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Abstract
This study explores the steady-state performance of a dual-stage vibration isolator, which is
configured by a bistable oscillator and a linear oscillator. The potential force of the bistable
stage comprises negative linear and positive cubic nonlinear stiffnesses such that the two
restoring force contributions may counterbalance to minimize dynamic force transmission. By
applying a first-order harmonic balance, it is predicted that the bistable dual-stage isolator may
significantly outperform an equivalent pure linear dual-stage isolator. This conclusion is
verified through a series of numerical investigations. Following a parametric study, design
guidelines are detailed to achieve performance improvements. Then, the ‘valley’ response,
which is the special phenomenon of the bistable dual-stage isolator due to the counterbalance
of the negative linear and positive nonlinear potential forces, is revealed and quantitatively
explained. Numerical studies demonstrate the role of initial conditions, and it is shown that the
likelihood of beneficial single periodic valley and intra-well responses for isolation purposes
can be increased by greater bistable stage damping. Finally, a bistable dual-stage isolator
prototype is developed and tested, and the numerical and experimental results verify the
theoretical predictions.

Keywords: bistable, negative stiffness, nonlinear vibration isolator, dual-stage isolator

(Some figures may appear in colour only in the online journal)

1. Introduction

Vibration degrades the performance of precision instruments
and harms the health of structures. A common vibration
reduction method is to apply passive isolators. Linear isola-
tor designs are prevalent [1, 2], although they may exhibit
the drawback that the low natural frequency required for
effective isolation performance conflicts with their capacity
to support static load [3]. This deficiency may be overcome
by using nonlinear isolators. Ibrahim [4] reviewed various
nonlinear isolators and showed that certain design factors
and configurations may provide for improved performance
over linear counterparts. The nonlinear mechanism, having a
negative linear stiffness (NLS), is widely applied to achieve
high static yet low dynamic stiffness for wider vibration iso-
lation bandwidth and greater static load supporting capability
[3, 5–10]. Many realizations of NLS mechanisms yield both

negative linear and positive nonlinear stiffnesses, examples
of which are reviewed in the following. Platus [5] proposed
an NLS nonlinear mechanism, realized by two horizontal
pre-stressed rigid bars. The author combined this mecha-
nism with a linear spring to achieve a low dynamic stiffness
isolator to enlarge the effective isolation bandwidth. In the
absence of the parallel linear spring connection, the NLS
nonlinear mechanism would otherwise induce bistability. With
the linear spring, extremely low dynamic stiffness may be
realized for vibration isolation purposes. The power flow
behaviors and the limitation of lowest fundamental frequency
of such isolators were investigated by Yang et al [6] and
Ahn [7], respectively. Carrella et al [3, 8, 9] proposed another
NLS nonlinear mechanism configuration using two oblique
springs, and found that an isolator combining the mechanism
with a linear spring achieves larger isolation bandwidth and
greater static load supporting capacity compared to linear
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isolators. Then Lu et al [10] combined this NLS nonlinear
mechanism with a linear spring to configure the upper stage of
a dual-stage isolator, and showed that the dual-stage isolator
is more effective than a single-stage isolator for isolation at
higher frequencies.

In the previous studies, the NLS nonlinear mechanisms
were utilized in parallel with linear springs so that zero or
small positive linear stiffnesses were ultimately obtained.
These configurations provide for the low dynamic and high
static stiffnesses of interest while avoiding designs that exhibit
bistability. Yet, intuitively, the NLS nonlinear mechanism on
its own may be excited in such a way that its potential forces
from the negative linear and positive nonlinear stiffnesses
could be counterbalanced to minimize dynamic force trans-
mission and improve vibration isolation performance. It is
noted that this phenomenon is referred to in other literature as
excitation induced stability (EIS) or dynamic stabilization [11–
13]. No investigations of NLS mechanism configurations that
deliberately exploit EIS for vibration isolation have yet been
reported, although experimentally validated design guidelines
for obtaining EIS were recently developed [14] and are applica-
ble to this research. However, instead of evaluating NLS mech-
anism utilization for single-stage vibration isolation, which is
comparable to the prior investigations of EIS, this study is
motivated by the observations of Lu et al [10] in assessing
dual-stage nonlinear isolator capabilities. It was demonstrated
that a dual-stage isolator with nonlinear and linear stages
having positive stiffnesses can realize more rapid roll-off
rates at high frequencies than a single-stage isolator, which
significantly improves isolation performance [10].

Bringing together the opportunities of EIS for vibration
isolation and the advantages of dual-stage isolator design,
this paper investigates the steady-state performance of a new
dual-stage isolator which consists of an NLS nonlinear first
stage and a linear second stage. In contrast to the previous
studies, the nonlinear stage retains bistable characteristics
which enable it to exploit the feature of force counterbal-
ance for vibration isolation improvement. Utilized in this
manner, the bistable first stage has a double-well restoring
force potential and may exhibit two different fundamental
oscillations: inter-well response where the oscillator symmet-
rically vibrates around its unstable equilibrium (i.e. snap-
through oscillation), and intra-well response (i.e. oscillation
around either equilibrium), respectively. This feature has been
recently exploited to advance system performance for various
applications, including energy harvesting [15, 16], vibration
control and damping [17–19], and sensing [20, 21]. Because
bistable oscillators are strongly nonlinear and may undergo
large oscillations from equilibrium, an appropriate nonlinear
analytical method should be selected to predict the response
of the present system. The interest in determining the periodic
behaviors of the bistable dual-stage isolator encourages use of
the harmonic balance method, which is frequently employed
to analytically investigate the steady-state response of bistable
systems, obtaining qualitatively and quantitatively accurate
predictions [22–25]. Based on the analyses, this paper presents
insights and guidelines for bistable dual-stage isolator design
to yield effective vibration isolation. A quantitative inter-
pretation of the advantageous counterbalance feature of the

Figure 1. Schematic of the bistable dual-stage isolator.

bistable NLS nonlinear mechanism for vibration isolation is
provided. Numerical investigations are performed to uncover
initial condition dependences and to shed light on the like-
lihood of obtaining the beneficial single periodic responses
for vibration isolation. Finally, a bistable dual-stage isolator
prototype is developed and its responses are numerically and
experimentally explored to validate analytical insights.

2. Theory

2.1. Governing equations

Figure 1 depicts the modeled geometry of a bistable dual-
stage isolator. This isolator comprises a bistable first stage
and a linear second stage. The bistable stage consists of a
mass m1, a damper d1, and an NLS nonlinear mechanism
which has a restoring force potential expressed by U (Xτ )=
−(1/2)k1 X2

τ + (1/4)k3 X4
τ , where Xτ is the stroke motion of

the bistable stage. Thus from the perspective of the schematic
in figure 1, it has two stable equilibria, Xτ =±

√
k1/k3. The

two stable equilibria are symmetric about unstable equilibrium
Xτ = 0. This restoring potential form relates to numerous
physical realizations of the NLS nonlinear mechanism includ-
ing axial pre-load and magnetic interactions [15]. The mass,
stiffness and damping of the linear second stage are m2, k2
and d2, respectively. The stroke motion of the linear stage is
Yτ . The bistable stage mass m1 is subjected to a harmonic
excitation force denoted by P cos�τ , in which P, � and τ
represent the amplitude, frequency and time, respectively. The
governing equations are therefore

m1(Ẍτ + Ÿτ )+ d1 Ẋτ − k1 Xτ + k3 X3
τ = P cos�τ (1)

m2Ÿτ + d2Ẏτ + k2Yτ − d1 Ẋτ + k1 Xτ − k3 X3
τ = 0. (2)

The transmitted force imposed on the foundation is Pt,

Pt =−(k2Yτ + d2Ẏτ ). (3)

Normalized parameters are defined as

ω1 =
√

k1/m1; ω2 =
√

k2/m2; f =ω1/ω2;

γ1 = d1/m1ω1; γ2 = d2/m2ω2; µ=m1/m2;

x = Xτ
√

k3/k1; y = Yτ
√

k3/k1;

p0 = P
√

k3/k2
√

k1; pt = Pt
√

k3/k2
√

k1;

ω=�/ω2; t =ω2τ.
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Substitution of normalized parameters into equations (1)–(3)
leads to a new equation system defined with respect to the
normalized time t ,

x ′′+ (1+µ) f γ1x ′− (1+µ) f 2x + (1+µ) f 2x3

− γ2 y′− y− (p0/µ) cosωt = 0 (4)

y′′+ γ2 y′+ y−µ f γ1x ′+µ f 2x −µ f 2x3
= 0 (5)

pt =−(y+ γ2 y′) (6)

where operator ( )′ denotes a derivative with respect to t .

2.2. Analytical solution

The first-order harmonic balance method is employed to
capture the fundamental dynamics of equations (4)–(6). Since
the bistable stage has two dynamic responses, inter- and
intra-well, the stroke motions x and y can be expanded as

x = c1(t)+ a1(t) sinωt + b1(t) cosωt (7)

y = a2(t) sinωt + b2(t) cosωt (8)

where c1(t)= 0 and c1(t) 6= 0 represent the inter- and intra-
well responses.

Substitution of equations (7)–(8) into equations (4)–(5),
assuming slowly varying coefficients, and neglecting higher
order terms, leads to five modulation equations with respect to
response coefficients,

− γ1c′1 = f3cc1 (9)

− (1+µ) f γ1a′1+ 2ωb′1+ γ2a′2
=6a1− σb1− a2+ωγ2b2 (10)

− 2ωa′1− (1+µ) f γ1b′1+ γ2b′2
= σa1+6b1−ωγ2a2− b2− p0/µ (11)

µ f γ1a′1− γ2a′2+ 2ωb′2
=−µ f 23a1+µ f ωγ1b1+ (1−ω2)a2−ωγ2b2 (12)

µ f γ1b′1− 2ωa′2− γ2b′2
=−µ f ωγ1a1−µ f 23b1+ωγ2a2+ (1−ω2)b2, (13)

where the terms are defined as

3c =−1+ c2
1 +

3
2

r2
1 ; 3=−1+ 3c2

1 +
3
4

r2
1 ;

6 = (1+µ) f 23−ω2
; σ = (1+µ) f ωγ1;

r1 =

√
a2

1 + b2
1; r2 =

√
a2

2 + b2
2.

Here r1 and r2 represent the oscillation amplitudes of motion
x and y, respectively.

The steady-state response of the system is now deter-
mined. After reduction of equations (10)–(13), a polynomial
is obtained, the roots of which represent predicted responses
of the bistable stage amplitude squared, r2

1 . The polynomial is
found to be

r2
1 (α13

2
+α23+α3)= (p0/µ)

2
[(1−ω2)2+ (ωγ2)

2
] (14)

where

α1 = [ f 2
− (1+µ) f 2ω2

]
2
+ ( f 2ωγ2)

2 (15)

α2 = − 2 f 2ω2
{(1−ω2)[1− (1+µ)ω2

] + (ωγ2)
2
} (16)

α3 =ω
2
{(1−ω2)2ω2

+ ( f γ1)
2
[1− (1+µ)ω2

]
2

+ ω2
[( f γ1γ2)

2
+ (ωγ2)

2
+ 2µ f γ1γ2ω

2
]}. (17)

Note that 3 in equation (14) contains unknown c1, which is
determined by steady-state response of equation (9), where
c1 = 0 or c2

1 = 1 − (3/2)r2
1 . Hence the amplitude r1 of

either inter- (i.e. c1 = 0) or intra-well (i.e. c2
1 = 1− (3/2)r2

1 )

response is derived. According to equation (6), the force
transmissibility is

|TR| =
∣∣∣∣ Pt

P

∣∣∣∣= ∣∣∣∣ pt

p0

∣∣∣∣=√1+ (ωγ2)2

∣∣∣∣ r2

p0

∣∣∣∣ . (18)

2.3. Stability criterion

It is necessary to identify the stable and unstable solutions of
the polynomial (14). Equations (9)–(13) may be rewritten in
the form

z′ =G−1F(z) (19)

where

z=


c1
a1
b1
a2
b2

 ,

G=


−γ1 0 0 0 0

0 −(1+µ) f γ1 2ω γ2 0
0 −2ω −(1+µ) f γ1 0 γ2
0 µ f γ1 0 −γ2 2ω
0 0 µ f γ1 −2ω −γ2


and F(z) is the right-hand side of equations (9)–(13). The
Jacobian matrix of equation (19) is determined from

J= G−1 ∂F
∂z

∣∣∣∣
z=zs

(20)

where zs denotes the vector of steady-state solutions. The
stable response solutions are ascertained if all eigenvalues of
the matrix J have negative real parts.

3. Isolation performance comparison and ‘valley’
response

3.1. Comparison with an equivalent linear dual-stage isolator

When the first stage of the isolator is replaced by a linear
oscillator, the entire system becomes a linear dual-stage
isolator. To provide a meaningful comparison between the
isolator designs, it is intuitive that the isolators must provide
an identical static loading capacity. Equations (21) and (22)
respectively represent the static loadings of the bistable and
linear dual-stage isolators.

− k1 X + k3 X3
= P (21)

kL X = P (22)

3
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Figure 2. Force transmissibility comparison of bistable dual-stage isolator with an equivalent linear dual-stage isolator and a linear
single-stage isolator: (a) force transmissibility; (b) stroke motion amplitudes of the first stage.

where: P is the static load; kL is the stiffness of the equivalent
linear first stage, and thus the natural frequency of this stage is
ωL =

√
kL/m1; X is the deformation subjected to the static

load. Using the same approach that normalizes equations
(1)–(3), and defining fL = ωL/ω2 as the frequency tuning
ratio of the equivalent linear dual-stage isolator, where ω2 is
the natural frequency of the linear second stage, the parametric
relationship between the isolators is

f 6
L + f 2 f 4

L − f 2(p0/µ)
2
= 0. (23)

Figure 2(a) plots the force transmissibility of the bistable
dual-stage isolator, the equivalent linear dual-stage isolator
and a linear single-stage isolator having the same system
parameters as the second stage of the linear dual-stage isolator.
Figure 2(b) presents the stroke motion amplitudes of the first
stages of the dual-stage isolators. The parameters used to
predict the responses are as follows: the mass ratio of the
first stage mass to the second stage mass is µ = 1.0; the
frequency tuning ratio of the first stage to the second stage
of the bistable dual-stage isolator is f = 0.1; the normalized
excitation force amplitude is p0 = 1.0; based on equation (23),
the frequency tuning ratio of the equivalent linear dual-stage
isolator is fL = 0.46; the loss factors of the first and second
stages are γ1 = 0.10 and γ2 = 0.05, respectively. To validate
the analytical predictions of the bistable dual-stage isolator,
figure 2 also presents the single periodic responses determined
through numerical integration of governing equations (4)–(6)
using a fourth-order Runge–Kutta algorithm.

As shown in figure 2, when ω ≤ 1.08, the bistable first
stage exhibits inter-well response (i.e. snap-through oscil-
lation), where its mass oscillates symmetrically around the
unstable equilibrium x = 0. For the bistable dual-stage isolator,
there are two inter-well response branches, the high-energy
branch (HEB) where the first stage has a large oscillation
amplitude, and excitation induced stability (EIS), occurring
across the bandwidth 0.55≤ ω≤ 1.08 in this example, where
the oscillation amplitude is much smaller (the amplitudes are
between r1 =−1.8 dB and r1 = 13.2 dB in figure 2(b)). When
ω > 1.08, the bistable stage vibrates around either equilib-
rium (i.e. intra-well response) for the present set of system

parameters. In figure 2(a), for the bistable dual-stage isolator,
between the frequencies of the two peaks (0.55≤ω≤ 1), there
exists a valley response in the EIS frequency band where the
vibration is effectively isolated and the maximum attenuation
can be nearly 30 dB. In contrast, the linear dual-stage isolator
provides much less isolation in the bandwidth between its
respective peaks, as figure 2(a). This valley response indicates
that the dynamic stiffness of the bistable dual-stage isolator
is significantly less than that for the linear dual-stage isolator,
and its detailed interpretation will be presented in section 3.2.
After the second peak, both dual-stage isolators outperform
the single-stage isolator in the high frequency band, because
the response slope rates with respect to ω of the bistable and
linear dual-stage isolators are twice that of the single-stage
isolator as shown in figure 2(a). A clear difference between
the amplitudes of the dual-stage isolators’ transmissibilities at
high frequencies indicates that the bistable dual-stage isolator
provides more effective isolation performance when the static
loading capacity of the dual-stage systems is identical. More-
over, compared with the linear dual-stage isolator, figure 2(b)
shows that the bistable dual-stage isolator can achieve much
smaller stroke motion, which reflects the smaller deflection of
the bistable oscillator’s nonlinear spring. Hence, the bistable
dual-stage isolator is more suitable for applications having
compact space constraints. These factors encourage further
investigation of the source of these advantages for the bistable
dual-stage isolator.

For the numerical data points in figure 2 presented as
circles and squares for inter-well and intra-well response
respectively, the amplitude at each frequency is the fundamen-
tal component of single periodic response computed by taking
the fast-Fourier transform of the last 35% of the long-time
response. Across frequencies, the numerical results are in good
agreement with the analytical predictions, validating the model
composition and assumptions. Around the valley response in
0.6 ≤ ω ≤ 1.0 and the intra-well response in 1.1 ≤ ω ≤ 1.6,
numerical simulations uncovered potential multi-harmonic
responses in addition to the single periodic valley (denoted
as circles) and intra-well (denoted as rectangles) responses.
These behaviors are observed, by repeated simulations of the

4



Smart Mater. Struct. 23 (2014) 045033 K Yang et al

Figure 3. Force transmissibility of the valley response as a function
of the bistable stage stroke amplitude.

model, to be dependent on initial conditions. The influence
of initial conditions is carefully investigated and discussed in
section 5.

3.2. Explanation of the valley response

The valley response exists within the frequency bandwidth
corresponding to EIS and is a unique phenomenon due to
bistability. Because the NLS nonlinear mechanism, which
constitutes the bistable stage spring, contains two components
to its overall restoring potential force—negative linear and
positive cubic potential forces—the dynamic force supplied
by one component may be counterbalanced by the other.
Therefore, the linear stage of the isolator, which is subjected
to the dynamic force of the bistable stage, will also possess a
valley response and consequently will transmit a minimum of
vibration to the foundation. A quantitative explanation of the
phenomenon is provided by rewriting equation (5) as

y′′+ γ2 y′+ y =µ f Fbistable (24)
Fbistable = γ1x ′+ f (−x + x3). (25)

Thus the vibration of the linear stage depends on the dynamic
force Fbistable, which is determined by the stroke motion of
the bistable stage. By substituting the inter-well solution
into equation (25) and neglecting higher order terms, the
fundamental amplitude of the dynamic force is determined to

be |Fbistable| = r1

√
(ωγ1)2+ f 2[(3/4)r2

1 − 1]2. If r1→
√

4/3
and γ1→ 0, the dynamic force will approach zero, and thus
the excitation transmitted to the linear stage, and hence the
foundation, will correspondingly approach zero. This is the
valley response characteristic. Based on this interpretation, for
a lightly damped bistable stage, the valley point (minimum of
the valley response) will be obtained for any combination
of excitation force p0 and frequency ω so long as the
bistable stage stroke amplitude r1 =

√
4/3. To verify this

conclusion, figure 3 shows force transmissibility of the valley
response as a function of bistable stage stroke amplitude r1
at three excitation frequencies, ω = 0.9, 1.0, and 1.1. The
loss factor γ1 = 0.01 is selected for the bistable stage for the
computations. Across each curve, excitation forces p0 are
varied to implement different stroke amplitudes r1, whereas

Figure 4. Force transmissibility comparison of the bistable and
linear dual-stage isolators corresponding to the variation in
frequency tuning ratio where f = [0.05, 0.10, 0.20, 0.40].

the excitation frequency ω is fixed. Therefore, for each curve
in figure 3, r1 in the horizontal axis is varied only with respect
to the excitation force p0 according to equation (14). In this
figure, numerical results denoted by circles are presented for
verification. Figure 3 shows that the valley point locations
at the three frequencies are identical, and the corresponding
stroke amplitudes are 1.156≈

√
4/3. Numerical results are in

good agreement with the analytical predictions. This verifies
that the first-order harmonic balance method is accurate to
obtain the steady-state responses of the bistable dual-stage
isolator. The results also validate the consistent occurrence of
the valley point minimum when the amplitude of the bistable
stage stroke tends to r1 =

√
4/3 due to specific combinations

of excitation force p0 and frequency ω, which serves as a
useful design guideline for vibration isolation improvement.

4. Parametric study

To develop insights into effective bistable dual-stage isolator
design, three parameters are selected for parametric study: the
frequency tuning ratio of the first stage to the second stage
f , the mass ratio of the first stage mass to the second stage
mass µ, and the loss factor of the first stage γ1. The initial
parameters for simulations are µ= 1.0, f = 0.1, γ1 = 0.05,
γ2 = 0.05, and p0 = 1.0. In the following studies, when one
parameter changes, other parameters are retained at their initial
values. Since each bistable dual-stage isolator’s response in a
figure contains three line types representing stable inter-well,
stable intra-well and unstable solutions, for clear observation
the unstable solution lines are omitted in the following.

4.1. Frequency tuning ratio

Figure 4 shows the responses corresponding to variation in
frequency tuning ratio f = [0.05, 0.10, 0.20, 0.40]. The cor-
responding linear dual-stage isolator responses with frequency
tuning ratios calculated by equation (23) are shown for cases of
frequency tuning ratios of the bistable dual-stage isolator f =
0.05 and f = 0.40. As f increases, the isolation performance

5
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Figure 5. Force transmissibility comparison of the bistable and
linear dual-stage isolators corresponding to variation in mass ratio
where µ= [0.1, 0.5, 1.0, 2.0].

of both bistable and linear systems degrades. Unlike the linear
counterpart, the location of the second peak of the bistable
dual-stage isolator is unaffected by the change of tuning ratio.
For some higher values of tuning ratio f ≥ 0.20, another
branch of inter-well response may emerge and potentially
coexist across portions of the intra-well frequency band. For
higher f , the bandwidth of stable responses within the valley
response diminishes. This indicates that it becomes more
difficult to retain fundamental vibration in the valley response
bandwidth so that beneficial isolation performance cannot
be ensured. Therefore, for better isolation performance, the
frequency tuning ratio needs to be small.

4.2. Mass ratio

The influence of the mass ratio µ is shown in figure 5,
where µ= [0.1, 0.5, 1.0, 2.0]. The first peak of the bistable
dual-stage isolator shifts to a lower frequency as µ increases,
which is the same trend exhibited by the linear counterpart’s
first peak. By increasing the mass ratio for the bistable
dual-stage isolator, the beneficial valley response is stabilized,
and the valley point frequency location moves to a lower
frequency. It can also be seen that a large mass ratio may
destabilize another inter-well response which overlaps the
beneficial response for vibration isolation in the high frequency
band where ω > 1.0. Therefore, a large mass ratio improves
the reliability of the bistable dual-stage isolator.

4.3. Loss factor of the first stage

Figure 6 demonstrates how changing the first stage loss factor
γ1 influences the response, whereγ1 = [0.01, 0.05, 0.10, 0.20].
When γ1 increases, both resonant peaks of the linear dual-stage
isolator are attenuated and the isolation performance at high
frequencies degrades. Although the bistable dual-stage isolator
has the same trend as the linear counterpart in the intra-well
frequency band, the variation in the frequency band of the
inter-well response is far different. The HEB responses are
insensitive to a changing loss factor because the response
bandwidths and amplitudes are nearly coincident, whereas

Figure 6. Force transmissibility comparison of the bistable and
linear dual-stage isolators corresponding to a variation in loss factor
of the first stage where γ1 = [0.01, 0.05, 0.10, 0.20].

the valley responses may become greater corresponding
to an increase in γ1. Around frequencies slightly higher
than the second response peak for the bistable dual-stage
isolator, an increasing loss factor γ1 extends the existence
of the intra-well response region towards the second peak,
which suggests that it is more difficult to maintain inter-well
response. The response of the valley point is lowest for
smaller values of γ1, which agrees with the interpretation
in section 3.2 regarding a significant valley point attenuation
magnitude if γ1→ 0. However, too small a bistable stage loss
factor γ1 (e.g. γ1 = 0.01) may activate a high-energy branch
of inter-well response for frequencies ω > 1.0. The stable
solution bandwidth in the valley response is also narrower for
a decreased loss factor. Practically speaking, due to the strong
nonlinearity, a very small loss factor γ1 might lead to chaotic or
quasi-periodic vibrations which are not conducive to isolation
performance. Due to these observations, the influence of loss
factor upon the likelihood of steady-state response will be
further studied in the following section.

5. Influence of initial conditions

Initial conditions may affect solution outcomes for the bistable
dual-stage isolator, which is a common factor for nonlin-
ear systems [25]. Therefore, in this section, a large number
of random initial conditions are chosen for simulations, to
uncover the most repeatable nonlinear behaviors and deter-
mine the likelihood of beneficial responses for vibration iso-
lation. The parameters for numerical integration are identi-
cal to those in figure 2. Taking ω = 0.8 which is in the
frequency band of the valley response as an example, the
numerical responses of the bistable first stage are computed
when the bistable dual-stage isolator has the initial condi-
tions (x0, x ′0, y0, y′0) = (−1, 0, 0, 0) in figures 7(a)–(c) and
(x0, x ′0, y0, y′0)= (0, 0, 0, 0) in figures 7(d)–(f).

Figure 7 presents, from left to right: the time series
plot of the transmitted force pt where T = 2π/ω in the
horizontal axis represents the excitation period; the phase plot
of bistable stage motion x and velocity x ′; and the FFT of the

6
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Figure 7. Numerical responses of the bistable dual-stage isolator at ω= 0.8 subjected to two different initial conditions (x0, x ′0, y0, y′0): the
top row (−1, 0, 0, 0); the bottom row (0, 0, 0, 0). From left to right: (a) and (d), time series plots of the transmitted force pt; (b) and (e),
phase plots of the bistable stage motion x and the velocity x ′; (c) and (f), FFT plots of the bistable stage motion x .

response x . When initial conditions are (−1, 0, 0, 0), figure 7
top row, the oscillation is single periodic valley response.
When initial conditions are changed to (0, 0, 0, 0), figure 7
bottom row, order-3 harmonic behaviors emerge, at frequen-
cies nω/3 where n = 1, 3, 5, . . . , and become a dominant
contribution to the spectrum. As shown in the horizontal axes
of figures 7(b) and (e), the overall amplitude of the bistable
stage response x for initial conditions (0, 0, 0, 0) is nearly
twice that for (−1, 0, 0, 0), which leads to a larger dynamic
force imposed on the linear stage so that the isolation perfor-
mance is significantly degraded, i.e. the maximum amplitude
of the transmitted force |pt| = 0.054 in figure 7(a) while
|pt| = 0.74 in figure 7(d). Figure 7 clearly demonstrates the
large variation in response amplitude induced by either the
single periodic valley response (top row) or the multi-harmonic
behaviors (bottom row). This suggests that initial conditions
should be closely investigated for design guidelines by which
favorable isolation performance is ensured from the desired
single periodic valley response.

To know the initial condition range which leads to the
single periodic valley response and the best vibration isolation,
a basin of attraction map at ω = 0.8 is constructed using
a 300 by 300 grid of (x0, y0) initial conditions. The map
is determined by simulations where initial displacements of
the stages are varied but all initial velocities are zero. This

represents the isolator having various static loads and being
excited from an initially stationary state. Figure 8 plots the
basin map, where the black-shaded areas represent the initial
conditions that lead to the single periodic valley response
beneficial for vibration isolation, and white-shaded areas indi-
cate the responses trending to multi-harmonic behaviors. Two
unbroken regions of initial conditions stand out, representing a
large range of configurations for which small deviations within
these regions lead to the same final steady-state response. Since
the relative areas of these two regions leading to either single
periodic valley or multi-harmonic response are similar, the
task of the designer is to ensure that the initial state of the
isolator remains in the region leading to the beneficial single
periodic valley response (the black-shaded region). It is seen
that many such initial conditions in the unbroken black-shaded
region have negative values, indicating that the bistable stage
mass is closer to the linear stage mass from the start of
excitation as seen in the schematic of figure 1; this finding
may be advantageous in application because it indicates that
the bistable dual-stage isolator is more ‘compact’ in the initial
state that leads to the favorable single periodic valley response.

As mentioned in section 3.1, numerical results in fig-
ure 2 uncovered potential multi-harmonic responses in the
frequency bandwidths 0.6≤ω≤ 1.0 and 1.1≤ω≤ 1.6. These
multi-harmonic responses are dependent on initial conditions

7
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Figure 8. Basin of attraction map at ω= 0.8. The initial condition
ranges of x and y are from −3 to 3, respectively. Single periodic
valley response, black-shaded area. Multi-harmonic response with
1/3ωt component, white-shaded area.

and may degrade isolation performance. For effective vibration
isolation, the bistable dual-stage isolator must avoid these
multi-harmonic responses and exhibit both the beneficial
single periodic valley and the intra-well responses in 0.6≤ω≤
1.0 and in 1.1≤ω≤ 1.6, respectively. Therefore, it is insight-
ful to study the likelihood of the single periodic responses in
this frequency band where multi-harmonic responses may
occur. The initial conditions are (x0, x ′0, y0, y′0) = (−1 +
R̃, 0, R̃, 0), where R̃ is a random variable satisfying a normal
distribution with zero mean and unit standard deviation.
The above initial conditions indicate that at the beginning
of vibration control the system is stationary, whereas the
displacement of either stage is randomly distributed around its
negative equilibrium position, representative of various static
loads upon the system.

Figure 9 presents the percentage likelihood that the iso-
lator exhibits single periodic valley and intra-well responses
for several cases of the bistable stage loss factor γ1. These two
forms of single periodic response—valley behaviors and intra-
well oscillations—represent the favorable dynamics for isola-
tion performance as demonstrated above, e.g., in figure 2(a).
In figure 9, the discrete excitation frequencies from ω = 0.6
to ω= 1.6 are chosen, and 200 long-time responses under the
random initial conditions are simulated at each frequency. The
results in 0.6 ≤ ω ≤ 1.0 represent the percentage likelihood
of single periodic valley responses, whereas the data in 1.1≤
ω≤ 1.6 represent the percentage likelihood of single periodic
intra-well responses. The alternative response form in both of
these bandwidths (i.e. the remaining percentage), represents
adverse multi-harmonic response outcomes. When γ1 = 0.05,
it is difficult to realize the single periodic valley response at
ω = 0.7 and single periodic intra-well response at ω = 1.1.
Overall, the likelihood of obtaining single periodic valley
and intra-well response is increased for greater γ1, and is

Figure 9. Percentage likelihood of the single periodic valley
responses in 0.6≤ω≤ 1.0 and single periodic intra-well responses
in 1.1≤ω≤ 1.6 for three cases of the bistable stage loss factor γ1.

exceptionally likely to occur for loss factor γ1 = 0.20, which
represents a loss factor that could be easily realized in practice.
These findings indicate that larger damping of the bistable
stage is beneficial to stabilize the single periodic dynamics
and avoid multi-harmonic response so that effective isolation
performance may be ensured.

6. Prototype investigations

A prototype of the bistable dual-stage isolator configured by
cantilevered beams and mutually repulsive magnets is devel-
oped to verify the prior analytical predictions by numerical
simulation and experiment.

6.1. Numerical quantitative verification

The prototype of the bistable dual-stage isolator is shown
in figure 10(a). The bistable stage consists of two identical
magnets and a cantilevered beam providing effective stiffness
k0. Damping tape is applied to the beam for the bistable
stage damping d1. The frame containing the bistable stage
is connected to a second cantilevered beam which represents
the linear stage stiffness k2. Therefore, the frame and a portion
of the second cantilevered beam represent the mass of the
linear stage, and the displacement of the frame and the second
cantilever beam tip represent the stroke motion of the linear
stage. Xτ and Yτ are the stroke motions of the bistable and
linear stages, respectively. One magnet is fixed at the tip of the
bistable stage’s beam, whereas the other is fixed on the frame,
and they are oriented so as to repulse each other. By decreasing
distance 1 between magnets, the repulsive magnetic force
buckles the beam, leading to two stable equilibria symmetric
about the unstable equilibrium Xτ = 0. The potential force of
the bistable stage is [26]

F = k0 Xτ − 3H Xτ (X2
τ +1

2)−
5
2 (26)

H =
η0 M2

2π
(27)

where η0 and M are free permeability and magnetic pole
strength, respectively. The potential force F may be expanded
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Figure 10. (a) Schematic of a prototype of the bistable dual-stage isolator configured by cantilevered beams and mutually repulsive magnets,
and (b) the bistable stage’s potential forces F of the prototype and analytical model with respect to the bistable stage’s stroke Xτ .

by Taylor series to

F =−k1 Xτ + k3 X3
τ −

105H
819 X5

τ + · · · (28)

where

k1 =

(
3H
15 − k0

)
; (29)

k3 =
15H
217 ; (30)

and

1<

(
3H
k0

)1/5

.

There exists a deviation between the restoring force employed
in the analytical model of section 2 and the exact force expres-
sion of the specific prototype design considered in this section,
which is given by equation (26). The deviation is reflected by
the higher order terms in the Taylor series expansion which are
neglected by the analytical model, −(105H/819)X5

τ + · · · .
Thus, as regards the prototype configuration, the analytical
model employs a potential force expression of F =−k1 Xτ +
k3 X3

τ where k1 and k3 are given by equations (29) and (30).
Figure 10(b) compares the two force expressions, equation
(26) and the prior analytical model expression, to demonstrate
the deviation. The parameters are η0 = 4π × 10−7 N A−2 and
M = 1.74 A m2 while the distance between magnets is 1=
0.022 m. The stiffness of the bistable stage cantilevered beam is
k0 = 260 N m−1; therefore, by the analytical model expression,
the stable equilibria of the bistable stage are approximately
located at Xτ =±

√
k1/k3 =±7 mm. Figure 10(b) shows that

the deviation of the bistable stage potential forces between
the prototype and the analytical model becomes non-trivial if
the stroke Xτ is considerably larger than the stable equilibria
value. The result indicates that analytical model predictions
of the prototype response, as studied in this section, will be
accurate so long as the bistable stage exhibits EIS or intra-well
dynamics, in which case stroke motion remains small.

To evaluate the validity of earlier analytical findings
that employed the reduced-order potential force expression

Figure 11. Force transmissibility of the force Pt to the excitation
force P as a function of normalized excitation frequency ω.

against the exact expression in equation (26) for the prototype
studied in this section, numerical simulations of the governing
equations of the bistable dual-stage isolator are conducted
using the full potential force expression in equation (26) for
the bistable stage. In the simulation, the bistable stage mass
is m1 = 0.23 kg. The linear stage mass is m2 = 0.23 kg and
stiffness is k2 = 9270 N m−1. As found in figure 9, a large
bistable stage loss factor γ1 is conducive to stabilization of the
single periodic dynamics; thus, to ensure the single periodic
EIS and intra-well responses are obtained, γ1 is chosen to be
0.4 in the simulation. Finally, damping of the linear stage is
γ2 = 0.05 while the excitation amplitude is P = 30 N.

Figure 11 presents the force transmissibility of the trans-
mitted force Pt to the excitation force P . The numerical
simulation results of the prototype are in very good agreement
with the analytical predictions across the bandwidth. Due to the
stabilization effect of the large loss factor γ1, the simulations
predict that the bistable dual-stage isolator exhibits only the
single periodic EIS or intra-well responses. Figure 11 indicates
that the bistable dual-stage isolator significantly outperforms
the linear counterpart in the frequency band. The good agree-
ment between numerical and analytical results validates the
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Figure 12. Experimental setup: (a) schematic and (b) photograph, to validate the valley response of a bistable dual-stage isolator prototype.

Figure 13. RMS transmissibility as a function of normalized
bistable stage stroke.

conclusions drawn from the earlier analytical investigations
using the fundamental harmonic balance approach and sim-
plified potential force expression, and moreover demonstrates
the viability of the bistable dual-stage isolator employing the
configuration of the present prototype.

6.2. Experimental qualitative validation

An experimental setup is constructed to demonstrate the valley
response attenuation capability of the bistable dual-stage
isolator prototype shown in figure 10(a). A schematic and
a photograph of the setup are provided in figures 12(a) and (b),
respectively. The bistable stage consists of a cantilevered thin
aluminum beam (length: 99.0 mm; width: 13.0 mm; thickness:
1.3 mm), two repulsive magnets and a brass mass (0.225 kg).
One of the magnets is embedded in the brass mass fastened
at the tip of the beam, whereas the other is fixed to a frame,
and they are oriented so as to repulse each other. The bistable
stage’s stable equilibria are ±5 mm from the center line.

In this experiment, the brass mass of the bistable stage is
connected to the shaker armature with a ball joint to minimize
torsional influences during shaker excitation. The frame and
a portion of the thick cantilevered beam represent the mass
of the linear stage, and the tip displacement represents the
stroke motion of this stage. The shaker excitation constitutes
displacement- or acceleration-controlled input as compared
to constant periodic force. Therefore, the bistable stage mass
connected to the shaker armature is driven to exhibit single

periodic vibration. By varying the control signal of the shaker,
the bistable stage will exhibit harmonic vibrations of varied
stroke amplitudes. This allows direct verification of the valley
phenomenon as earlier studied through figure 3. By equa-
tion (18), the transmitted vibration force is proportional to the
vibration amplitude of the linear stage at a specified frequency.
Thus, vibration isolation can be expressed by dividing the root
mean square (RMS) of the linear stage’s steady-state stroke
by the RMS of the shaker’s steady-state stroke. Therefore, the
RMS transmissibility is

|TR|RMS =

√
1
T

∫ T
0 |Yτ |

2 dτ√
1
T

∫ T
0 |Aτ |

2 dτ
(31)

where Yτ and Aτ are the steady-state strokes of the linear stage
and the shaker, and T is the sampled time used for integration.

The parameters of the bistable stage are obtained by
system identification. Then, the length of the thick beam is
adjusted so that the frequency tuning ratio f ≈ 0.1, which
was also used in figure 3 to interpret the valley response.
The ratio of bistable first stage mass to linear second stage
mass is µ ≈ 1.0. The loss factors of the bistable stage and
the linear stage are γ1 ≈ 0.025 and γ2 ≈ 0.05, respectively.
A function generator and an amplifier drive the shaker at
frequencies of 4, 5, and 6 Hz, where the shaker is able to
produce sufficient sinusoidal stroke. An accelerometer (PCB
352C04) and a laser vibrometer (Polytec OFV-3001) measure
the shaker acceleration and the vibration displacement of the
thick beam’s tip (i.e. response of the linear stage), respectively.

Figure 13 presents the force transmissibility as a function
of bistable stage stroke normalized by the value of the stable
equilibrium. The experimental results show the minimum of
the valley response is consistently obtained so long as the
key bistable stage stroke amplitude r1 is achieved, verifying
the analytical observations in section 3.2. The normalized
bistable stage stroke corresponding to the minima at each
frequency is found to be between 1.0 and 1.1, which is also in
good agreement with the analytically predicted value

√
4/3≈

1.156. There is deviation between the trends of the slopes of the
curves predicted analytically and measured experimentally;
this is attributed to the experimental configuration for which
the repulsive magnetic dipole and bistable stage beam do not
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exactly realize negative linear and positive cubic potential
forces, and to the use of the ball joint containing a small
damping material that dissipates higher frequency vibration.
Apart from this minor discrepancy in trends, the experimental
results are in very good agreement with the analyses regarding
attainment of the valley response and its specific minimum as
defined by the bistable stage stroke.

7. Conclusion

This paper investigated steady-state performance of a bistable
dual-stage vibration isolator, which brings together the oppor-
tunities of force counterbalance unique to bistable systems
and the improved isolation performance abilities of dual-
stage designs. Response phenomena beneficial for isolation
enhancement are analytically predicted and validated through
numerical studies. Based on analyses of the fundamental
periodic vibration, it is found that the bistable dual-stage
isolator may outperform an equivalent linear dual-stage isola-
tor over a significant frequency bandwidth. It is shown that
a valley response, the unique phenomenon of the bistable
dual-stage isolator due to counterbalance of its potential forces,
improves isolation performance and that attainment of the val-
ley response minimum is ensured by realizing a key amplitude
of bistable stage displacement stroke. The basin of attraction
mapping illustrates initial condition dependence leading to
either the beneficial single periodic valley behavior or the
multi-harmonic response in a portion of the frequency band-
width that leads to excitation induced stability. It is shown that
increasing the bistable stage damping is conducive to stabi-
lization of the single periodic responses for effective vibration
isolation. Finally, numerical and experimental investigations
of a prototype quantitatively and qualitatively validate the
analytical predictions and demonstrate the robust performance
of the bistable dual-stage isolator design.
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