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a b s t r a c t

In engineering applications, a suspension system may be attached to a flexible host
structure, e.g. spacecraft truss, to provide vibration isolation for sensitive instrumentation,
where the suspension and host structure dynamics are strongly coupled. For linear
suspensions, a resonance normally occurs adjacent to the roll-off frequency band, which

resonance for operational safety enhancement, this research proposes a nonlinear bistable
suspension and evaluates its performance when attached to a flexible host structure.
Dynamic models of the bistable and comparable linear suspensions attached to the host
structure are formulated, and steady-state responses are predicted using analytical and
numerical methods. Results show that the bistable suspension can eliminate the harmful
resonance via a dynamic stabilization phenomenon, and simultaneously retains the
favorable isolation performance in the roll-off bandwidth as compared to the linear
suspension. Series of experimental investigations support the analytical and numerical
findings and help define design guidelines for operational safety improvement.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The performance of sensitive instrumentation is often degraded by external disturbances. One common resolution is to
employ a passive suspension system by using a linear spring and damper that provide an interface between the instrument
and the adversely vibrating foundation or base [1]. The suspension that results from such configuration utilizes the classical
“roll-off” bandwidth of response, corresponding to excitation frequencies above the system's resonance, and in this
bandwidth minimizes vibration transmission from foundation disturbances to the suspended instrument.

In engineering applications, the suspension device employed for instrument vibration isolation may be attached or
coupled to a flexible host structure (e.g. spacecraft truss). The flexible host structure may be subjected to harmonic vibration
induced by cryogenic coolers, reaction wheels, or ground motions, to name a few common sources of vibration excitation.
In many practical situations, the combination of the suspension, its load, and the host structure dynamics together can be
approximately represented by a coupled two-degree-of-freedom (2dof) system [2]. This 2dof coupled system introduces two
resonant features, and the second resonance occurs adjacent to the roll-off frequency band that provides useful vibration
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attenuation [2]. In practice, due to design uncertainties and changing excitation conditions, the suspension may not always
be operated in the roll-off frequency band. When the excitation frequency shifts downward and approaches the resonance
bandwidth, the vibration transmission may be significantly amplified by the resonance feature. It is well-known that
increasing the suspension damping is ineffective to attenuate or avoid such adverse resonance, but instead significantly
deteriorates isolation performance in the roll-off bandwidth [2].

To avoid the detrimental resonance and provide overall operational safety enhancement without compromising the
favorable vibration isolation in the roll-off bandwidth, active and semi-active suspension alternatives have been explored
[3–6]. To reduce power requirements of such systems, self-powered dampers have been proposed which electromecha-
nically convert the disturbance vibration energy to serve as a practical energy source for the isolator [7–9]. However,
externally- and self-powered suspensions commonly require numerous operating hardware, including transducers, sensors,
and controllers, increasing the complexity of design, implementation, and maintenance. Therefore, passive suspensions,
which do not require additional hardware for their implementation, are more desirable in terms of simplified and practical
implementation.

An alternative method to passively enhance suspension operational safety is the incorporation of nonlinear elements,
such as bistable springs. Prior studies using this approach found that the bistable spring possesses negative linear and
positive cubic stiffnesses, and employed the bistable spring in parallel with a linear spring to constitute the interface of a
single degree-of-freedom (sdof) isolation system [10,11]. Due to parallel combination of the bistable spring negative linear
stiffness and the linear spring positive stiffness, the isolation systems were configured to achieve low, but positive, dynamic
stiffness leading to increased vibration attenuation. Simultaneously, the cubic nonlinear stiffness of the bistable spring
ensured small static deflection due to the suspended load [10,11].

Other recently explored characteristics of the bistable spring indicate potential for improved reduction of vibration
transmission should the bistable interface be used on its own, in other words without additional parallel interface elements.
A suspended load having a bistable spring interface to a moving rigid foundation realizes bistability, and is therefore a
statically and dynamically sdof bistable system under base excitation. When excited periodically, a sdof bistable system
exhibits two distinct steady-state behaviors: inter-well oscillation where the oscillator symmetrically vibrates about the
unstable equilibrium, and intra-well oscillation where it vibrates around either stable equilibrium [12]. Two forms of inter-
well response are further possible, including a large-amplitude dynamic and another response termed “excitation induced
stability” (EIS) or “dynamic stabilization.” Recently, EIS was experimentally investigated by Kim et al. [13] and Wu et al. [14]
using electrical and mechanical oscillators, respectively. The investigations showed that the excited bistable system may
vibrate such that its absolute vibration is negligible leading to an apparent stationary configuration of the inertial mass. In
the context of vibration isolation, the unique dynamic stabilization feature appears highly desirable to achieve very small
absolute motion of a suspended load when the foundation vibrates periodically. Methods to maintain EIS were described
and experimentally validated with a mechanical system by Wu et al. [14].
2. Research objectives and problem statement

In this research, a new concept is developed to exploit the unique characteristics of the bistable suspension and its EIS
feature to significantly reduce the detrimental resonant effect near the suspension roll-off bandwidth of the combined
payload-suspension-host structure dynamics as described above. However, for the strongly coupled system composed of a
bistable suspension and flexible host structure in this work, the direct use of the prior methods [14] to realize dynamic
stabilization phenomena is not applicable. Therefore, the dynamic stabilization feature for suspension operational safety
enhancement in the 2dof coupled system must be carefully investigated.

Recently, a similar performance improvement of 2dof force transmissibility isolation was corroborated by the authors'
work [15]. In that study, a bistable dual-stage isolator composed of two mass elements was designed to attenuate
transmissibility passed from an excitation force imposed on the first (bistable) stage mass to a rigid foundation. In contrast to
the previous work [15], the aim of the present study is base excitation suspension enhancement, which represents the
reversed isolation path compared to the prior force transmissibility study and only one mass element is in the suspension
assembly. Due to the inherent strong nonlinearity, a change of excitation transmission path would lead to significantly
distinct dynamic behaviors and the present focus of performance improvement for frequencies adjacent to the roll-off
bandwidth represent unresolved challenges as compared to the authors' previous work [15]. Therefore, in summary, this
research seeks to investigate the unexplored potential for a bistable suspensionwhen attached to a flexible host structure, to
enhance operational safety by harnessing the dynamic stabilization phenomenon.

The following sections describe the development and evaluation of the bistable suspension attached to a flexible host
structure. The host structure is modeled as a sdof system which is appropriate in light of targeting a single structural modal
response near the suspension operating bandwidth. Models of the 2dof nonlinear coupled system are formulated and the
method of harmonic balance is utilized to analytically predict the dynamics. Results are presented of comprehensive
analytical, numerical, and experimental efforts that evaluate the system's performance as compared to utilizing a linear
suspension. Through these studies, useful guidelines are derived for the effective implementation of such a bistable
suspension and greatest assurance of operational safety enhancement.
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3. Governing equations

Fig. 1 presents a schematic of the 2dof coupled system where a bistable suspension is attached to a sdof host system.
Each body is modeled using lumped inertial, damping, and stiffness elements to represent the principal and often dominant
vibrations characteristics of the coupled system. The bistable suspension interface suspends a mass m1, which may
represent a sensitive instrument. The bistable interface comprises a damper with damping constant d1 and a spring with
stiffness k0 having undeformed length l0. One end of the spring suspends the mass m1, while the opposing end connects to a
frame mounted to the flexible host structure. With respect to the motion of the suspended mass, the height of the frame is h,
where ho l0. Hence the spring of stiffness k0 is compressed in the upright position and induces two stable equilibria,
positioned symmetrically about a central, unstable configuration.

The host structure is modeled as a sdof linear oscillator, and its mass including the supporting frame is m2. The stiffness
and damping of the host structure are k2 and d2, respectively. When the 2dof nonlinear coupled system is subjected to
harmonic base acceleration excitation €z¼ A cos Ωτ, the governing equations are derived as

m1ð €Xτþ €YτþA cos ΩτÞþd1 _XτþFp ¼ 0 (1)

m2ð €YτþA cos ΩτÞþd2 _Yτþk2Yτ�d1 _Xτ�Fp ¼ 0 (2)

Fp ¼ k0Xτ 1� l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xτ

2þh2
q

0
B@

1
CA (3)

where A, Ω and τ are the excitation amplitude, frequency and time. Xτ and Yτ are the relative oscillations of the suspended
mass and host structure mass, respectively, and Fp is the potential force of the bistable interface. From Eq. (3), it is seen that

the bistable interface induces two stable configurations for the suspended mass relative to the frame: Xn

τ ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20�h2

q
. The

governing equations may be simplified by utilizing a Taylor series expansion of Fp with respect to Xτ and reserving terms up
to the third order. Eqs. (1) and (2) are then simplified to be

m1ð €Xτþ €YτþA cos ΩτÞþd1 _Xτ�k1Xτþk3Xτ
3 ¼ 0 (4)

m2ð €YτþA cos ΩτÞþd2 _Yτþk2Yτ�d1 _Xτþk1Xτ�k3Xτ
3 ¼ 0 (5)

where the simplified bistable spring has a negative linear stiffness �k1 ¼ �k0ðl0=h�1Þ and positive cubic stiffness k3 ¼
k0l0=2h

3. When suspending the mass m1, the simplified bistable suspension has a linear resonant frequency ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
,

loss factor γ1 ¼ d1=m1ω1, and produces two symmetric equilibria

Xeq ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffi
k1=k3

q
¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0h2�2h3Þ=l0

q
(6)

bounding an unstable equilibrium at X ¼ 0. In absence of the bistable interface and supported mass, the host structure has a
natural frequency ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
, and its loss factor is γ2 ¼ d1=m1ω1. Additional non-dimensional parameters are defined,

including frequency tuning ratio between the bistable suspension and the host structure f ¼ω1=ω2, mass ratio between the
suspended mass and the host structure mass μ¼m1=m2, normalized excitation frequency ω¼Ω=ω2 and time t ¼ω2τ.
Using these variables, a non-dimensional form of Eqs. (4) and (5) yields

x″þy″þp0 cos ωtþγ1f x
0 � f 2xþ f 2x3 ¼ 0 (7)
Fig. 1. Schematic of the 2dof coupled system where a bistable suspension is attached to a flexible host structure.
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y″þp0 cos ωtþγ2y
0 þy�μγ1f x

0 þμf 2x�μf 2x3 ¼ 0 (8)

where p0 ¼ A=jXeqjω2
2; x¼ Xτ=jXeqj; y¼ Yτ=jXeqj; and ð Þ0 is derivative with respect to time t.

Transmissibility from the base excitation to the absolute acceleration of the suspended mass m1 is the index to evaluate
the vibration transmission attenuation of the 2dof nonlinear coupled system. Assuming single frequency sinusoidal
excitation, the transmissibility is defined by the frequency response function (FRF) of the absolute acceleration of the
suspended mass to the exciting acceleration:

jT j ¼
€Xτþ €YτþA cos Ωτ
��� ���

A cos Ωτ
�� �� ¼ x″þy″þp0 cos ωt

�� ��
p0

(9)

4. Analytical solution method

Systems exhibiting bistability are strongly nonlinear and require appropriate analytical tools which do not rely on
assumption of small perturbations about a linear response. When it is anticipated that the system undergoes periodic
response in consequence to sinusoidal excitation, an effective method to analytically predict steady-state dynamic behaviors
of a strongly nonlinear system is the method of harmonic balance [15–19]. In this study, a fundamental Fourier series
expansion is employed to predict the steady-state response of the suspended mass and host structure mass relative
oscillations, x and y, respectively.

x¼ c1ðtÞþa1ðtÞ sin ωtþb1ðtÞ cos ωt (10)

y¼ a2ðtÞ sin ωtþb2ðtÞ cos ωt (11)

In Eq. (10), c1ðtÞ ¼ 0 indicates the suspended mass oscillates symmetrically about the unstable equilibrium induced by the
bistable interface at x¼ 0, i.e. an inter-well response. In contrast, c1ðtÞa0 represents an intra-well response where the
suspended mass has non-zero displacement away from the central configuration and undergoes vibrations about this stable

equilibrium. The moduli r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21þb21

q
and r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22þb22

q
are the oscillation amplitudes of x and y.

Substituting Eqs. (10) and (11) into Eqs. (7) and (8), five modulation equations with respect to the coefficients
q¼ ½c1 a1 b1 a2 b2�T are obtained. Then, by assuming steady-state response and reducing the set of equations through
incremental substitution, a polynomial is obtained whose roots represent the amplitude squared r21 of the suspended mass
connected to the bistable interface

r21ðα1Λ2þα2Λþα3Þ ¼ ð1þω2γ22Þp20 (12)

where

Λ¼ �1þ3c21þ3
4 r

2
1 (13a)

α1 ¼ ½f 2�ð1þμÞf 2ω2�2þðf 2ωγ2Þ2 (13b)

α2 ¼ �2f 2ω2fð1�ω2Þ½1�ð1þμÞω2�þðωγ2Þ2g (13c)

α3 ¼ω2fð1�ω2Þ2ω2þðf γ1Þ2½1�ð1þμÞω2�2
þω2½ðf γ1γ2Þ2þðωγ2Þ2þ2μf γ1γ2ω

2�g (13d)

One of the modulation equations with respect to coefficient set q has two distinct solutions for c21. The solutions satisfy c21 ¼ 0 for
inter-well oscillations and c21 ¼ 1�ð3=2Þr21 for intra-well oscillations. By substituting a potential solution for c21 into Eqs. (12) and
(13), the roots of the polynomial Eq. (12) are then computed, and the coefficient set q is incrementally back-calculated [19]. The
negative real components of the eigenvalues of the Jacobian matrix of the modulation equations indicates stability of a given
response coefficient set. In this manner, the physically meaningful and stable responses of the system are predicted.

Therefore, the analytical results of the transmissibility jTj are expressed by

jT j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1þa2Þ2ω4þðb1ω2þb2ω2�p0Þ2

q
p0

(14)

5. Description of the linear suspension for comparison

In this section, a counterpart linear suspension is defined for performance comparisonwhen attached to the sdof host structure.
For meaningful comparison, we require that both the bistable and linear suspensions provide identical isolation performance in the
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roll-off frequency band. Because vibration from the foundation may be highly attenuated in the roll-off frequency band, the
suspension oscillation may be small. When a nonlinear system undergoes small oscillations, the nonlinearity can be neglected so
that its response is nearly identical to that of a linearized counterpart [16]. Therefore, the counterpart linear suspension is defined
from a linearization of the bistable suspension characteristics. When the bistable suspension exhibits small oscillations, the
suspended mass m1 vibrates around either stable equilibrium: the intra-well response. The response motion may then be

expressed by Xτ ¼ δx7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20�h2

q
, where δx{l0. Hence, the potential force of the bistable interface becomes

Fp ¼ k0 δx7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20�h2

q� �
1� l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δx272δx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20�h2

q
þ l20

r
0
BB@

1
CCA (15)

After Taylor expansion of Eq. (15) with respect to the small quantity δx=l0, and neglecting the higher order, a linear expression of
Eq. (15) is found to be

Fp � k0 1�h2

l20

 !
δx¼ Lk1δx (16)

where

L¼ 1�h2

l20

 !
=

l0
h
�1

� �
(17)

Eq. (16) defines a linearized restoring force of the bistable suspension. Thus, the linear counterpart is realized with a linear interface
composed of damping d1 and stiffness Lk1, the latter following from the expression in Eq. (16). In this way, the linear counterpart
serves as the benchmark for meaningful comparison against the bistable suspension. The additional non-dimensional parameters
of interest for the corresponding 2dof linear coupled system are the frequency tuning ratio f l ¼

ffiffiffi
L

p
f , and loss factor of the linear

counterpart γl1 ¼ γ1=
ffiffiffi
L

p
.

6. Numerical and analytical results

The governing equations of the 2dof coupled systems are first evaluated by comparing a series of numerical and
analytical results, to provide for model validation as well as investigate the difference in vibration transmission achieved by
the bistable and linear suspensions. For the following numerical simulations, the original length of the spring in the bistable
interface is l0¼0.08 m, and the ratio between the frame height and the original spring length is h/l0¼0.99. Therefore,
according to Eqs. (3) and (6), providing the bistable interface restoring forces before and after Taylor series expansion, the
stable equilibria of the original and simplified bistable interface are 70.0113 m and 70.0112 m, respectively. The mass ratio
and frequency tuning ratio from the bistable suspension to the host structure are μ¼0.34 and f¼0.28, respectively.
The bistable suspension loss factor is γ1 ¼ 0:15, while the host structure has a small loss factor γ2 ¼ 0:03. For the counterpart
linear suspension, the mass ratio is μ¼ 0:34, whereas the frequency tuning ratio and loss factor are f l ¼

ffiffiffi
L

p
f ¼ 0:39 and

γl1 ¼ γ1=
ffiffiffi
L

p
¼ 0:107, respectively. The normalized amplitude of the excitation is p0 ¼ 0:06 in the following simulations.
Fig. 2. Analytically predicted transmissibility jTj of the 2dof coupled systems with the bistable and linear suspensions in bandwidth 0:8rωr4.



Fig. 3. (a) Transmissibility jTj and (b) normalized suspension relative amplitudes r1 of the 2dof coupled systems with the bistable and linear suspensions in
bandwidth 0:8rωr1:3.
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Fig. 2 presents analytically predicted transmissibility of the 2dof coupled systems across a wide frequency band
0:8rωr4 which encompasses the roll-off frequency band and the adjacent second resonance induced by the linear
coupled system. The responses of the linear coupled system are shown as the dash–dot curve, whereas responses
corresponding to employment of the bistable suspension are solid or dashed curves, depending on the response form. Apart
from the results of the linear counterpart with the equivalent loss factor, the figure also shows the responses when applying
the linear suspensions with two other loss factors: γl1 ¼ 0:3 and γl1 ¼ 0:6, so as to evaluate whether increased linear
suspension damping could be helpful for improving operational safety. In the roll-off frequency band, the nonlinear and the
linear suspensions realize the same isolation performance of 75 dB/decade transmissibility attenuation rate, which provides
favorable isolation performance when the suspensions are operated in this bandwidth. However, it is seen that the second
resonance induced by the 2dof coupled system with the linear suspension significantly amplifies the vibration transmission
across a fairly wide bandwidth around ω¼ 1 adjacent to the roll-off frequency band. In practice, the suspension cannot
always be ensured to be operated in the favorable isolation bandwidth due to common shifts in excitation frequency away
from the roll-off bandwidth; the resulting amplified vibration transmission may be detrimental to the operational safety of
the suspension, which may lead to failure of the suspended instrument. Therefore, this resonance should be reduced or
avoided altogether. As has been shown in prior studies [2], Fig. 2 shows that increasing linear suspension damping is
ineffective to reduce or avoid the detrimental resonance, and has the undesirable consequence of increasing vibration
transmission in the roll-off bandwidth. In contrast, when the bistable suspension is applied, the dramatic resonance feature
is substantially avoided in the resonance bandwidth; in other words, the nonlinear coupled system simply does not exhibit a
substantial second resonance around excitation frequency ω¼1. This enhances operational safety enhancement while
simultaneously retains favorable isolation performance in the roll-off frequency band.

To more closely study the suspension performance improvement of the bistable suspension, Fig. 3 focuses on the results
of Fig. 2 specifically in the shaded bandwidth 0:8rωr1:3 which encompasses the conventional resonance bandwidth of
the 2dof coupled system with linear suspensions. Fig. 3(a and b) present the transmissibility jT j and normalized suspended
mass relative amplitude r1 of the 2dof coupled system with the bistable and linear suspensions across the shaded
bandwidth, respectively. In these results, the linear counterpart employs the equivalent loss factor γl1 ¼ 0:107. To thoroughly
verify the analytical results, numerical responses of the coupled system with the bistable suspension are obtained by
numerically integrating the original governing Eqs. (1) and (2) as well as the Eqs. (4) and (5) following Taylor series
expansion. A fourth order Runge–Kutta algorithm is employed in MATLAB to acquire the numerical results.

In the bandwidth 0:96rωo1:02, the analytically predicted responses of the coupled system with the bistable
suspension indicate the suspended mass undergoes inter-well oscillation, where it vibrates symmetrically about the central
unstable equilibrium. For frequencies outside of this bandwidth, the responses trend to intra-well response, in which case
the suspended mass oscillates around one of the stable equilibria. In the inter-well bandwidth 0:96rωo1:02, Fig. 3(b)
shows that the relative oscillation amplitude of the bistable suspension is 0:82rr1r1:35, which is close to the value of the
normalized stable equilibrium amplitude of the bistable interface rn1 ¼ 1. As a result, the inter-well response is termed
excitation induced stability (EIS) [14]—the dynamic stabilization phenomenon—which is characteristically defined by small
symmetric oscillations of a bistable system around its unstable configuration. As shown in Fig. 3(a), the 2dof coupled system
with the linear suspension has a resonance that greatly amplifies the vibration transmitted to the suspended mass in the
vicinity of ω¼ 1 which is adjacent to the roll-off frequency band. In contrast, in the EIS frequency band 0:96rωo1:02, the
maximum transmissibility of the coupled system with the bistable suspension is much smaller than the linear counterpart,
showing that using the bistable suspension avoids the detrimental resonance with comparable magnitude induced by the
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2dof linear coupled system. Fig. 3(b) finds that the maximum bistable suspension oscillation is similar to that of the linear
counterpart, indicating that the improved performance by means of the bistable suspension does not come at the cost of
requiring greater dynamic stroke range.

Fig. 3(a andb) also present results of numerically integrating both the original governing Eqs. (1) and (2) and simplified
Eqs. (4) and (5) by squares and circles, respectively. The numerical results are obtained from the time series simulations by
calculating maximum amplitudes of steady-state single periodic responses. Both numerical results have good agreement
with the analytical findings, validating the model composition and demonstration that simplification of governing equations
does not reduce fidelity of the model formulation. In the bandwidth 0:8rωo0:88, numerical simulations predict multi-
harmonic responses may occur depending on initial conditions. The maximum amplitude of the multi-harmonic response at
each excitation frequency is greater than the analytically predicted single periodic response, and thus the multi-harmonic
response is not desired. Note that the normalized excitation frequency in Fig. 3(a and b) is relative to the natural frequency
of the host structure ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
. Thus in practice, by designing appropriate parameters, the undesirable multi-harmonic

responses might be outside of the operating bandwidth, so that the system exhibits only the single periodic response in the
bandwidth of operation. Since the present study is focused on the single periodic response that is conducive to operational
safety enhancement, the multi-harmonic results are omitted in the figures.
7. Influences of excitation conditions

Unlike the 2dof coupled system with the linear suspension, the transmissibility of the coupled system with the bistable
suspension is dependent on excitation level. To evaluate this sensitivity as normalized excitation level varies from
0:001rp0r0:1, Fig. 4(a) presents a contour map of the analytically predicted single periodic transmissibility of the
coupled system with the bistable suspension across the bandwidth 0:8rωr1:3. Three response regions are shown, each
defined within the bounds of the red dashed curves, which represent the stable inter- and intra-well responses, and the
unstable (unshaded) solutions. In the map, darker shading indicates increased transmissibility. When p0r0:035, the system
does not exhibit inter-well response across the bandwidth. When p040:035, the inter-well response emerges in the vicinity
of ω¼ 1, and the inter-well bandwidth is widened by increasing the excitation level p0. As shown in the contour map, the
green solid line presents the transmissibility maxima for each level of excitation, and it is seen that the transmissibility
maxima are all in the vicinity of ω¼ 1. The transmissibility maxima indicate the maximum vibration transmission
amplification under respective excitation levels in the bandwidth that is the worst case for the suspension operational
safety. Therefore, the smaller the value obtained, the better the suspension performance. Following the green solid line of
maximum transmissibility, it is found that moderate excitation levels suppress the maxima.

For clarity, Fig. 4(b) plots the transmissibility maxima indicated by the green solid line in Fig. 4(a). The transmissibility
maxima of the 2dof coupled systemwith the linear suspension across the excitation level range 0:001rp0r0:1 in the same
bandwidth are also provided. As anticipated, the transmissibility of the 2dof linear coupled system does not vary as
excitation level is changed. However, the transmissibility when using the bistable suspension exhibits a minimum across the
range of excitation considered. It is seen that the transmitted vibration with the bistable suspension is minimized for
moderate excitation level p0 � 0:05. This feature indicates that the bistable suspension could provide greatest vibration
isolation safety when the coupled system is subjected to moderate excitation level. Numerical results in Fig. 4(b) agree with
the analytical findings, validating the viability of the bistable suspension for suspension operational safety enhancement.
Fig. 4. (a) Transmissibility contour map of the 2dof coupled system with the bistable suspension and (b) the transmissibility maximum jTj corresponding
to variation of normalized excitation level p0.
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The trend of minimized transmissibility provided by the bistable suspension may be explained by the normalized
potential force of the bistable interface as shown in Eqs. (7) and (8), i.e. f 2ð�xþx3Þ. Accordingly Eqs. (7) and (9), can be
rewritten as follows:

jT j ¼ jγ1f x0 þ f pj
p0

(18)

where

f p ¼ f 2ð�xþx3Þ (19)

As shown in Eqs. (18) and (19), the transmissibility jT j is affected by the normalized damping force γ1f x
0 and potential force

f p. When the bistable suspension exhibits EIS under a specific excitation level, the normalized relative oscillation amplitude
r1 ¼ jxj is in the vicinity of the normalized equilibrium value rn1 ¼ jxeqj ¼ 1, and thus the positive nonlinear force f 2x3 may
counterbalance the negative linear force � f 2x so that the transmissibility is minimized as shown in Fig. 4(b), which helps to
avoid detrimental vibration amplification in the resonance bandwidth.

Note that the normalized excitation level is defined as p0 ¼ A=jXeqjω2
2, where the equilibrium of the simplified bistable

interface Xeq is related to the undeformed spring length l0 and frame height h. Therefore, if the excitation level A and natural
frequency of the host structure ω2 are known, the optimal suspension safety may be achieved by properly selecting the
spring length l0 and height h.
8. Experimental and analytical parametric study

A prototype of the bistable suspension is fabricated, and the 2dof coupled system with the bistable suspension attached
to a sdof flexible host structure is constructed. A series of experimental investigations are performed to demonstrate the
important suspension characteristics uncovered in Section 5 and to further validate the analytical model through qualitative
comparison with measured data.
8.1. Experiment setup

Fig. 5 shows the experimental setup. The 2dof nonlinear coupled system is attached to an electrodynamic shaker which
provides harmonic base acceleration. The bistable suspension interface consists of a spring compressed in its upright
vertical position and an adjustable damper. Between two rotational bearings, the spring connects the surrounding frame to
the suspended mass, which is the top bearing and rotational bearing attached to it. The spring is initially compressed when
the top bearing is aligned with the center line. In this way the bistable suspension induces two stable equilibria symmetric
about the center line. The frame is mounted on the bottom bearing and is connected to the shaker by a spring providing the
sdof host structure stiffness.
Fig. 5. Experimental setup: (a) photograph and (b) schematic.
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The combined mass of the top bearing and rotational bearing connected to it represents the suspended mass m1 ¼ 0:347.
The total mass of the frame, bottom bearing, and other hardware rigidly attached to the frame represents the host structure
mass m2 ¼ 1:029. The linear frequency of the bistable suspension with respect to the suspended mass is ω1 � 10:56 rad/s
(1.68 Hz) and the stable equilibria are 70:012 m, while the natural frequency of the host structure is ω2 � 37:70 rad=s
(6 Hz). The shaker provides slowly backward swept sinusoidal base acceleration from 4.8 Hz to 7.8 Hz at a rate 0.025 Hz/s,
and the bandwidth encompasses the resonance bandwidth of the 2dof coupled system with the linear suspension, which is
adjacent to the roll-off frequency band. Two accelerometers are mounted on the shaker and the suspended mass, which
provide suitable data to determine the transmission of vibration from the shaker to the suspended mass m1.
8.2. Experimental and analytical comparisons of isolation performance

8.2.1. Excitation level variation
Three excitation levels are chosen, and their root mean squares (RMS) during the entire swept frequency band are ½Að1Þ;

Að2Þ;Að3Þ� ¼ ½1:02; 1:66; 2:37�m=s2. For the analytical predictions, the steady-state excitation amplitudes are ½Að1Þ;Að2Þ;Að3Þ� ¼
½0:61;1:02;1:43�m=s2 (i.e. the normalized amplitudes are: [0.036, 0.06, 0.084]). In the following experiments, the mass ratio and
frequency tuning ratio are μ� 0:34 and f � 0:28, respectively. Other parameters used in analyses are the same as those used to
generate Fig. 2.

Fig. 6(a and b) present experimental and analytical transmissibilities jT j, respectively, as excitation level is varied. The
horizontal axis shows the excitation frequency normalized by the natural frequency of the host structure. For the
experimental results, when the smallest excitation level Að1Þ is used, the bistable suspension only exhibits intra-well
response (unfilled data points) across the entire bandwidth. By increasing excitation level to Að2Þ, inter-well response (filled
Fig. 6. (a) Experimental and (b) analytical transmissibility jT j corresponding to excitation level variation.

Fig. 7. (a) Experimental and (b) analytical transmissibility jTj corresponding to variation of bistable suspension damping.
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data points) appears throughout 0:95rωr1:08, and the maximum of jTj is decreased. When excitation level is further
increased, the inter-well frequency bandwidth is widened to be 0:86rωr1:13, and the maximum of jT j is increased.
Similar to the discovery in Fig. 4(a and b), the experimental results demonstrate that moderate levels of excitation lead to
minimized transmissibility in the resonance bandwidth which enhances overall operational safety of the suspension system.
There is a strong agreement between experimental and analytical results in Fig. 6(a and b) across the several salient trends
helping to support the main conclusions regarding excitation level dependence of the bistable suspension performance
when attached to the host structure.

8.2.2. Bistable suspension damping variation
The influence of the bistable suspension damping is then considered. The adjustable damper is used with three settings denoted

by dð1Þ1 , dð2Þ1 , and dð3Þ1 : Due to the frequencies involved and test apparatus available, there is difficulty in precisely identifying the
damper constants for the three settings; however, the general trend is such that dð1Þ1 odð2Þ1 odð3Þ1 . The RMS of excitation level in the
experiment is A¼1.66 m/s2, which is the moderate excitation as used for the prior experiments. For the comparable analytical
results, damping constants are ½dð1Þ1 ; dð2Þ1 ; dð3Þ1 � ¼ ½0:55;0:92;1:28� N s/m (i.e. the loss factors are: [0.15, 0.25, 0.35]), and the moderate
excitation level is A¼ 1:02m=s2. The mass and frequency tuning ratios remain the same as in the prior experiment set.

In the experiments, the bistable suspension exhibits inter-well response in 0:95rωr1:08, as shown in Fig. 7(a), and the
inter-well frequency bandwidth is observed to be mostly insensitive to damping variation. This finding is in very good
agreement with the analytical results shown in Fig. 7(b). Both experimental and analytical findings indicate transmissibility
is reduced as damping is reduced, suggesting this design change is one way to avoid vibration amplification around the
resonance peak bandwidth. Because the bistable suspension is a strongly nonlinear system, too small damping may increase
the activation likelihood of undesirable multi-harmonic or chaotic responses. From this perspective, achieving robustness in
suspension performance suggests selection of moderate damping: appropriately small bistable interface damping to
adequately enhance the operational safety, but not too small to activate undesired responses.

8.2.3. Variation of the suspended mass
A final critical factor to evaluate is the performance variation induced by changes in the suspended mass, which

represents a variety of realistic changes in working condition for a suspension system supporting sensitive instrumentation.
While the mass of the host structure remains m2 ¼ 1:029, the suspended mass is varied by connecting blocks of brass to the
top bearing. In this way, three suspended masses are realized: [mð1Þ

1 ; mð2Þ
1 ;mð3Þ

1 � ¼ ½0:347;0:6;0:847� kg. The RMS of excitation
levels for experimental and analytical results are the same as those employed in the prior section. For the analytical results,
six values of suspended mass are chosen: ½mð1Þ

1 ;mð2Þ
1 ;…;mð6Þ

1 � ¼ ½0:347;0:6;0:847;2:0;4:0;6:0� kg, where the final three values
are greater than were able to be evaluated experimentally. The bistable suspension damping values in the experiment and
analysis are chosen to be the smallest cases used in the prior section, respectively.

Fig. 8(a and b) presents experimental and analytical transmissibilities, respectively, as the suspended mass is varied.
There is good qualitative agreement between analytical and measured data and both results indicate that the frequency
bandwidths leading to inter-well response do not vary corresponding to change of the suspended mass. The experimental
and analytical results by investigating the lighter suspended masses mð1Þ

1 , mð2Þ
1 and mð3Þ

1 show that the maximum jT j is
decreased as the suspended mass is increased. Analytical results in Fig. 8(b) show that when the suspended mass becomes
greater than the frame mass, shown by ½mð4Þ

1 ; mð5Þ
1 ;mð6Þ

1 �; the transmissibility continues to reduce. While the trend shows that
large suspended mass is beneficial to achieve small vibration transmission in the resonance bandwidth, too heavy of
suspended load may lead to large deflection of the bistable interface when the suspension is subjected to high body force,
for example inertial force due to aerospace vehicle launch acceleration. In practice, supporting too large of mass may not
Fig. 8. (a) Experimental and (b) analytical transmissibility jTj corresponding to suspended mass variation.
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satisfy static deflection constraints of the bistable spring. Therefore, the trade-off between bistable spring deflection
constraints and suspension performance should be considered to appropriately support the suspended mass and ensure the
operational safety of suspension system.
9. Conclusion

Performance of a bistable suspension when attached to a flexible host structure is investigated as means to enhance
operation safety by exploiting the dynamic stabilization phenomenon. In this way, the bistable suspension avoids inducing
the detrimental resonance adjacent to the roll-off frequency band that otherwise compromises the safety of a comparable
linear suspension. That is, when the excitation frequency shifts from the roll-off band and approaches the resonance
bandwidth, the vibration may not be amplified, leading to significant enhancement of operational safety. Through analytical,
numerical, and experimental investigations, this study details design and operation methods to ensure beneficial single
periodic response around this resonance bandwidth for reduction in vibration transmission. Numerical and experimental
results validate analytical predictions for a variety of systematic variations in excitation and system parameters critical in
suspension systems. The findings suggest that moderate excitation level and appropriately low damping are key to favorable
design and implementation of the bistable suspension. Lastly, a trade-off exists between bistable spring deflection
constraints and performance improvement in terms of the suspended mass with respect to the host structure apparent
mass; therefore, operational safety of the suspension system may be ensured by designing the bistable suspension in light of
the anticipated range of supported masses.
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