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Abstract
There is limited understanding on interaction mechanisms that govern vibration attenuation
when a small coverage of lightweight resonators are applied to practical engineering structures.
To shed light on the unknowns, this research investigates lightweight elastomeric half
cylindrical resonators attached to an aluminum panel using a small mass ratio around 3% and
only around 1.7% coverage over the panel area. Finite element modeling of the system
dynamics is complemented by corresponding experimental undertaking. The eigenfrequencies
and eigenmodes of the resonators are scrutinized for the respective contributions provided
towards broadband panel vibration suppression. The first order eigenmodes of the resonators are
found to exert great influence on the starting mode for greater vibration attenuation, which may
be tuned by the Young’s modulus of the resonators. The concept of displacement polarization is
established to probe how the resonator eigenmodes quantitatively contribute to attenuate the
forced panel vibration. This study reveals how flexural panel vibration may be attenuated by
transferring the vibration from the panel to resonators by virtue of modal interaction, and
prepares a generalized analytical technique that may be used by other researchers studying
multi-modal interactions between host structures and applied resonators. These findings may
guide the future development of lightweight resonators with a small coverage area for vibration
suppression in engineering applications.
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1. Introduction

Broadband vibration attenuation for structural panels has been
of long-standing interest to researchers and industry. The con-
cepts of constrained layer damping, bandgap, and tuned mass
damper are commonly used in practices of vibration sup-
pression. Constrained layer damping (CLD) laminates a flex-
ible viscoelastic layer in between a stiff constraining layer
and the underlying host structure layer. CLD dissipates vibra-
tion energy by the shear deformation in the viscoelastic layer
according to the relative motion between the host and the
constraining layer. Investigations on the stiffness of the con-
straining layer, the thicknesses of constraining and viscoelastic
layers, the coverage area, and the loss factor of viscoelastic
layer have illuminated the mechanisms of optimal design and
implementation of CLD for many applications [1–4]. The

studies find that optimized CLD layouts introduce only a small
added weight [5, 6] while concurrently providing effective
panel vibration dissipation [6]. The damping may be tailored
by the shear modulus of the viscoelastic layer [7] as well as
by the positions of CLD patches [4]. On the other hand, CLD
methods of vibration control are often only effective in the
mid to high frequency range, whereas many panel vibration
concerns are concentrated in the lower frequency regime with
wavelengths longer than the size of typical CLD solutions.

For bandgap-based methods of vibration suppression,
destructive interference through Bragg scattered wavesmay be
cultivated by periodic metamaterials. In a bandgap frequency
regime, elastic waves are blocked, such as for silicone rubber
stubs on an aluminum plate [8], rubber inclusions in an epoxy
plate [9], double-sided pillars on a plate [10–12], and inter-
connected resonators attached to a plate [13]. The coupling
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of the resonances in the metamaterials with wave propaga-
tion in the host structure may induce more than one bandgap.
Yet, the bandgap frequency bandwidth may be limited, so that
enhancement of the bandwidth necessitates more metamater-
ial mass, especially to suppress low frequency waves. For
example, Yu et al [14] report an aluminum tube with peri-
odic heavy metal copper rings coupled with rubber, shown
to widen the flexural vibration bandgap. Sugino et al [15]
present a method for bandgap estimation in one- and two-
dimensional locally resonant metastructures. With a sufficient
number of resonators, the normalized bandgap width is found
to be

√
1+µ− 1 [15], where µ is the mass ratio between

the added resonators and host structure. The findings clearly
quantify the significance of the mass ratio on the bandgap
frequency bandwidth. In addition, inducing a bandgap often
requires a sufficiently large number of periodic structures
while increasing the number of added resonators also enhances
the wave attenuation efficiency [16, 17]. Based on the attenu-
ation mechanism in bandgaps, the waves are required to pass
through the designed periodic metamaterials to be blocked
[18]. This also suggests that the protected environment may
need to be surrounded by periodic metamaterials to prevent
waves from propagating in the environment [19], which could
be a limitation in engineering applications.

The classic tuned mass damper (TMD) is a mass interfaced
with the host structure through a parallel spring and damper.
By designing the resonant frequency of the TMD to be near
to the host structure resonance, host structure vibration is sup-
pressed. Yet, the phenomenon occurs in a relatively narrow
frequency range by way of transferring energy from the host
structure to the TMD. Researchers have investigated numer-
ousmethods to overcome this fundamental limitation of TMD-
based vibration control. The application of multiple TMDs
with tuning variations is one way to enhance the effectiveness
and robustness of vibration suppression by the resonant phe-
nomenon. Studies find that optimized multiple TMDs deliver
greater vibration attenuation than the optimized single TMD
even if the multiple TMDs in total constitute the same added
mass ratio as the single TMD [20–23]. Furthermore, Li and
Ni [24] find that non-uniformly distributed TMDs are more
effective than uniformly distributed TMDs. Igusa and Xu [20]
indicate that the width of the frequency range is proportional
to the square of the mass ratio.

Extending from a single mode to multiple modes for broad-
band vibration control, Zuo and Nayfeh [25] and Jacquot [26]
discuss how damping characteristics of multiple TMDs influ-
ence the effectiveness of vibration attenuation. Employing
arrays of TMDs may lead to large mass ratios or large cov-
erage areas when compared to the host panel mass and sur-
face area. For instance, Yu and Lesieutre [27] developmetama-
terial vibration absorbers embedded in a sandwich panel that
substantially suppress panel vibration of the two lowest order
modes yet require a mass ratio of nearly 30%. Nouh et al
[28] propose a host aluminum plate with cavities filled with
viscoelastic membranes that support periodic small aluminum
masses. Although this embodiment is also effective for broad-
band vibration control [28], the coverage area is 60% of the
plate, while the added mass is 39% of the host structure. To

reduce the metamaterial weight, Sun et al [29] develop peri-
odic plastic frames filled with rubber membranes that support
iron discs to attenuate steel panel vibration in the low fre-
quency regime. Although the mass ratio of the solution was
only 6% [29], the area over which the metamaterial covered
the plate was around 50%. In summary, these studies reveal
that broadband panel vibration suppression by a small applic-
ation of lightweight resonators is a challenging technical target
that remains to be achieved.

Recently, the authors investigated the use of lightweight
metamaterial cylindrical inclusions embedded in a tube for
transverse vibration dissipation of the tubular structure [30].
Optimization efforts revealed the mechanisms of broadband
vibration attenuation exerted by the metamaterials on the host
tubular structure, showing frequency sensitive TMD and CLD
responses from the same metamaterial embodiments [31].
Given the success of such cylindrical metamaterials to control
broadband and low frequency vibration of tubular structures,
this research searches for strategies by which to translate such
capability to broadband vibration attenuation for panels. Here,
to make the cylindrical geometry compatible for application to
a flat panel host structure, the design of the lightweight reson-
ator is a half cylinder with flat surface that is attached to the
host panel.

Building from this preliminary concept, this report invest-
igates the application of lightweight half cylindrical resonat-
ors to a thin panel to attenuate flexural vibration and explores
the mechanisms by which such resonators deliver broadband
attenuation of host panel vibration. Following this introduc-
tion, the resonator specimen design, experimental undertak-
ings, and finite element modeling are described as foundation
on which to undertake subsequent technical investigations.
Using these resources, the influences of the resonator Young’s
modulus and geometry on vibration attenuation mechanisms
are studied in detail revealing significant coupling of multi-
modal vibrations in the resonator with host structural response.
The discoveries stemming from this resource are summarized
in a concluding section.

2. Specimen descriptions and investigation
methods

This section first describes the panel and resonator specimens
considered throughout this research. Next, the experimental
methods are introduced along with the composition of the
finite element model. Finally, the finite element model is val-
idated against experimental data to prepare for the detailed
investigations in section 3.

2.1. Resonator description

The elastomeric resonator and geometric features of the reson-
ator design are presented in figure 1(a). The resonator is a half
cylinder of outer radiusRh and length L. The cross-section geo-
metry of the resonator has three parts, including an outer half
circular annular layer of thickness t, radially arrayed beams,
and a semicircle core of radius Rc, as shown in figure 1(a). The
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open angle ratio α/β is the ratio between the angle inscribed
by the void and the angle of the periodic radially arrayed beam
in the middle layer. The geometric parameters of the half cyl-
indrical resonator are listed in table 1. This study considers
resonators fabricated using one of three durometers of silic-
one rubber (Smooth-On, Inc.). The silicone rubbers include
Ecoflex 00–10 (EF10, Shore hardness 00–10), Mold Star 15 S
(MS15, Shore hardness 15 A), andMold Star 30 (MS30, Shore
hardness 30 A).

2.2. Host structure and experimental setup

In this study, the host structure is a freely suspended, square
aluminum panel of length a and thickness h. The geometric
parameters of the panel are in table 1. By way of the mode
shapes with peak displacements at the edges and corners, here
the half cylindrical resonators are attached on the square alu-
minum panel at the bottom panel edge with respect to the sus-
pension, as shown in figure 1(b). The bond between panel
and half cylindrical resonators is made by silicone sealant,
to be compatible with the bulk material of the resonators.
The positions of the resonators are labeled as 1, 2, 3, and 4
in figure 1(b). Depending on the cross-section geometry, the
mass of a resonator examined here varies from 2.4 g to 3.4 g.
This corresponds to a total mass ratio between the four reson-
ators and host panel from 2.4% to 3.3%. The coverage area of
the four resonators is only over 1.7% of the aluminum panel
surface.

This study employs roving accelerometer modal hammer
impact evaluations to determine the frequency response of
the panel. For each measurement, the modal hammer (PCB
086C01) delivers an impact at a position represented by the
green triangle marker in figure 1(b). In order to determine the
global acceleration of the panel, the 25 measurement positions
represented by the red circle markers in figure 1(b) are dis-
tributed periodically on the panel. The accelerometer (PCB
352A24) is mounted to the rear of the panel with respect to
the impact direction. Each experiment involves the measure-
ments of the 25 positions to generate the transfer function
(TF) between output global acceleration and the input force
providing by the modal hammer. The output global acceler-
ation is computed from the square root of sum of squares of
the acceleration Fourier transform at each location, while the
input force amplitude is sought for each corresponding meas-
urement. The experimental global TF is an average of the indi-
vidual TFs from the 25 positions. By extracting the imaginary
part of the TF for each position at the experimentally determ-
ined natural frequencies, the experimental mode shapes of
the bare panel are reconstructed [32]. The panel experimental
mode shapes for the eight lowest order modes are shown in
figure 2(a).

2.3. Finite element model formulation and validation

The frequency response of vibration for the panel is investig-
ated via finite element (FE) modeling to parallel and support
the experimental efforts. An FE model (COMSOLMultiphys-
ics, Stockholm, Sweden) is created using shell elements for the

Table 1. Geometric parameters of the panel and half cylindrical
resonator.

item unit value

panel length, a mm 304.8
panel thickness, h mm 1.6
resonator length, L mm 20
resonator outer radius, Rh mm 10
resonator annular thickness, t mm 1.5

panel [33] and solid elements for the resonators. The boundar-
ies and parameters in any given experiment are likewise used
in the FE model, as shown in figure 1(c). The material proper-
ties of the aluminum panel are provided in table 2.

The natural frequencies and mode shapes of the bare panel
determined by the FE model are shown in figure 2(b). Consid-
ering the simulated natural frequencies of the bare panel, the
absolute deviations with respect to experimental data for the
ten lowest order modes are less than 6%. For the mode shapes,
clear agreement is observed comparing FE predictions and
experimental results for the bare panel in figure 2. The results
suggest that the modal hammer technique employed in exper-
iments sufficiently excites the ten lowest order modes, and
the suspension technique sufficiently reproduces free bound-
ary conditions of the panel.

After validating the efficacy of the FE model approach, the
following sections of this report detail simulations of TF fre-
quency response between global panel acceleration and input
force with and without the half cylindrical resonators. The
material properties of the half cylindrical elastomeric reson-
ators are listed in table 2. The interfacial surfaces between the
panel and the resonators are assumed to maintain perfect con-
tact. The FE vibration responses investigate through calculat-
ing the surface integration of the panel acceleration over the
panel surface area divided by the input forced amplitude to
generate the TF between global acceleration and force. Linear
responses are examined for sake of the small absolute values
of displacement considered for the panel with resonators.

The objective of this study is to uncover vibration atten-
uation mechanisms of structurally-integrated resonators on a
host, vibrating panel. The spectral and modal responses of
resonators and the panel are explored through the subsequent
experimental studies and FE simulations that probe origins of
vibration energy transfer and attenuation.

3. Results and discussions

To understand the coupling between the panel and resonat-
ors that govern vibration attenuation mechanisms, this sec-
tion leverages complementary FE and experimental efforts to
probe the origins of the system dynamics and interactions.
In each section following, the TF frequency responses of the
panel with and without the resonators are considered, using
resonators classified by labels such as A, G, and so on. These
labels indicate material or geometric changes of the resonat-
ors, which are respectively described in the section text.
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Figure 1. (a) Geometric notations of the half cylindrical resonators. (b) Experimental setup of modal hammer impact tests. (c) Finite
element (FE) model of the panel with half cylindrical resonators.

Figure 2. (a) Experimental and (b) finite element (FE) mode shapes of bare panel for eight lowest order modes.

3.1. Change of resonator Young’s modulus governs vibration
attenuation mechanism

The experimental and FE TF frequency responses of the panel
without and with resonators A, B, and C are respectively
presented in figures 3(a) and (b). The resonators A, B, and C
are fabricated using silicone rubbers, EF10, MS15, and MS30
in increasing bulk modulus. In the insets, grey color refers
to EF10, cyan color refers to MS15, and blue color refers to
MS30. The cross-sectional geometry of resonators A, B, and
C are identical so that the core radius ratio and open angle
ratio of the three resonators are 0.3 and 0.75, respectively. At
around 140 Hz, the experimental and FE TF peak attenuation
between the response of bare panel and panel with resonator A
are 7.65 dB and 8.94 dB, respectively. Both experiment and FE
simulation indicate that frequencies around 140Hz and greater
are attenuated by resonator A. For resonators B and C, the TF
peak attenuation are around 8 dB in the experiment and 22 dB
in FE simulation. Except for the experimental TF response at
around 275 Hz, the greater effectiveness of vibration attenu-
ation for resonators B and C is evident at frequencies 255 Hz
and up. Overall, the FE results agree well with experiments.

Table 2. Material properties of the panel and half cylindrical
resonators.

aluminum panel EF10 MS15 MS30

Young’s modulus, kPa 70× 106 200 600 800
Poisson’s ratio 0.33 0.49 0.49 0.49
density, kgm−3 2700 1145 1145 1145
structural loss factor 0.001 0.2 0.2 0.2

The total displacement contours for the five lowest order
eigenmodes for resonator A are shown in figure 3(c). These
modal characteristics are determined from FE based modal
analyses solely of the half cylindrical resonators with bottom
surfaces fixed. The displacements are greatly exaggerated in
figure 3(c) for ease of visualization. The total displacement
is the square root of the sum of square of displacement com-
ponent in the x-, y-, and z-directions. Figure 3(d) exempli-
fies that the Young’s modulus of the resonators has a signi-
ficant influence on the resonator eigenfrequencies, although
the scaling is mostly uniform in this frequency range. With
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Figure 3. (a) Experimental and (b) finite element (FE) frequency responses of the panel with several sets of resonators with different
Young’s moduli. (c) FE mode shapes for the five lowest order eigenmodes of resonator A. (d) FE predictions of resonator eigenfrequency as
function of Young’s modulus.

identical cross-sectional geometry of resonators, the eigenfre-
quency of resonator increases by a factor of the square root of
the Young’s modulus, which agrees with prior findings [31].

Here, the term ‘starting mode’ is used to identify the modal
region of the resonator around which the more substantial
vibration attenuation is achieved, for which greater frequen-
cies of the panel vibration TF are more highly suppressed. A
comparison between the panel TF in figure 3(b) and the eigen-
frequencies of the resonator eigenmodes in figure 3(d) helps
to identify that the ‘starting mode’ for resonators A, B, and
C is the first resonator mode. The resonator A shows more
prominent panel vibration suppression at frequencies around
150 Hz in figures 3(a) and (b) because the first eigenmode in
figure 3(d) occurs around 125 Hz. Likewise, figure 3(d) indic-
ates that resonators B and C have the first eigenmodes around
217 Hz and 250 Hz, respectively. Considering figures 3(a) and
(b), for frequencies greater than these eigenfrequencies, the
panel TF frequency responses are suppressed when using res-
onators B or C. Such trend also agrees with prior observations
of elastomeric inclusions in poroelastic media for sake of pro-
moting vibration [31] and sound attenuation [34].

To clarify the relations between the first resonator eigen-
mode and ‘starting mode’ in the panel frequency response
where the resonators exhibit greater vibration suppression, the
stiff resonator D is considered with Young’s modulus of 70
GPa, having the same cross-sectional geometry as resonators
A, B, and C. By having a modulus several orders of magnitude
greater than the other silicone rubber resonators A, B, and C
and by having the same modulus as the panel, the resonator D
simulates a static mass added to the panel equivalent to the sil-
icone rubber resonator mass. In figure 3(b), the black dot-dash

curve shows the FE TF frequency response of panel with res-
onator D. Figure 3(b) shows that the effect of the resonator D
application to the panel is minor mass loading to resonances,
shifting the forced resonances downward slightly in frequency
and amplitude. Because the first eigenmode of resonator D is
around 74 kHz, there is no more prominent panel vibration
attenuation provided in the 85 Hz to 500 Hz frequency range
of the panel. These findings confirm that the resonator dynamic
mass and dynamic stiffness together yield the enhanced vibra-
tion suppression rather than static mass and stiffness.

3.2. Tailoring open angle and core radius ratios to govern
resonator dynamic stiffness and mass

Figures 4(a) and (b) present the experimental and FE TF fre-
quency responses of the bare panel and panel with resonat-
ors A, E, and F. Here, the open angle ratios α/β of reson-
ators A, E, and F are 0.75, 0.58, and 0.42, respectively. The
bulk material constituting the resonators is EF10, while the
core radius ratio Rc/Rh of A, E, and F is 0.3. In figures 4(a)
and (b), the greater reductions in the panel with resonators A,
E, and F are observed in both experiment and FE simulation
at frequencies 140 Hz and greater. Based on the attenuation
mechanism of ‘starting mode’ introduced in section 3.1 and
resonator eigenfrequencies as a function of open angle ratio in
figure 4(c), it is seen that the ‘starting mode’ occurs at around
140 Hz since the first eigenmodes of resonators A, E, and F
are at 125 Hz, 142 Hz, and 149 Hz, respectively. Consider-
ing the peak attenuations, both experimental and FE frequency
responses at around 250 Hz and 325 Hz show the dramatic
attenuations when decreasing the open angle ratio from 0.75
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Figure 4. (a) Experimental and (b) FE frequency responses of the panel with three sets of resonators with open angle ratios α/β of A: 0.75,
E: 0.58, and F: 0.42. (c) FE model predictions of resonator eigenfrequency as function of open angle ratio. (d) Experimental and (e) FE
frequency responses of the panel with three sets of resonators with core radius ratios Rc/Rh of A: 0.3, G: 0.5, and H: 0.7. (f) FE model
predictions of resonator eigenfrequency as function of core radius ratio.

Table 3. Ratio of polarization (ROP) values of displacement
components in the x-, y-, and z-direction in resonator A for the six
lowest order eigenmodes.

eigenfrequency (Hz) 125 135 141 208 214 231

ROPx (%) 0 89 19 6 4 4
ROPy (%) 91 1 63 36 14 46
ROPz (%) 9 10 18 58 82 50

(resonator A) to 0.42 (resonator F). Overall, the FE results
are in good agreement with experimental trends, encouraging
attention to the specific mechanisms of the vibration attenu-
ation induced by the resonators.

As seen in figure 3(c), the eigenfrequency of the res-
onator slightly decreases for increase in the open angle
ratio α/β. For an increase in the open angle ratio α/β,
the radially arrayed beams in the middle layer become less
massive and become more slender. Based on the trends of

decreasing eigenfrequency by increasing the open angle ratio,
it reveals the influential aspect of tuning the open angle
ratio of the resonators is to reduce the dynamic stiffness
of the middle layer and further lead to a decrease of the
eigenfrequency.

Figures 4(d) amd (e) present the experimental and FE TF
frequency responses of the bare panel and panel with reson-
ators A, G, and H. The core radius ratios Rc/Rh of resonators
A, G, and H are 0.3, 0.5, and 0.7, respectively. The open angle
ratio α/β of resonators A, G, and H is 0.75, while these reson-
ators are fabricated using the bulk material EF10. As observed
in figures 4(d) and (e), the vibration attenuation from the intro-
duction of the resonators uniformly occurs around the panel
mode near 140Hz. By studying the resonator eigenfrequencies
in figure 4(f) as a function of core radius ratio, this suggests
that the greater attenuation of panel vibration provided by
the lightweight resonators corresponds to activation of modes
starting around the first eigenmode of the resonators. Similar
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to the trends of the change of open angle ratio, when increas-
ing the core radius ratio from 0.3 (resonator A) to 0.7 (res-
onator H), the more dramatic attenuations occurs at around
250 Hz and 325 Hz in both experimental and FE results in
figures 4(d) and (e). The modal dependence of vibration atten-
uation induced by core radius ratio will be fully assessed in
section 3.3.

The relationship between change of the core radius ratio
Rc/Rh and the eigenfrequency of resonator is shown in
figure 4(f). Generally, the resonator eigenfrequencies increase
for increase in the core radius ratio Rc/Rh. For an increase in
the core radius ratio, the radially arrayed beams in the middle
layer become shorter, and the core becomes more massive.
Based on the trends of increasing eigenfrequency by increas-
ing the core radius ratio, the results suggest that the radius
ratio of the resonators also contributes to change the resonator
dynamic stiffness.

3.3. Polarized resonator eigenmodes for vibration attenuation

The eigenmodes of the resonators do not equally engage with
the forced panel modes, as evident by the distinct frequency
ranges where each resonator is better suited for broadband
vibration suppression. To explore how the resonator eigen-
modes suppress flexural vibration, the polarization of displace-
ments in the x-, y-, and z-directions of the resonators is quanti-
fied. The ratio of polarization ROPp [35, 36] in the p direction
for the volume V of a resonator eigenmode is

ROPp =

´
V
(up)

2dV

´
V

[
(ux)

2
+(uy)

2
+(uz)

2
]
dV

(1)

Here, ux, uy, and uz are respectively the displacement com-
ponents in the x-, y-, and z-directions of the resonator. The
subscript p is respectively replaced by x, y, and z to compute
the ratios of polarization in the corresponding directions. The
volume integration of the sum of squares of displacement com-
ponents in the x, y, and z-directions is employed to understand
the dynamic response of the resonators. The ratios of polar-
ization for the six lowest order eigenmodes of resonator A
are presented in table 3 using the FE simulation results. The
dominant displacement components of the first eigenmode at
125 Hz, the second eigenmode at 135 Hz, and the third eigen-
mode at 141 Hz are respectively concentrated in the y-, x-, and
y-directions. Because the panel vibration is mostly flexural or
transverse to the x− y plane, such resonator eigenmodes do
not greatly contribute to suppress panel motion. On the other
hand, table 3 indicates that the fourth resonator eigenmode at
208 Hz, the fifth eigenmode at 214 Hz, and the sixth eigen-
mode at 231 Hz for resonator A are polarized mostly in the
z-axis.

In figure 4(b), the eigenmodes with ROPz > 0.5 of reson-
ators A, E, and F are respectively marked as the green circle,
blue triangle, and magenta cross markers. Considering the res-
onator eigenmodes having ROPz > 0.5 at around 250 Hz and
325 Hz in figure 4(c), the orders of the resonator F eigenmodes

are less than resonator A. The lower order resonator eigen-
modes may be easier to excite, which is beneficial to increase
vibration attenuation behavior when compared to the higher
order eigenmodes, which require more energy to activate [34].
This helps to explain why resonator F provides greater panel
vibration attenuation observed in figures 4(a) and (b) at 250 Hz
and 325 Hz than resonator A. On the other hand, as seen in
figures 4(a) and (b), the vibration attenuation at frequencies
greater than 400 Hz is less influenced by the change of open
angle ratio because the order of resonator eigenmodes in such
frequency range are greater and have less energy for vibration
suppression. The green circle, blue triangle, andmagenta cross
markers in figure 4(e) refer to the eigenmodes with ROPz > 0.5
of resonators A, G, and H, respectively. The fact that the lower
order resonator eigenmode may have greater energy for vibra-
tion attenuation illuminates the more dramatic vibration atten-
uations delivered by resonator H at 250 Hz and 325 Hz in
figures 4(d) and (e). These findings indicate the lower order
resonator eigenmodes with greater polarized displacements in
the z-axis have more influences on the substantial transverse
vibration attenuations.

3.4. Relating resonant modes to panel vibration suppression

The forced panel vibration distributions for the third, fourth,
fifth, and sixth modes are presented in figure 5. From left to
right, figures 5(a)–(d) respectively show results for the bare
panel, panel with resonator A, panel with resonator B, and
panel with resonator C. The total displacement of the system
is shown on a normalized contour scale of total displacement
per each respective sub-plot. For the third and fourth resonant
panel modes with resonators A, B, or C in figures 5(b)–(d), the
greatest deformations are localized in the two resonators at the
corners of the panel. Except for the fourth mode with reson-
ator A having approximate 8 dB of peak TF attenuation, these
are not modes that show substantial reduction of panel vibra-
tion in figures 3(a) and (b). On the other hand, the fifth and
sixth modes of the panel with resonators A, B, and C respect-
ively shown in figures 5(b)–(d), reveal greatest deformation
in the resonators, while the panel vibrations are minimized.
To uncover an explanation for such vibration attenuation, it is
necessary to study the relationships between the eigenmodes
of the resonators and the corresponding forced displacement
distributions of the resonators on the panel.

The total displacement profiles of resonators A1, A2, A3,
and A4 at the fourth mode around 139 Hz are presented in
figure 5(e). The resonators A1, A2, A3, and A4 refer to the
resonator A samples located at positions 1, 2, 3, and 4 on
the panel, as shown in figure 1(c), respectively. For the four
resonators, the greatest deformations are localized in specific
regions along the top of the annular layer. Based on such distri-
bution of local deformation, the resonators A1 and A4 act in a
way similar to the first resonator eigenmode at eigenfrequency
125 Hz, as shown in figure 3(c), while resonators A2 and A3
perform in another way. Likewise, distinct modal responses
are evident for resonators C1, C2, C3, and C4 at the fifth panel
resonant mode around 247 Hz shown in figure 5(f). The reson-
ators C1, C2, C3, and C4 are the resonator C specimens at the
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Figure 5. FE total displacement contours of (a) bare panel, panel with four (b) resonators A, (c) resonators B, (d) resonators C for the third,
fourth, fifth, and sixth modes, (e) resonators A1, A2, A3, and A4 at 139 Hz, and (f) resonators C1, C2, C3, and C4 at 247 Hz under impact
excitations.

positions 1, 2, 3, and 4 on the panel. The resonators C1 and C4
rock back and forth along the x- axis, which is comparable to
the second eigenmode of resonator A, as shown in figure 3(c).
By contrast, the displacement distributions of resonators C2
and C3 in figure 5(f) may be a combination of multiple
eigenmodes.

To quantify the resonator eigenmodes that may more
strongly induce panel vibration attenuation, the simulation res-
ults are evaluated for the resonators A1, A2, A3, and A4 to
compute the respective ROPs under the forced panel excit-
ation conditions. The ROPs of the forced resonators employ
relative displacement components between the panel and res-
onator. The relative displacement components are obtained by
subtracting the average displacement components of the panel
surface immediately below each resonator from the resonator
displacement components in the x-, y-, and z-directions. The
ratio of polarization ROPp in the p direction for the volume V
of a forced resonator is

ROPp =

´
V

(
ufp− uhp

)2
dV

´
V

[(
ufx− uhx

)2
+
(
ufy− uhy

)2
+
(
ufz− uhz

)2
]
dV

(2)
Here, ufx, u

f
y, and ufz are respectively the displacement com-

ponents in the x-, y-, and z-directions of the forced reson-
ator. The uhx , u

h
y , and u

h
z are the average displacement com-

ponents in the x-, y-, and z-directions of the host panel surface

immediately below each resonator attachment location. The
subscript p is respectively replaced by x, y, and z to compute
the ratios of polarization in the corresponding directions.

The average ROP values of forced resonators A at frequen-
cies around the panel forced resonant frequencies from 100 Hz
to 500 Hz are presented in figure 6(a). In figures 3(a) and (b),
the experimental and simulation results reveal more dramatic
panel vibration attenuation in the frequency range from 250Hz
to 300 Hz. At this frequency range, figure 6(a) shows that the
ROPz values for resonators A at 261 Hz and 268 Hz vary
between 74% and 75%. These results establish a first obser-
vation that resonators exhibiting greater ROPz values lead to
increased vibration attenuation. The total displacement con-
tours of the forced resonators A1, A2, A3, and A4 at 261 Hz
having greater ROPz values are presented in figure 6(b). The
four resonators A exhibit a total displacement response at
261 Hz in figure 6(b) that is similar to the fifth eigenmode
of resonator A at 214 Hz, as shown in figure 3(c). Here, the
eigenmode at 214 Hz is termed the referenced eigenmode for
the resonator A, and the corresponding ROP values are presen-
ted in the far-right bar sub-plot in italic types in figure 6(a).
There is only a total deviation of ROP values of 7% R between
the referenced eigenmode and forced resonator responses at
261 Hz and 268 Hz, which are highlighted by darker shades in
figure 6(a) along with the referenced eigenmode. These results
suggest that the relative proximity between the 214 Hz refer-
enced eigenmode for resonator A at the forced panel reson-
ance at 261 Hz and 268 Hz results in significant activation of
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Figure 6. (a) ROP values for forced resonators A and the referenced eigenmode at 214 Hz. (b) Total displacement contours of forced
resonators A at 261 Hz. (c) ROP values of forced resonators C and the referenced eigenmode at 428 Hz. (d) Total displacement contours of
forced resonators C at 412 Hz. Note that the total displacement contours of referenced eigenmodes of resonators A and C are shown in the
fifth eigenmode sub-plot of figure 3(c).

Figure 7. (a) ROPs of forced resonators F and the referenced eigenmode at 260 Hz. Total displacement contours of (b) forced resonators F
at 250 Hz and (c) referenced eigenmode at 260 Hz. (d) ROPs of forced resonators H and the referenced eigenmode at 277 Hz. Total
displacement contours of (e) forced resonators H at 238 Hz and (f) referenced eigenmode at 277 Hz.

the referenced eigenmode and greater vibration energy trans-
fer to the resonators. Such trends are therefore borne out by
greater ROPz values in the forced excitation case observed
in figure 6(a).

This method of analysis is applied to the forced vibration
of the panels with resonators C. The resonators C are fabric-
ated using a higher modulus material than than resonators A,
see section 3.1. The ROP values for forced resonators C are
respectively presented in figure 6(c). The panel with resonators
C has more significant vibration attenuation in the frequency
range from 300 Hz to 450 Hz in the experimental and simu-
lation results in figures 3(a) and (b). The resonators C exhibit
large ROPz values at the forced resonances 307 Hz and 412 Hz
in figure 6(c), vary between 72% and 83%. Studying the forced
total displacements in figure 6(d) at 412 Hz shows that the res-
onators C1, C2, C3, and C4 oscillate in ways qualitatively sim-
ilar to the fifth eigenmodes in figure 3(c).

The Young’s modulus of resonator C is respectively four
times the modulus for resonator A, while resonators A and
C share the same cross-section geometry. In other words,
since the eigenfrequencies of the resonator scale by a factor
of the square root of the Young’s modulus, the fifth eigen-
mode of resonators C is 428 Hz. Hence, the referenced

eigenmode for resonator C is 428 Hz, which exhibits sim-
ilar ROP distributions as the referenced eigenmode for res-
onator A, seen comparing the right-most results of each
figures 6(a) and (c).

For resonators C in figure 6(c), the forced responses that
lead to 10% or less ROP deviation with the referenced eigen-
mode are highlighted by darker shades. The displacement con-
tours and ROP distributions in figure 6(c) reveal that the forced
resonators C at 307 Hz and 412 Hz may primarily consist of
modal contributions from the referenced eigenmode. These
results moreover confirm that significant vibration attenu-
ation is achieved by activating eigenmodes with greater ROPz
values.

To assess the extensibility of these findings to resonators
having change in cross-section geometry parameters, the ROP
values for resonators F and H are respectively presented in fig-
ures 7(a) and (d) under the forced panel vibration condition.
The resonator F has a smaller open angle ratio than resonator
A, which indicates that the radially arrayed beams are thicker
for F compared to A. On the other hand, the resonator H has
a larger radius ratio than resonator A, which indicates that the
semicircular core is larger for H than for A. In figures 4(a), (b),
(d) and (e), the panels with either resonators F and H exhibit

9
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more dramatic vibration attenuation in the frequency range
from 250 Hz to 350 Hz.

The ROP value distributions in figures 7(a) and (d) confirm
that resonators F and resonators H have greater ROPzvalues in
the frequency range from 238 Hz to 328 Hz, varying from 65%
to 78%. The ROP distributions for resonators F at 250 Hz and
272 Hz are especially similar to the ROP distributions for the
referenced eigenmode at 260 Hz in figure 7(a). Similarly, the
277 Hz referenced eigenmode in figure 7(d) appears as a tem-
plate for the ROP distributions of the forced responses of res-
onators H at 238 Hz, 253 Hz, and 276 Hz. The total displace-
ment profiles of the forced resonators F at 250Hz in figure 7(b)
qualitatively emulate the total displacement of the referenced
eigenmode at 260 Hz shown in figure 7(c), with similar trends
borne out between resonators H and the referenced eigenmode
in figures 7(e) and (f). Overall, these results further substanti-
ate the finding that vibration energy transfer from the panel to
the resonators is enhanced by way of frequency and ROP value
similarity between eigenmodes and forced responses features
large ROPz values.

Based on the findings in this study, the effectiveness of the
structurally-integrated resonators to mitigate panel vibration is
governed by spectral and spatial similarity of forced response
behavior of resonators bearing similarity to eigenmodes with
large ROPz values.

4. Conclusions

This research investigates lightweight elastomeric half cyl-
indrical resonators as a means to suppress forced vibration
of an aluminum panel while minimizing mass and coverage
application from the resonator attachments. Finite element
modeling and experimental undertakings help to create com-
plementary tools to reveal vibration attenuation mechanisms
manifest in the resonator and panel interaction. The influ-
ences of the cross-sectional geometry and Young’s modu-
lus on resonator dynamic behavior and vibration attenuation
mechanisms are uncovered showing distinct coupling between
the panel and resonators through such resonator design para-
meter changes. The first order eigenfrequencies of the half
cylindrical resonators are seen to exert great influence on the
starting mode for greater vibration attenuation, which may
be tuned by the Young’s modulus of the resonators. In gen-
eral, it is observed that the dynamic stiffness of the resonat-
ors is more influential to tune the resonators vibration char-
acteristics. A method for analyzing modal compositions for
forced resonator dynamic response is established using a 3D
finite element modeling. The analysis reveals that the eigen-
mode having a large percentage of polarized displacement in
the z-axis may be more influential on the transverse vibration
suppression. By transferring the flexural vibration from the
panel to resonators, the displacement in the resonators may
increase, and the panel flexural vibration may attenuate glob-
ally. These investigations may guide attention to new con-
cepts for lightweight resonators with a small coverage area
for vibration suppression in a wide variety of engineering
applications.
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