substituting the
expression for x tð Þ into Eq. (1), assuming slow-varying coeffi-
cients, and eliminating higher-order terms, the steady-state vibra-
tion amplitude r satisfies [11,26]

9
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r6 � 3

2
1þ x2
� �

r4 þ 1þ x2
� �2þ cxð Þ2
h i

r2 ¼ p2 (2)

or
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1þ x2
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� �2þ cxð Þ2
h i

r2 ¼ p2 (3)

where Eqs. (2) and (3) govern the vibration amplitude of interwell
and intrawell dynamics, respectively.

2.2 Stability Analysis. Since EIS dynamics represent oscilla-
tions crossing the unstable equilibrium position twice per excita-
tion period [17,18], such phenomena are classified as a form of
interwell response. Detailed stability analysis on intrawell dynam-
ics for Eq. (3) is omitted here for brevity. To determine the stabil-
ity of the interwell response, a perturbation yðtÞ is applied to the
steady-state response xss ¼ rcosðxt� UÞ, where r is the steady-
state response amplitude determined from Eq. (2). Substituting the
expression x tð Þ ¼ xssðtÞ þ yðtÞ into Eq. (1) and neglecting higher
order terms of y tð Þ, the resulting dynamical equation for perturba-
tion yðtÞ becomes

€yþ c _yþ 3r2

2
� 1

� �
þ 3r2

2
cosð2xt� 2UÞ

� �
y ¼ 0 (4)

Stability of the interwell response can therefore be determined
from the stability of perturbation yðtÞ; stable perturbation yðtÞ cor-
responds to a stable steady-state response r and vice versa. To bet-
ter analyze the stability of yðtÞ, Eq. (4) is first expressed as

y00 þ c
2x

y0 þ a
4x2
þ b

4x2
cos Tð Þ

� �
y ¼ 0 (5)

with T ¼ 2xt� 2U; a ¼ 3r2=2� 1;b ¼ 3r2=2 and operator ðÞ0
represents the derivative with respect to time T. Applying a
change of variable u ¼ y expð1

2

Ð T
0
ðc=2xÞdsÞ [27], Eq. (5) is trans-

formed into a standard Mathieu’s form

u00 þ dþ ecosðTÞð Þu ¼ 0 (6)

where the terms are defined as

d ¼ a=4x2 � c2=16x2; e ¼ b=4x2

Hence, stability can be determined from the Mathieu’s resonance
tongue boundaries, schematically shown in Fig. 1 with hatched
areas corresponding to stable domains for Eq. (6), which are spe-
cifically explored in this work. Applying the Poincar�e–Lindstedt
method [28,29], the three lowest-order transition curves labeled
B1, B2, and B3 may be approximated as

B1 : d ¼ � 1

2
e2 þ O e4

� �
; B2 : d ¼ 1

4
� 1

2
e� 1

8
e2 þ O e3

� �
;

B3 : d ¼ 1

4
þ 1

2
e� 1

8
e2 þ Oðe3Þ

(7)

Therefore, from Fig. 1 the perturbation u is stable if d is between
B1 and B2 or above B3, i.e., if

� 1

2
e2 < d <

1

4
� 1

2
e� 1

8
e2; d >

1

4
þ 1

2
e� 1

8
e2 (8)

Neglecting terms e of order 2 or higher in Eq. (8) and substituting
expressions for d and e defined in Eq. (6), the steady-state
response r is stable if

S1 < r < S2; r > S3 (9)

where

S1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ c2Þ=6

p
; S2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ c2 þ 4x2Þ=9

p
;

S3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4þ c2 þ 4x2Þ=3

p
The three boundaries in Eq. (9) expressed in terms of system pa-
rameters p, c, and excitation frequency x are criteria to determine
the stability of the interwell response for a bistable Duffing oscil-
lator. Vibration bounded by curves S1 and S2 is the EIS response.
The intersections of the steady-state response amplitude curve
rðc; p;xÞ, determined from the roots of Eq. (2), and the three tran-
sition curves, respectively, govern the frequencies at which inter-
well dynamics change stability. For instance, the upper frequency
bound for EIS, at which responses transition between interwell
and intrawell dynamics is determined by substituting r ¼ S1 into
Eq. (2), and the resulting expression is

xUb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�16� 16c2 � 3c4 þ 2

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

192p2 þ 64c2 þ 48p2c2 þ 48c4 þ 12c6 þ c8
p

8ð4þ c2Þ

s
(10)

Fig. 1 Schematic of Mathieu’s resonance tongue. Hatched
areas correspond to stable domains of Mathieu’s equation. B1,
B2, and B3 are the first three transition curves on the d2e plane.
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which can be simplified into xUb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffi
6
p

p� 1Þ=2

q
assuming

small damping c� 1. Likewise, the frequency at which regular
large amplitude interwell response becomes unstable is deter-
mined by replacing r with S3 in Eq. (2) and the resulting expres-
sion is

xinter ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p2c2 þ c4

p
2c2

s
(11)

By the same token, the lower frequency bound of EIS xLb, which
separates the regular interwell and EIS dynamics, determined by
combining S2 and Eq. (2), satisfies

1

9
4þ c2 þ 4x2

Lb

� �
c2x2

Lb þ � 2

3
� 2x2

Lb=3þ c2=12

� �2
" #

¼ p2

(12)

which is a cubic characteristic polynomial of variable x2
Lb. With

small damping assumption, the expression can be simplified as

xLb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ ð3=2Þ4=3p2=3

q
.

Lastly, the minimum forcing level pcr. required to maintain EIS
is determined by equating S1 and S2. This is identical to equating
the lower frequency xLb and upper frequency xUb bounds defined
in Eqs. (10) and (12). Substituting the resulting frequency x into
Eq. (2) yields an expression for critical forcing level

pcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32þ 24c2 þ 8c4 þ c6

p
4
ffiffiffi
3
p (13)

Fig. 2 (a) Steady-state response amplitude. Red solid (dashed) lines are stable interwell (intra-
well) responses whose stability are determined via Jacobian analysis; black dashed dotted lines
are the first three approximated transition curves determined from Mathieu’s resonance tongue.
Blue circles (crosses) correspond to interwell (intrawell) responses computed via direct numeri-
cal integration. Gray lines are analytically predicted unstable responses. Criteria predict stable
interwell response regions between S1 and S2 or above S3 (as indicated by arrows). Two inter-
well responses A and B coexist at x 5 2:3. Corresponding (b) phase portrait, (c) time series, and
(d) frequency spectra are presented, with black and gray representing regular interwell and EIS,
respectively. Blue dashed lines (dots) indicate the positions of the stable equilibria.

Fig. 3 (a) EIS response amplitude as a function of damping
and frequency with system parameter p 5 5. Increasing light-
ness of the contour represents increasing response amplitude.
Dashed lines correspond to estimated frequency boundaries
using simplified form of Eqs. (10) and (12). (b) and (c) are two
representative responses with damping c 5 0:05 and c 5 0:5.
Solid black (gray) lines indicate interwell (intrawell) responses
and dashed gray lines are analytically determined unstable
responses.
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Similarly, Eq. (13) can be further simplified into pcr ¼
ffiffiffiffiffiffiffiffi
2=3

p
for

small damping c.

3 Analytical and Experimental Investigations

3.1 Stability Criteria Validation. In this section, we verify
the accuracy of stability boundaries developed in Sec. 2.2. For
comparison, stability of the steady-state response approximated
via the one-term harmonic balance method is determined by Jaco-
bian analysis [20,26]. Direct numerical integration results are also
provided. Figure 2(a) presents the response amplitude of both
interwell and intrawell vibration with system parameters p ¼ 5
and c ¼ 0:1. Dash–dot lines represent the approximated stability
transition criteria for interwell response obtained from Eq. (9),
solid (dashed) lines correspond to interwell (intrawell) response
via the combination of harmonic balance and Jacobian analysis,
and circles (crosses) are interwell (intrawell) vibration amplitudes
determined from direct numerical integration.

To exemplify the characteristic responses of the two interwell
dynamic forms, representative points A and B are taken from
Fig. 2(a) at x ¼ 2:3, where regular interwell (point A) and EIS
(point B) responses coexist. Figures 2(b)–2(d) depict the corre-
sponding phase portrait, time domain, and frequency spectra of

the responses, where black and gray curves represent regular
interwell and EIS, respectively. Dots in Fig. 2(b) and dashed lines
in Fig. 2(c) represent stable equilibrium positions. As indicated in
Figs. 2(b) and 2(c), both responses are symmetric about the central
unstable equilibrium, which is the defining characteristic of an
interwell response, as compared to intrawell. However, apart from
this, the regular high-orbit interwell and EIS behaviors are vastly
different from each other. First, regular high-orbit interwell
response has a much greater vibration amplitude. Next, Fig. 2(c)
demonstrates that the responses are almost out-of phase with each
other, implying a phase transition between two different interwell
responses [12,20]. As shown through both the phase portrait and
time series, the EIS response is also near sinusoidal in contrast to
the regular interwell vibration which includes other prominent
spectral components, verified by the notable spectral content at
3x for the regular interwell response in Fig. 2(d).

Since Jacobian analysis does not rely on approximation to
determine the stability of the response, it serves as a viable bench-
mark against which the approximated stability criteria derived
from Eq. (9) are compared, to verify their accuracy. In Fig. 2(a),
the criteria predict steady-state regular interwell response ampli-
tude satisfying r > S3 to be stable (indicated by the arrow), which
coincides with stability limits determined via Jacobian analysis

Fig. 4 (a) Basin of attraction map for system parameters p 5 5, x 5 2:3 with white, gray, and black shading representing regular
interwell response, EIS, and period-3 harmonic interwell responses, respectively. (b) Steady-state time domain responses
(T 5 2p=x) and (c) corresponding phase portraits for different initial conditions with damping c 5 0:5. In (b) and (c) blue dashed
lines and dots, respectively, represent positions of two stable equilibria.
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and is in good agreement with numerically predicted responses.
The criteria satisfying S1 < r < S2 predict stable EIS from x � 2
to x � 2:37, which is also in good agreement to numerical results
and Jacobian analysis, further validating the accuracy of the
approximated stability criteria.

3.2 Effect of Damping c. To investigate the influence of
damping, responses were determined using system characteristics
p ¼ 5 and damping c ranging from 0.05 to 0.5. Figure 3(a)
presents the EIS response amplitude as a function of damping and
input frequency, determined from the stable bandwidth predicted
by harmonic balance and Jacobian analysis. Increasing lightness
of the contour represents increasing response amplitude. Both
approximated upper and lower frequency bounds (xLb and xUb),
determined using simplified form of Eqs. (10) and (12), are pre-
sented as red dashed lines.

As damping c changes from 0.05 to 0.5, analysis predicts EIS
will exist while its frequency range of stability shifts slightly
downward. However, as damping changes, the predicted steady-
state response amplitude does not alter to any significant degree
for a given excitation frequency, indicating that damping has little
influence on the stability and vibration amplitude of the EIS
dynamic. Nonetheless, a drastic degradation on the bandwidth of
stable regular large amplitude interwell response is observed as
damping c increases. Figures 3(b) and 3(c) depict representative
response amplitudes, determined from Eqs. (2) and (3); solid
black (gray) lines represent interwell (intrawell) responses and
dashed gray lines denote analytically determined unstable
responses. For damping c ¼ 0:05, Fig. 3(b), analysis predicts the
regular interwell branch is destabilized for excitation frequencies
x > 9:27, whereas the response destabilizes for frequencies
x > 2:86 for damping c ¼ 0:5, Fig. 3(c). Overall, the criteria
boundary definitions (red dashed curves) and analytically deter-
mined boundaries (contour limits) are in good agreement for
smaller values of damping c.

For the system parameters under study, EIS always coexists
with the regular interwell response, as depicted in Figs. 3(b) and
3(c). To determine which outcome is more likely as a conse-
quence to changing initial conditions, the basins of attraction are
investigated at an excitation frequency x ¼ 2:3 and level p ¼ 5.
Figure 4(a) shows numerically determined basins for damping
c ¼ ½0:1; 0:25; 0:5�. Three distinct responses are observed. In Fig.
4(a), white (unshaded) corresponds to regular interwell, gray
shading indicates EIS, and black shading represents period-3 har-
monic interwell response. As damping increases from c ¼ 0:1 to
c ¼ 0:25, a greater number of initial conditions leads to EIS. For
the highest damping considered c ¼ 0:5, period-3 harmonic inter-
well response is induced, appearing to primarily coalesce in a
fractal manner among the initial conditions leading to EIS. The
three dynamic responses are illustrated in Figs. 4(b) and 4(c)
showing steady-state time-series and phase portraits, respectively,
for initial conditions (2,0), (1,0), and (�1,0) and damping c ¼ 0:5.
Figure 4 exemplifies the initial condition and damping depend-
ence of either obtaining or avoiding EIS phenomena. For applica-
tions hoping to realize EIS response like dynamic structural
stabilization, the need for high damping and strict control over ini-
tial conditions indicates a less favorable opportunity that EIS may
be harnessed. In contrast, for applications where EIS is a detri-
ment to performance like vibration energy harvesting, Fig. 4 high-
lights that lighter damping and relative independence of initial
conditions helps maintain the advantageous regular interwell
dynamics.

3.3 Effect of Excitation Level p. The influence of excitation
level 0:1 � p � 15 is evaluated while damping c ¼ 0:1. Figure 5
presents the EIS response amplitude as a function of excitation
level and frequency. The contour in Fig. 5(a) shows that, for a
given excitation level, the amplitude of the EIS response is
decreasing as a consequence to increasing excitation frequency.

Both frequency bounds (xLb and xUb) determined from the crite-
ria of Eqs. (10) and (12) match very well with the limits of EIS
response predicted by harmonic balance and Jacobian analysis.
When excitation level p is less than critical value pcr, determined
from Eq. (13), no stable EIS region exists. This is verified by the
corresponding response predictions from the harmonic balance
method, Fig. 5(b). As p increases above the threshold value, Fig.
5(a) show that the frequency range of EIS responses correspond-
ingly increases. The harmonic balance response predictions in
Fig. 5(c) show that the EIS branch indeed materializes for an exci-
tation level above the threshold value pcr. These results help verify
the criteria’s accuracy in governing EIS response existence and
stability and the relative importance of excitation parameters.

To further validate the roles of excitation conditions on the
inducement of EIS response, experiments on a ferromagnetic
bistable cantilever beam are conducted. A schematic and photo-
graph of the experimental setup are provided in Fig. 6. A support-
ing structural frame, from which the beam is cantilevered, is
attached to an electrodynamic shaker table activated in the direc-
tion indicated in Fig. 6. Motion of the beam tip x is the response

Fig. 5 (a) EIS response amplitude as a function of excitation
level and frequency with system parameter c 5 0:1. Increasing
lightness of the contour represents increasing in response am-
plitude. Dashed lines correspond to estimated frequency boun-
daries using simplified form of Eqs. (10) and (12). (b) and (c) are
two representative responses with excitation level p 5 0:2 and
p 5 2. Solid black (gray) lines indicate interwell (intrawell)
responses and dashed gray lines are analytically determined
unstable responses.

Fig. 6 (a) Schematic of experimental test setup. (b) Photo-
graph of test setup.
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coordinate of interest. Bistability of the beam deflection is gener-
ated using attractive magnetic fields [4]. A 0.05 cm thick and
1.27 cm wide spring steel beam is clamped with a cantilevered
length of 14.0 cm. Two 0.64 cm thick magnets of diameter
1.27 cm are placed d ¼2.54 cm apart from center to center to real-
ize a double-well potential. At rest, the normal distance between
tip of the beam and magnet is approximately h ¼0.8 cm. To better
attain EIS phenomena as suggested in Sec. 3.2, the beam damping
is increased, here by applying a dissipative tape along the beam
length undergoing greatest strain, assuming the dynamic buckling
response is the fundamental mode. In this configuration when
excited by low level white noise, the fundamental resonance fre-
quency of the buckled beam around each magnet is approximately
19.5 Hz and the damping loss factor is identified to be c � 0:16.
Acceleration of the harmonic shaker excitation and displacement
of the cantilever beam tip are recorded.

The shaker supplies a backward-swept sinusoid (�0.05 Hz/s)
such that the beam response is measured in the bandwidth of
12–24 Hz. The upper frequency bound xUb is based on whether
the oscillation is around one of the stable equilibria or the unstable
equilibrium. For small oscillations, this characteristic change
determines the transition between intrawell and the EIS response.
The lower frequency bound xLb is identified depending on the
response amplitude. A sudden increase in amplitude is the transi-
tion from EIS to regular high orbit interwell during the backward
frequency sweep. Figure 7(a) plots experimentally recorded phase
portraits for intrawell, EIS, and regular interwell dynamics. The
regular interwell and EIS responses oscillate nearly symmetrical
about the unstable equilibrium, while intrawell response only
encircles one of the stable equilibrium. The displacement fre-
quency response function (frf) magnitude of the EIS response is
presented as the contour in Fig. 7(b) for varying shaker input fre-
quency f and excitation level €u. The frf is determined as the ratio
of relative cantilever beam tip displacement and the shaker accel-
eration. The contour plot represents increasing displacement frf
magnitude by increasing lightness of shading. The sweep tests
are conducted for average base acceleration ranging from 2 to
3.74 m/s2. The frequency range of EIS responses is presented in
Fig. 7(b) by the distance spanning two boundary points for a given
excitation level. The bandwidth is seen to increase as excitation
level increases, corresponding well with the trend predicted ana-
lytical as shown in Fig. 5. Experimental measurements also cor-
roborate the analytical finding that EIS response amplitudes for a
given excitation level decrease as excitation frequency increases.

Overall, the results of the experiments are in very good qualitative
agreement with the analytical studies and demonstrate the promi-
nent role of excitations in the realization and characteristics of
EIS for a bistable Duffing oscillator.

4 Conclusion

This paper presented analytical and experimental studies on the
excitation-induced stability phenomenon of a bistable Duffing os-
cillator. Criteria are derived that determine the critical forcing
level to induce EIS dynamics and the frequency range across
which EIS occurs. The existence and frequency range of EIS
responses are shown to be primarily influenced by excitation
level; for levels greater than the critical threshold the frequency
range of EIS steadily increases. It is also shown that damping has
little effect on the existence and frequency range of EIS, although
an increase in damping increases the likelihood of obtaining an
EIS response when multiple dynamics coexist. These findings are
corroborated through simulation. The corresponding experimental
results are also in good agreement with the key trends, demon-
strating the accuracy of the derived criteria. The results of this
work provide effective guidance in realizing or avoiding EIS dy-
namics for a bistable Duffing system.
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