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The implementation of engineered metamaterials in practical engineering structures for
vibration control purposes is challenged by a lack of understanding on the specific interac-
tion mechanisms present among finite-sized metamaterials and the greater host struc-
tures. This research begins to address such knowledge gap by establishing an analytical
framework to study the dynamic response and coupling mechanisms between elastomeric
metamaterial inclusions embedded within a cylindrical host structure, representative of a
variety of engineering systems. The analysis is formulated based on energy methods, and
approximately solved by the Ritz method. Following experimental validation, the analysis
is leveraged to reveal deep understanding on the precise mechanisms of coupling between
such elastomeric metamaterial inclusions and the host structure. Several non-intuitive
roles of parameter changes are conclusively revealed. For instance, while the decrease in
open angle ratio of the inclusion cross-section geometry and the increase in the central
core radius both appear to increase the significance of the core mass, the analysis reveals
that the primary inclusion characteristic tuned by such parameter changes is the dynamic
stiffness of the inclusions. Together, the dynamic mass and dynamic stiffness work to
induce two tuned-mass-damper-like behaviors that lead to broadband vibration attenua-
tion capabilities. The results of this research encourage attention to the study of specific
problems whereby metamaterials directly interact with host structures to accurately
understand the working mechanisms of vibration control for sake of optimal practical
implementation.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

A long-standing demand remains for exceptional vibration attenuation in many engineering applications. Lightweight
materials that deliver high vibration attenuation capabilities extend the life of engineering systems and improve working
quality. With these aims in mind, previous researchers have investigated structural and material systems capable of atten-
uating broadband vibration by using the concepts of tuned mass dampers, bandgap behavior, and constrained layered
dampers.
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Tuned mass dampers (TMDs) are mass-spring-damper resonators capable of transferring the local vibration energy from
the host structure to the mass-spring-damper. With this additional degree-of-freedom available, the vibration of the host
structure may be suppressed by out-of-phase reaction force of the TMD with respect to the phase of the excitation force.
Researchers have investigated tailoring this mechanism of vibration absorption via a variety of approaches. For example,
Pai [1] proposed an elastic metamaterial with one-dimensional TMD subsystems to realize broadband vibration absorption
for a one-dimensional host structure. The TMDs supply inertial forces that attenuate longitudinal wave propagation, includ-
ing when the longitudinal wavelengths are much greater than the size of the periodic TMD subsystem, or unit cell. Similarly,
Sun et al. [2] designed an elastic metamaterial beam with an array of TMD subsystems that exert shear forces and bending
moments to absorb transverse wave propagation. Pai et al. [3] reported that using dual-mass TMD subsystems may enhance
vibration absorption in two-dimensional structures while also broadening the range of frequencies of wave attenuation.
Nonetheless, for each TMD the attenuation is only effective for a relatively narrow frequency range of resonance inherent
to the TMDs or array of TMDs.

In a similar spirit to the resonant behavior of TMDs, bandgaps are a promising property of metamaterials for vibration
absorption since waves are prohibited from propagating through the host structure at frequencies within the bandgap.
The center frequency, bandwidth, and number of the bandgaps are related to the interrelationships among geometry, stiff-
ness, and filling fraction of the metamaterials within the media. For example, Wang et al. [4] reported that the number of
bandgaps increases as the metamaterial is subjected to increasing compressive strain while the center frequency and band-
width simultaneously reduce. With the aim to combine local resonance and bandgap behaviors, Matlack et al. [5] adopted
resonant elements embedded in a polycarbonate lattice to realize a broad Bragg bandgap. The bandgap breadth and center
frequency were thus shown to be controlled by the local resonances. Indeed, the breadth of metamaterial concepts that exhi-
bit bandgap behaviors are diverse and are inspiring for new approaches via their combination. For instance, Nouh et al. [6]
presented a metamaterial plate composed of periodic cells with a small mass on a viscoelastic membrane, while Oh et al. [7]
developed an elastic metamaterial insulator capable of creating a broad bandgap at low frequency by combined shear stiff-
ening and rotation softening. Furthermore, for the chiral elastic metamaterial inclusions, Liu et al. [8] and Zhu et al. [9] inves-
tigated chiral metamaterials with inclusions comprised of a core with coating layer. Also using a multi-material concept,
Baravelli and Ruzzene [10] found that reduction of the filling fraction of the periodic elements caused the number of band-
gaps to increase and the center frequency to decrease. Abdeljaber et al. [11] reported that the use of segmented, non-
continuous, and non-periodic metamaterials may be advantageous for vibration and wave control in engineering structures.
Although locally resonant bandgap mechanisms may provide useful means to suppress target bandwidths of elastic waves in
host structures, the bandwidth effected by such phenomena may be limited. Such limitation is inevitable when utilizing a
parameter sensitive resonant behavior. Furthermore, designing these metamaterials to attenuate low frequency waves
requires large size and often more material mass, which are undesirable aspects in practice.

Constrained layer damping (CLD) materials introduce an alternative strategy for vibration attenuation and typically use
small added mass. The attenuation mechanism of CLD is attributed to the shear deformation in the thin and soft viscoelastic
layer between the host structure and the constraining layer. As a result, CLD provides vibration control most effectively at
wavelengths on the order or shorter than the size of the applied CLD materials. This bounds the effective working range of
the CLD to mid to high frequencies in practical applications. Using these principles, Aumjaud [12] developed a double shear
lap-joint damper to yield high modal loss factor and amplitude reduction for a minimum of added mass. Additionally, pre-
vious researchers discussed influences of the length, elastic modulus, thickness, structural damping, and interfacial damping
of the viscoelastic layer that is central to the CLD approach [13–20]. Douglas and Yang [21] concluded that the thin viscoelas-
tic material provides broadband vibration attention by way of enhanced shear transfer to the viscoelastic layer, which agrees
with findings by Kerwin [22]. For thicker viscoelastic layers, the broadband attenuation of vibration is less apparent whereas
transverse compressional damping phenomena may occur. Although conventional CLD may provide broadband attenuation
at mid to high frequencies, the CLD must cover a large proportion of the host structure, which is challenging in practice and
may have side-effects, such as introducing a thermally insulating layer.

The survey above identifies promise and shortcomings for the variety of techniques for vibration attenuation: TMD, band-
gap, and CLD. Recent work has sought to advance beyond these techniques by utilizing compression constraint on light-
weight, elastomeric metamaterials. In this spirit, Bishop et al. [23] reported a lightweight hyperdamping metamaterial
inclusion capable of attenuating more impact energy than the bulk material from which the metamaterial was derived.
The concept was extended by Harne et al. [24] who utilized such inclusions to enhance noise control capabilities of poroe-
lastic media. Yet, to date, the working mechanisms by which metamaterials enhancing vibration attenuation in host struc-
tures has not been illuminated. Consequently, this research aims to build up an analytical framework to study the
lightweight metamaterial inclusions, originally proposed in [23,24], as the inclusions interact with a host structure.

The metamaterial inclusions considered here are cylindrical so as to conform for a host structure that is a circular hollow
tubular beam, a common component in automotive and aerospace structures as well as in mechanical equipment. The bot-
tom left image of Fig. 1(a) illustrates the concept, where an elastomeric inclusion is embedded within a greater host structure
(e.g. a long cylindrical tube). Several components to the cross-section may be identified using the general schematic at the
top of Fig. 1(a) shown by the four distinct layers. In Fig. 1(b), the annular metamaterial layer (labeled 2 in Fig. 1(a)) is the thin
outer-most component of the metamaterial that is between the host structure (labeled 1) and the porous metamaterial layer
(labeled 3). The core bulk metamaterial layer (labeled 4) at the center of the metamaterial is a mass. All together, the radially
arrayed beams are analogous to a soft elastic layer.



Fig. 1. (a) Schematic of host beam and beam with metamaterial inclusion. (b) Schematic of cross-section dimensions of metamaterial inclusion. (c) Three
different deformations in the analytical model. (d) Photograph of experimental setup.
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The porous and core bulk metamaterial layers may be similar to a TMD for metamaterial deformation that is due to trans-
verse up/down motion of the core, as schematically shown in Fig. 1(c) via the lateral translation mechanism. In addition, the
shorter wavelength bending of the host structure deforms the metamaterial inclusion in shear, Fig. 1(c). Since the radially
arrayed beams of the porous metamaterial layer are soft in comparison to the solid core, a CLD-like shear damping is antic-
ipated at mid to high frequencies of vibration. Finally, the lowest order motion of the constrained inclusions is known to be
rotation [24]. As a result, a third mode of action of the inclusion against the host structure exists via the relation rotation of
the metamaterial inclusion core with respect to the rotation of the host structure. By exploiting these multiple mechanisms
of vibration attenuation, a more versatile capability to suppress broadband frequency vibrations may be realized, while con-
currently minimizing added mass via the cellular void architecture of the inclusions and need for few inclusions if the many
attenuation mechanisms are fully harnessed.

To understand the interactions between the host tube structure and the metamaterial inclusion and to clarify the full
opportunities for broadband vibration attenuation, this study devises, validates, and then leverages an analytical model
for the vibration response of the host tube structure with metamaterial inclusions. This report undertakes and details the
following efforts in this research. The analytical model formulation is first described, wherein lateral translation, shear defor-
mation, and torsional deformation that couple the inclusions to the host via the radially arrayed beams are taken into
account. Euler-Lagrange equations are used to derive the governing equations of motion for the response when the host
structure is harmonically forced. The solution technique utilized to approximately solve the equations is the Ritz method
and trigonometric functions [25] are employed for the trial functions in the Ritz expansion [26]. To verify the analytical
model, experiments are undertaken and the data is rigorously discussed in relation to the analytical predictions. The analyt-
ical model is then leveraged to investigate the dynamic interaction mechanisms between the host structure and inclusions
that may give rise to exceptional vibration attenuation capabilities. A final section concludes this work with a consolidation
of principal discoveries.
2. Overview of host structure and metamaterial inclusions

The host structure considered in this work is a cylindrical, tubular beam shown in Fig. 1(a). The tubular beam of length L,

outer radius Rh
o , and inner radius Rh is examined with free-free boundary conditions. This host structure is composed from an

elastic material with complex Young’s modulus Eh, density qh, structural loss factor gh, mass-proportional damping coeffi-
cient ah, and stiffness-proportional damping coefficient bh. The superscript h indicates a host structure relevant parameter.
The beam is excited by a number P of lateral harmonic point forces f x; tð Þ, which are applied on the surface of the beam in the
z axis as shown in Fig. 1(a).

A numberM of metamaterials of length Lm are embedded in the host structure. For the sake of simplicity, each embedded
metamaterial is assumed to be composed from the same viscoelastic material and thus have the same properties as the other
metamaterial inclusions. The superscript m indicates a metamaterial relevant parameter: Em is Young’s modulus, mm is
Poisson’s ratio, qm is density, gm is structural loss factor, am is mass-proportional damping coefficient, and bm is stiffness-
proportional damping coefficient. The use of multiple means for damping in the analytical framework is based on
experimental results that suggest several mechanisms for energy dissipation are present. Here, the study adopts hysteretic
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damping and Rayleigh damping. The damping coefficients are identified empirically, which is the commonly adopted tech-
nique [27,28].

To account for the exact geometry of the system including the voids in the metamaterial inclusion, the host structure with
metamaterial inclusion is considered to be composed of four unique layers as shown in Fig. 1(a). In the model formulation,
the exact geometries of the cross-sections are accounted for, whereas the schematic in the top of Fig. 1(a) is for illustrative

purposes only. The layer 1 is the host structure with radius Rh < r < Rh
o . The layer 2 is the thin annular metamaterial layer,

which is a solid material of radius Rp < r < Rh. The layer 3 is the porous metamaterial layer composed of radially arrayed

beams with radius Rb < r < Rp. Finally, the layer 4 is a core bulk metamaterial layer with radius 0 < r < Rb. The annular meta-
material layer is practically required to support the radially arrayed beams. The layers 1–4 shown in Fig. 1(a) are for visu-
alization purposes only since the exact geometries are utilized in the model formulation as described in Section 3.

3. Analytical model formulation

The analytical modeling approach accounts for realistic elastic and dissipation coupling mechanisms between the host
structure and metamaterial inclusions. This Section 3 provides an overview of the model formulation. First, the deformations
of each layer are identified. Then, the kinetic and potential energies for each layer are obtained. By adopting assumed solu-
tions based on the Ritz method, the Euler-Lagrange governing equations for the coupled system are solved.

3.1. Deformations and energies

For the host beam structure layer, labeled 1 in Fig. 1(a), only translational displacement is considered since excitations to
the host beam occur perpendicular to the axis of the beam. The host structure translational displacement wh is dependent on
the x coordinate and time t, wh ¼ wh x; tð Þ. Shear and torsional deformations do not result because the host structure is long
and slender, and torsional deformation is not induced by the lateral force excitations. In a cylindrical coordinate system

r; h; xð Þ, the host structure exists from Rh < r < Rh
o , 0 < h < 2p, and 0 < x < L. Expressed in the host Cartesian coordinate sys-

tem (x, y, z), with origin at the center of the host tube, one obtains a set of deformations given by
uh
x ¼ �zwh

;x ð1aÞ

uh
y ¼ 0 ð1bÞ

uh
z ¼ wh ð1cÞ
The subscript ð Þ;x indicates a partial derivative of the function with respect to the x coordinate.
The core bulk metamaterial at the center of the inclusion is a non-slender beam. As a result, Timoshenko beam theory is

adopted to characterize the relative influences of bending and shear deformation in the core layer. In addition to the lateral
translation and shear deformation induced by bending deformation, the torsional deformation is taken into account. The
bulk metamaterial lateral displacement wb ¼ wb xm; tð Þ, shear angle wb ¼ wb xm; tð Þ in the xmz plane, torsional angle
ab ¼ ab xm; tð Þ in the yz plane are functions of the xm coordinate, whose origin is at the center of the inclusion, and time t.
The superscript b refers to the core bulk metamaterial layer. The displacements of the bulk metamaterial layer

(0 < r < Rb, 0 < h < 2p) in the metamaterial coordinate system (xm, y, z) are
ub
x ¼ �zwb ð2aÞ

ub
y ¼ �zab ð2bÞ

ub
z ¼ wb þ yab ð2cÞ
The interfacial surfaces are assumed to maintain perfect contact between adjacent layers, so that translational, shear, and
torsional deformations are continuous between adjacent layers. The deformations with the metamaterial inclusion annular
and porous layers are thus associated with the relative motions between the host structure and the core bulk metamaterial
layer. The thin annular metamaterial layer is bound by the host beam and porous metamaterial layer. There is no torsional
deformation of the host tubular beam and the annular metamaterial layer is thin, so torsional deformation is neglected in the
thin annular metamaterial layer. As a result, the displacements of the annular metamaterial layer are assumed to be func-
tions of the displacements of the core metamaterial and the host tubular beam. The annular metamaterial lateral displace-
ment wa ¼ wa xm; y; z; tð Þ and shear angle wa ¼ wa xm; y; z; tð Þ in the xmz plane are linearly distributed along the radial direction
(r-coordinate) from the host tube to the core metamaterial. The superscript a refers to the annular metamaterial layer. The

displacements of the annular metamaterial layer (Rp < r < Rh, 0 < h < 2p) in the metamaterial coordinate system (xm, y, z)
are
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ua
x ¼ �zwa ð3aÞ

ua
y ¼ 0 ð3bÞ

ua
z ¼ wa ð3cÞ
where wa ¼ r�Rb

Rh�Rb
wh þ Rh�r

Rh�Rb
wb and wa ¼ r�Rb

Rh�Rb
wh

;x þ Rh�r
Rh�Rb

wb.

The voids in the porous metamaterial layer introduce much greater macroscopic softness to the porous layer than the
stiffnesses present for the host structure, annular metamaterial layer, and bulk metamaterial layer. Consequently, in this
research the porous metamaterial layer is assumed to undergo lateral translation, shear, and torsional deformations caused
by the relative deformations between the host structure and the bulk metamaterial layer. In addition, the exact cross-section
geometry of the radially arrayed beams is accounted for to enhance the fidelity of the predicted contributions of each form of
deformation (i.e. translation, shear, torsion). Similar to the annular metamaterial layer, the porous metamaterial lateral dis-
placement wp ¼ wp xm; y; z; tð Þ, shear angle wp ¼ wp xm; y; z; tð Þ in the xmz plane, and torsional angle ap ¼ ap xm; y; z; tð Þ in the yz
plane are linearly distributed along the radial direction (r-coordinate) from the host beam to the core metamaterial. The

superscript p refers to the porous metamaterial layer. The displacements of each radially arrayed beam (Rb < r < Rp,
h1n < h < h2n, h1n ¼ aþ n� 1ð Þb, h2n ¼ nb, n ¼ 1;2; ::;N, and N is the amount of radially arrayed beams) in the metamaterial
coordinate system (xm, y, z) are
up
x ¼ �zwp ð4aÞ

up
y ¼ �zap ð4bÞ

up
z ¼ wp þ yap ð4cÞ
wherewp ¼ r�Rb

Rh�Rb
wh þ Rh�r

Rh�Rb
wb, wp ¼ r�Rb

Rh�Rb
wh

;x þ Rh�r
Rh�Rb

wb, and ap ¼ Rh�r
Rh�Rb

ab. Thewa, wa,wp, wp, and ap are determined according to

continuity of deformation from one layer to the next.
Consequently, based on the deformation profiles defined in Eqs. (1)–(4), the unique deformations in the system are the

host lateral translation wh, the bulk metamaterial lateral translation wb, the bulk metamaterial shear angle wb, and the bulk
metamaterial torsional rotation ab.

Normalization is applied in order to utilize the desired trial functions for the application of the Ritz method. The axial
coordinates of the host tube x and each metamaterial inclusion xm are normalized by
n ¼ 2x
L
; nm ¼ 2xm

Lm
ð5Þ
The relationship between the normalized coordinate of the host n and each metamaterial nm is
n ¼ nm þ Lm

Lh
nm ð6Þ
where the nm is the center of the metamaterial inclusion in the n-coordinate (normalized host coordinate).
Based on the deformations of each layer, the velocities and strains are then evaluated. The kinetic and potential energies

of each layer are subsequently determined. The length integrals of the energies are transformed using the normalized coor-

dinates Eq. (5). The kinetic energies of the host layer Th, the annular metamaterial layer Ta, the porous metamaterial layer Tp,

and the core bulk metamaterial layer Tb are respectively given in Eqs. (7a)–(7d). The subscript ð Þ;t indicates partial differen-
tiation with respect to time t and multiple subscripts indicate combined partial derivatives, e.g. ð Þ;nt ¼ @2ð Þ=@n@t.
Th ¼ qhAhL
4

Z 1

�1
wh

;t

� �2
dnþ qhIh

L

Z 1

�1
wh

;nt

� �2
dn ð7aÞ

Ta ¼ qmIa10
Lm

R 1
�1 wh

;nmt

� �2
dnm þ qmAa

30L
m

4

R 1
�1 wh

;t

� �2
dnm þ qmAa

31L
m

4

R 1
�1 wb

;t

� �2
dnm

þ qmIa12L
m

4

R 1
�1 wb

;t

� �2
dnm þ qmAa

34L
m

4

R 1
�1 w

h
;tw

b
;tdn

m þ qmIa15
2

R 1
�1 w

h
;nmtw

b
;tdn

m
ð7bÞ

Tp ¼ qmIp10
Lm

R 1
�1 wh

;nmt

� �2
dnm þ qmAp

30L
m

4

R 1
�1 wh

;t

� �2
dnm þ qmAp

31L
m

4

R 1
�1 wb

;t

� �2
dnm

þ qmIp
12
Lm

4

R 1
�1 wb

;t

� �2
dnm þ qm Ip23þIp33ð ÞLm

4

R 1
�1 ab

;t

� �2
dnm

þ qmAp
34
Lm

4

R 1
�1 w

h
;tw

b
;tdn

m þ qmIp
15

2

R 1
�1 w

h
;nmtw

b
;tdn

m þ qm Ip36þIp38ð ÞLm
4

R 1
�1 w

b
;tab

;tdn
m

ð7cÞ
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Tb ¼ qmAb
31L

m

4

Z 1

�1
wb

;t

� �2
dnm þ qmIb12L

m

4

Z 1

�1
wb

;t

� �2
dnm þ

qm Ib23 þ Ib33
� �

Lm

4

Z 1

�1
ab
;t

� �2
dnm ð7dÞ
The expressions for the undefined coefficients of each layer in Eq. (7) are given in Appendix A. The potential energies of

the host layer Uh, the annular metamaterial layer Ua, the porous metamaterial layer Up, and the core bulk metamaterial layer

Ub are respectively presented in Eqs. (8a)–(8d).
Uh ¼ 4E
�
hIh

L3

Z 1

�1
wh

;nn

� �2
dn ð8aÞ

Ua ¼ 4E
�
mIa10
Lmð Þ3

Z 1

�1
wh

;nmnm

� �2
dnm þ G

�
mka Aa

50 þ Aa
60

� �
Lm

Z 1

�1
wh

;nm

� �2
dnm

þ
E
�
mIa30 þ G

�
mkaJa40

� �
Lm

4

Z 1

�1
wh
� �2

dnm

þG
�
mkaAa

51

Lm

Z 1

�1
wb

;nm

� �2
dnm þ

E
�
mIa31 þ G

�
mkaJa41

� �
Lm

4

Z 1

�1
wb
� �2

dnm

þ E
�
mIa12
Lm

Z 1

�1
wb

;nm

� �2
dnm þ G

�
mka Aa

52 þ Aa
62

� �
Lm

4

Z 1

�1
wb
� �2

dnm

�G
�
mkaAa

54

Lm

Z 1

�1
wh

;nmw
b
;nmdn

m �
E
�
mIa34 þ G

�
mkaJa44

� �
Lm

4

Z 1

�1
whwbdnm

þ2E
�
mIa15
Lmð Þ2

Z 1

�1
wh

;nmnmw
b
;nmdn

m � G
�
mka Aa

55 þ Aa
65

� �
2

Z 1

�1
wh

;nmw
bdnm þ G

�
mkaAa

57

2

Z 1

�1
wb

;nmw
bdnm

ð8bÞ

Up¼4E
�
mIp10
Lmð Þ3

Z 1

�1
wh

;nmnm

� �2
dnmþG

�
mkp Ap

50þAp
60

� �
Lm

Z 1

�1
wh

;nm

� �2
dnm

þ
E
�
mIp30þG

�
mkpJp40

� �
Lm

4

Z 1

�1
wh
� �2

dnm

þG
�
mkpAp

51

Lm

Z 1

�1
wb

;nm

� �2
dnmþ

E
�
mIp31þG

�
mkpJp41

� �
Lm

4

Z 1

�1
wb
� �2

dnm

þE
�
mIp12
Lm

Z 1

�1
wb

;nm

� �2
dnmþG

�
mkp Ap

52þAp
62

� �
Lm

4

Z 1

�1
wb
� �2

dnm

þG
�
mkp Jp53þJp63
� �
Lm

Z 1

�1
ab
;nm

� �2
dnmþ

E
�
mAp

23þE
�
mAp

33þG
�
mkpAp

43

� �
Lm

4

Z 1

�1
ab
� �2

dnm

�G
�
mkpAp

54

Lm

Z 1

�1
wh

;nmw
b
;nmdn

m�
E
�
mJp34þG

�
mkpJp44

� �
Lm

4

Z 1

�1
whwbdnm

þ2E
�
mIp15
Lmð Þ2

Z 1

�1
wh

;nmnmw
b
;nmdn

m�G
�
mkp Ap

55þAp
65

� �
2

Z 1

�1
wh

;nmw
bdnm

�G
�
mkp Jp56�Jp66
� �
Lm

Z 1

�1
wh

;nma
b
;nmdn

m�
E
�
mJp36�G

�
mkpJp46

� �
Lm

4

Z 1

�1
whabdnm

þG
�
mkpAp

57

2

Z 1

�1
wb

;nmw
bdnmþG

�
mkpJp58
Lm

Z 1

�1
wb

;nma
b
;nmdn

m

þ
E
�
mJp38�G

�
mkpJp48

� �
Lm

4

Z 1

�1
whabdnm�G

�
mkp Jp69�Jp59
� �
2

Z 1

�1
wbab

;nmdn
m

ð8cÞ
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Ub ¼ G
�
mkbAb

51

Lm

Z 1

�1
wb

;nm

� �2
dnm þ E

�
mIb12
Lm

Z 1

�1
wb

;nm

� �2
dnm þ G

�
mkbAb

52L
m

4

Z 1

�1
wb
� �2

dnm

þ
G
�
mkb Jb53 þ Jb63
� �
Lm

Z 1

�1
ab
;nm

� �2
dnm � G

�
mkbAb

57

2

Z 1

�1
wbwb

;nmdn
m

ð8dÞ
Here, E
�h

¼ Eh 1þ jgh
� �

and E
�m

¼ Em 1þ jgmð Þ are the complex Young’s modulus of the host beam and the metamaterial,

respectively. The G
�m

¼ E
�m

= 2 1þ mmð Þ½ � is the complex shear modulus of the metamaterial. The ka ¼ 2 1þ mmð Þ= 4þ 3mmð Þ,
kp ¼ 10 1þ mmð Þ= 12þ 11mmð Þ, and kb ¼ 6 1þ mmð Þ= 7þ 6mmð Þ are the shear coefficients in Timoshenko’s beam theory for the
annular metamaterial layer, porous metamaterial layer, and the bulk metamaterial layer, respectively. The formulas of
the shear coefficients are derived by Cowper [29] in accordance with the unique cross-section geometries of each layer.

The expressions for the coefficients in Eq. (8) are provided in Appendix A. The work Wb of the applied lateral force per unit
length in the n-coordinate, f n; tð Þ, is given by
Wb ¼ L
2

Z 1

�1
whf n; tð Þdn ð9Þ
3.2. Euler-Lagrange governing equations and Ritz method solution approach

The Ritz method is employed to approximately solve the Euler-Lagrange governing equations for the system. A set of
trigonometric functions /k gð Þ created by Beslin and Nicolas [25] is employed as the trial functions in the Ritz method expan-
sion. The utility and computational efficiency of the trigonometric functions have been extensively assessed by Dozio [26].
The trigonometric functions /k gð Þ used as the trial functions in this work are
/k gð Þ ¼ sin akgþ bkð Þsin ckgþ dkð Þ ð10Þ

The coefficients ak, bk, ck, and dk are listed in Table 1. The selection of trial functions among the full trigonometric function

set are determined by the boundary conditions. The analysis of the free-free host beam lateral displacement wh and of the
free-free core bulk metamaterial inclusion lateral displacement wb retain all of the trigonometric functions of the set. The
functions /2 gð Þ and /4 gð Þ are removed from the sequences utilized to account for the shear angle wb and torsional angle
ab of the core bulk metamaterial layer based on the boundary conditions. The host lateral displacement wh, core bulk meta-
material lateral displacement wb, shear angle wb, and torsional angle ab are
wh n; tð Þ ¼ ahbf tð Þ/hb
f nð Þ

wb nm; tð Þ ¼ bmb
g tð Þ/mb

g nmð Þ
wb nm; tð Þ ¼ cms

h tð Þ/ms
h nmð Þ

ab nm; tð Þ ¼ dmt
i tð Þ/mt

i nmð Þ

ð11a-dÞ
where ahb
f , bmb

g , cms
h , and dmt

i are unknown generalized coordinates [30] to be determined, and /hb
f , /mb

g , /ms
h , and /mt

i are trial

functions defined according to Eq. (10), where g is replaced by n or nm, and k is replaced by f , g, h, or i. The superscripts hb,
mb, ms, and mt refer to the following. The hb refers to host lateral displacement induced by bending, mb refers to metama-
terial lateral displacement induced by bending, ms refers to metamaterial shear displacement induced by bending, and mt
refers to metamaterial torsional displacement.

The Lagrangian functional of the coupled system is
L ¼ Th þ Ta þ Tp þ Tb � Uh þ Ua þ Up þ Ub
� �

þWb ð12Þ
The Euler-Lagrange governing equations for the system are
ents of trigonometric functions set.

ak bk ck dk

p=4 3p=4 p=4 3p=4
p=4 3p=4 �p=2 �3p=2
p=4 �3p=4 p=4 �3p=4
p=4 �3p=4 p=2 �3p=2
p k� 4ð Þ=2 p k� 4ð Þ=2 p=2 p=2
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d
dt

@L

@ _ahbf

 !
� @L
@ahbf

¼ 0 ð13aÞ
d
dt

@L

@ _b
mb

g

0
@

1
A� @L

@bmb
g

¼ 0 ð13bÞ
d
dt
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h

0
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1
A� @L

@cms
h

¼ 0 ð13cÞ
d
dt

@L

@ _d
mt

i

 !
� @L

@dmt
i

¼ 0 ð13dÞ
The time-dependent governing equations assume steady-state time-harmonic responses. As a result, the unknown gen-
eralized coordinates and the lateral force applied on the host structure exhibit time dependence of the form
ahbf ¼ Ahb
f ejxt; bmb

g ¼ Bmb
g ejxt ; cms

h ¼ Cms
h ejxt; dmt

i ¼ Dmt
i ejxt ; f ¼ Fhb

f ejxt ð14a-eÞ

Substituting Eq. (14) into Eq. (13), the governing equations in the matrix form is
�x2 M½ � þ jx C½ � þ K½ �� �
qf g ¼ Ff g ð15Þ
where the mass matrix M½ �, stiffness matrix K½ �, unknown constants qf g, and forcing vector Ff g are Eq. (16)–(19),
respectively.
M½ � ¼

Mhbhb
fp Mhb1b

fq Mhb1s
fr Mhb1t

fs � � � Mhbmb
fq Mhbms

fr Mhbmt
fs

M1b1b
gq M1b1s

gr M1b1t
gs 0 0 0 0

M1s1s
hr M1s1t

hs
..
. ..

. ..
. ..

.

M1t1t
is 0 ..

. ..
. ..

.

. .
.

0 0 0
Mmbmb

gq Mmbms
gr Mmbmt

gs

sym Mmsms
hr Mmsmt

hs

Mmtmt
is

2
6666666666666666664

3
7777777777777777775

ð16Þ
K½ � ¼

Khbhb
fp Khb1b

fq Khb1s
fr Khb1t

fs � � � Khbmb
fq Khbms

fr Khbmt
fs

K1b1b
gq K1b1s

gr K1b1t
gs 0 0 0 0

K1s1s
hr K1s1t

hs
..
. ..

. ..
. ..

.

K1t1t
is 0 ..

. ..
. ..

.

. .
.

0 0 0
Kmbmb

gq Kmbms
gr Kmbmt

gs

sym Kmsms
hr Kmsmt

hs

Kmtmt
is

2
6666666666666666664

3
7777777777777777775

ð17Þ
qf g ¼ Ahb
f B1b

g C1s
h D1t

i � � � Bmb
g Cms

h Dmt
i

n oT ð18Þ
Ff g ¼ Fhb
f 0 0 0 � � � 0 0 0

n oT ð19Þ
The components of the damping matrix are C½ � ¼ amRe M½ � þ bmRe K½ �, whereas the damping of the host tubular beam is

Chbhb
fp ¼ ahMhbhb

fp þ bhKhbhb
fp . Thus, for the inclusions both viscous and structural damping mechanisms are accounted for

[31]. The detailed components of the mass matrix M½ �, stiffness matrix K½ �, and force vector Ff g are listed in Appendix A. Solu-



Fig. 2. Photograph of experimental setup.
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tion to the components of unknown constants qf g is obtained by Gauss elimination applied to Eq. (15). Then, substituting the
unknown constants into Eq. (11), the lateral translation of the host, lateral translations, metamaterial shear angles, and
metamaterial torsional angles of the inclusions are subsequently obtained.

4. Experimental setup

The experimental system is composed of a 0.91 m long hollow, circular cross-section aluminum tubular beam with

embedded metamaterial inclusions, shown in Fig. 2. The inner radius Rh and outer radius Rh
o of the hollow, host beam are

8.28 mm and 9.53 mm, respectively. To constrain the metamaterial inclusion in the hollow beam, the outer radius of the
inclusion (8.61 mm) is set to be 1.04 times the inner radius of the host tube. Two inclusions are fabricated for any given
set of inclusion design parameters, so that one inclusion is placed at a given end of the host tube structure. The thickness

of the annular metamaterial layer is 1.5 mm, i.e. Rh � Rp. This thickness dimension is selected to prevent warping of the
annular metamaterial layer that is observed for inclusion specimens fabricated with much thinner annular layer thicknesses
such as for annular layers only 0.5 mm thick. The inclusions adopted in this research have seven radially arrayed beams, i.e.
N = 7, in the porous metamaterial layer. Based on the model composition presented in Section 3, inclusions with a different
number of radially arrayed beams may also be studied. The metamaterial inclusions are made from silicone rubber (Smooth
On Mold Star 15S) cast in 3D printed molds. A photo of the host beam with inclusions is shown in Fig. 2. The values of the
normalized length of inclusions, the ratio of bulk to host radii, and the open angle ratio investigated in this report are
selected according to fabrication capabilities and experiment feasibility. For example, the minimum thickness of the radially
arrayed beams able to be fabricated by the casting method here is 0.3 mm. As a result, the minimum normalized radius of the

core bulk metamaterial inclusion Rb=Rh is 0.12 when the open angle ratio a=b is 0.61. Furthermore, to avoid difficulty of
repeatedly placing the inclusions into the circular hollow beam, the normalized radius of the bulk metamaterial inclusion

Rb=Rh is set to be 0.22 when the normalized length of inclusion Lm=Rh is 6.04. This means that the longest inclusion consid-
ered is approximately 50 mm in comparison to the host beam length of 910 mm.

To simulate the free-free boundary condition, the host tubular beam is placed on two triangular foam supports that are
randomly positioned to avoid suppressing particular modes of vibration. The foam stiffness when subjected to transverse
compression is much less than the stiffnesses present in the system, and the contact areas between the foam and the host
beam are small. As a result, the influences of the foam supports on the measured system responses are justifiably negligible
[30].

The modal hammer experiments are conducted on the circular tube with or without metamaterial inclusions. The ham-
mer (PCB 086C01) impacts at six locations, and accelerometers (PCB 352A24) read out acceleration data at four locations. The
six impact locations and the four measurement locations are respectively represented by the filled triangle marks and
unfilled circular marks in Fig. 2. Each experiment involves a total of 180 hits to generate the transfer function (TF) between
output global acceleration and input force.

5. Experimental and analytical results and discussions

To validate the analytical model and investigate the influences of geometric parameters for vibration attenuation, a wide
variety of metamaterial specimens are considered. By evaluating the respective influences of unique parameter changes on
inclusion geometry, the following sub-sections reveal new knowledge on the exact interaction mechanisms between the
constrained metamaterial inclusions and the host beam structure.

5.1. Analytical model solution details and assessment strategies

Based on the approach devised in Section 3, twenty trial functions are used in the Ritz expansion of the lateral displace-
ment of the free-free host beam. For the free-free core bulk metamaterial inclusion, the lateral displacement, shear angle, and
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torsional angle are expanded in the Ritz method assumed solutions using ten, eight, and eight trial functions, respectively.
These numbers of trial functions are selected based on a convergence study that identified no significant change in analytical
model predictions for greater number of trial functions in the frequency range of interest: 100–10,000 Hz. In the analytical
model, to characterize the global vibration response of the host structure and inclusions the applied, lateral point forces to
the beam are given at 201 randomly selected positions. The final force vector is the sum of all force vectors of the 201 ran-
dom positions. This approach is found, through model studies, to yield a global vibration response of the system. Although
the experiment is unable to yield as ideal global vibration response, the comparisons between analysis and experiment that
follow in subsequent sub-sections suggests that the experiment mostly approaches the trends of a global response.

In this study, the validations are taken by comparison of the TF reduction and frequency reduction between experiment
and analysis. The analytical TF between acceleration at the beam locations and the impact forces is obtained. The global TFs
presented in narrowband studies are determined by the square root of the sum of squares of the TFs computed for each com-
bination of acceleration evaluation and impact force location. The TF reductions are determined from the narrowband TFs in
decibels of the host beam without inclusions subtracted from the TFs in decibels evaluated when the host beam has inclu-
sions. To investigate the TF reductions for each mode, the frequency ranges for the six lowest order modes, over which the
cumulative TF reductions are computed, are 85–180 Hz, 250–500 Hz, 500–890 Hz, 890–1450 Hz, 1450–2100 Hz, and 2100–
2850 Hz. These ranges sufficiently encompass the six lowest order modes. Similarly, the resonant frequency reductions are
found by tracking the peak amplitude of the narrowband TF in these frequency ranges as it shifts for the case of the host
beam with inclusions compared to the case of the host beam without inclusions. Table 2 provides all of the relevant material
Table 2
Material properties of host structure and metamaterial inclusions.

Young’s modulus
[Pa]

Poisson’s
ratio

density [kg/
m3]

structural loss
factor

mass-proportional damping
coefficient

stiffness-proportional damping
coefficient

Beam 68.9 � 109 0.33 2700 0.0015 1 � 10�9 1 � 10�9

Inclusions 752 � 103 0.49 1145 0.02 5 � 10�5 9 � 10�5

Fig. 3. (a) Experimental TF frequency responses, (b) analytical TF frequency responses, (c) experimental TF reductions, (d) analytical TF reductions, (e)
experimental frequency reductions, and (f) analytical frequency reductions for four lengths of inclusions, Lm=Rh = 0.78, 1.54, 4.22, and 6.04. The radius ratio
Rb=Rh is 0.22 while the open angle ratio a=b is 0.61.



Fig. 4. (a) Experimental TF frequency responses, (b) analytical TF frequency responses, (c) experimental TF reduction, (d) analytical TF reduction, (e)
experimental frequency reduction, and (f) analytical frequency reduction for four radii of core bulk metamaterial inclusions, Rb=Rh = 0.12, 0.22, 0.45, and
0.73, and for the solid inclusions. For the metamaterial inclusions, the length ratio Lm=Rh is 4.22 while the open angle ratio a=b is 0.61.
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properties used in all analytical computations. The parameters are identified empirically from the experimental system. The
remaining parameters used in the model to characterize unique inclusion designs are described in the respective sub-
sections that follow.
5.2. Influences on length of metamaterial

The experimental and analytical frequency responses of the TFs are shown in Fig. 3 for four values of normalized lengths

of inclusions, Lm=Rh = 0.77, 1.54, 4.22, and 6.04. For the metamaterials considered in Fig. 3, the ratio of bulk to host radii Rb=Rh

is 0.22 while the open angle ratio a=b is 0.61.
In the results of Fig. 3 as well as for Figs. 4 and 5, there are a few minor discrepancies between the experiments and ana-

lytical predictions worth noting. For the six lowest order modes, the deviations between the experimental and analytical res-
onant frequencies of the bare beam are less than 5%. These discrepancies may be due to small imperfection in the knowledge
of the host beammaterial properties. Also, the experimental TF of the bare beam does not reveal as great of amplitude at low
and high frequencies as that in the model. This is caused by the modal impact hammer experimental technique that is chal-
lenged to induce wide-band frequency energy, which is due to the selection of an impact hammer tip that is necessarily best
suited to inject energy within a finite range of frequencies. Despite these discrepancies, the observed influences in analysis
and experiments of inserting the inclusions are found through Figs. 3–5 to be in relatively good agreement as discussed in
this and the following sub-sections of Section 5. As such, the minor discrepancies between experiment and analysis
described in this paragraph are concluded to be of negligible significance towards formulating conclusions regarding the
interaction mechanisms observed between the inclusions and host.

While the narrowband experimental data, Fig. 3(a), and analytical predictions, Fig. 3(b), are in good overall agreement, the
more synthesized results of Fig. 3(c)–(f) are of primary interest towards understanding the influences of change in the inclu-
sion length. Specifically, Fig. 3(c) and (d) respectively present the experimental and analytical TF reductions of the lowest six
modes for different length of inclusions. In general, the TF reduction increases for increase in the length of the inclusions.
This result is intuitive on the basis of added mass increase with increase in inclusion length, so that the added mass or ballast
helps to suppress the host beam vibration.



Fig. 5. (a) Experimental TF frequency responses, (b) analytical TF frequency responses, (c) experimental TF reduction, (d) analytical TF reduction, (e)
experimental frequency reduction, and (f) analytical frequency reduction of the host beam with inclusions with four different open angle ratios of the
radially arrayed beams, a=b = 0.25, 0.41, 0.61, and 0.80, and for the solid inclusions. The length ratio Lm=Rh is 4.22 while the radius ratio Rb=Rh is 0.45.
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Fig. 3(e) and (f) present the experimental and analytical frequency reductions of the lowest six modes for different length
of inclusions, respectively. The frequency shift for each mode increases for increase in the length of the inclusions. The three
lowest order modes have greater frequency reduction than the fourth, fifth, and sixth modes in both experimental and ana-
lytical results. The unique modal dependence of the frequency shifts will be more fully assessed in Section 5.7. Overall, the
experiment and analysis exemplify strong agreement on the roles of changing inclusion length on the system dynamic
response.
5.3. Influences on radius of core bulk metamaterial

Fig. 4(a) and (b) respectively present the experimental and analytical TF frequency responses for four values of the nor-

malized radii of core bulk metamaterial inclusions, Rb=Rh = 0.12, 0.22, 0.45, and 0.73, and for the solid inclusions. In the
experiments, the solid inclusions are solid cylinders of the bulk silicone rubber material that are inserted and held in the
hollow tube using a small compression fit. In the analysis, the solid inclusions are realized by the special case of

Rb=Rh ¼ 0:01 and a=b ¼ 0:01. For the metamaterials considered in Fig. 4, the normalized length Lm=Rh is 4.22 and the open
angle ratio a=b is 0.61. The experimental and analytical TF reductions of the lowest six order modes for different radius of
core bulk metamaterials and solid inclusions are shown in Fig. 4(c) and (d), respectively. When the core radius of the inclu-
sion increases, the inclusion core is more massive. For the same increase in core radius, when the open angle ratio a=b is
constant, the radially arrayed beams in the porous metamaterial layer are shorter so as to increase the bending and shear
stiffnesses induced for radially arrayed beam deformation. For modes 1, 2, 4 and 6, the TF reductions increase for greater
radius of the inclusion cores, a trend seen in both experiments and analysis of Fig. 4(c) and (d). In contrast, there is less influ-
ence on the TF reduction for the third mode.

Modifications to the core radius may tailor all of the interaction mechanisms engaged by translational, shear, and tor-
sional deformations between the core and host structure. The results suggest that the inclusion considered in Fig. 4 with

the largest core size Rb=Rh = 0.73 has a more substantial capability to reduce the TF amplitudes of the six lowest order modes.

Excepting for the result for the third mode, the inclusion with Rb=Rh = 0.73 delivers greater vibration attenuation of the six



S.-L. Yeh, R.L. Harne /Mechanical Systems and Signal Processing 117 (2019) 609–633 621
lowest order modes than the solid inclusions. Indeed, there is a particularly wide frequency bandwidth of vibration atten-
uation from 891 to 1415 Hz, i.e. around the fourth resonant frequency, in both experimental and analytical TF frequency

responses when Rb=Rh = 0.73 in Fig. 4(a) and (b). Considering the trends observed for change in the inclusion core radius,
an analogy to CLD is possible. In other words, the core bulk metamaterial layer, thin porous metamaterial layer of radially
arrayed beam, and the host beam structure may be analogous to the constrained layer, viscoelastic layer, and the host struc-

ture sought to be damped, respectively. As a result, it may be concluded that the inclusions with Rb=Rh = 0.73 have greater
reductions for each mode due to CLD-like effects. This is because that, like traditional CLD concepts [32], the greater core
diameter and shorter radially arrayed beams exert higher shear and bending stresses in the radially arrayed beams (porous
metamaterial layer) for broadband energy dissipation.

Fig. 4(e) and (f) present the corresponding experimental and analytical frequency reductions for the six lowest order
modes. For the lowest three modes, both experiment and analysis agree that the frequency reduction increases when the
core radius increases. This trend is likely due to the corresponding mass increase provided by the inclusions with greater
core radii. Except for the fourth modes, the solid inclusions have greater frequency reductions for each mode due to mass

increase in both experimental and analytical results. For the fourth mode, the inclusion with Rb=Rh = 0.73 has the greatest
frequency reduction. There is respectively little change in the resonant frequencies of the fifth and sixth modes, a trend seen
experimentally and analytically. All together, these unique interaction mechanisms that tailor the TF amplitudes and reso-
nant frequencies are characterized by the analysis and likewise observed in the experimental data trends.

5.4. Influences on open angle ratio a=b

Fig. 5(a) and (b) respectively present the experimental and analytical TF frequency responses for four values of the open
angle ratio of the radially arrayed beams, a=b = 0.25, 0.41, 0.61, and 0.80, and for the solid inclusions. For the metamaterials

considered in Fig. 5, the normalized length Lm=Rh is 4.22 and the normalized radius of the core bulk metamaterial inclusion

Rb=Rh is 0.45. The experimental and analytical TF reductions for four open angle ratios and the solid inclusions of the lowest
six modes are shown in Fig. 5(c) and (d). For an increase in the open angle ratio a=b, the radially arrayed beams in the porous
metamaterial layer become less massive and more slender. It is thus assumed that such influence of increasing open angle
ratio provides an increasingly softer and lighter interface between the metamaterial inclusion core and the host structure. As
seen in Fig. 5(c) and (d), when the open angle ratio increases, the TF reduction slightly decreases except for the second and
third modes. Correspondingly, when the open angle ratio increases, the mass of the inclusion decreases while the dynamic
stiffness of the porous metamaterial layer is also decreased since the radially arrayed beams become more slender.

Fig. 5(e) and (f) shows the experimental and analytical frequency reductions of the lowest six modes. Except for the fourth
mode in the experimental result, the solid inclusions have the greatest frequency reduction due to mass increase. Overall, for
the lowest three modes, the trend is that the frequency reduction slightly decreases when the open angle ratio increases,
potentially explained by the decreasing metamaterial inclusion mass for greater open angle ratios.

5.5. Existence of TMD vibration attenuation phenomena

In Figs. 3(a), 4(a), and 5(a), large vibration attenuation is observed at frequencies around the third or fourth mode of the
host structure, i.e. in the frequency range from around 700 to 1500 Hz. This is borne out experimentally and analytically and
seen for many of the metamaterial inclusions examined in this research. For instance, one may observe large vibration sup-

pression around the third and fourth modes when the inclusions are designed using normalized radii Rb=Rh = 0.45 and Rb=Rh
Fig. 6. Analytical TF frequency responses of host beam with the inclusions with three set of damping values, including damping A: gm ¼ 0:02,
am ¼ 5� 10�5, bm ¼ 9� 10�5; damping B: gm ¼ 0:02, am ¼ 1� 10�7, bm ¼ 2� 10�7; and damping C: gm ¼ 0:002, am ¼ 1� 10�9, bm ¼ 2� 10�9. The length
Lm=Rh is 4.22, the radius ratio Rb=Rh is 0.73, and the open angle ratio a=b is 0.61.
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= 0.73 as shown in Fig. 4(a), or when the inclusions are created with open angle ratio a=b = 0.25, 0.41, and 0.61, as shown in
Fig. 5(a).

To examine the origins of such unique mode dependent vibration attenuation, the analytical model is further leveraged.
Fig. 6 presents the analytical TF frequency responses for cases of inclusions having three damping models realized by distinct
contributions from the structural loss factor gm, mass-proportional damping coefficient am, and stiffness-proportional damp-
ing coefficient bm. The parameter combinations examined are damping A: gm ¼ 0:02, am ¼ 5� 10�5, bm ¼ 9� 10�5; damping
B: gm ¼ 0:02, am ¼ 1� 10�7, bm ¼ 2� 10�7; and damping C: gm ¼ 0:002, am ¼ 1� 10�9, bm ¼ 2� 10�9. For the metamaterials

considered in Fig. 6, the normalized length Lm=Rh is 4.22, the normalized radius Rb=Rh is 0.73, and the open angle ratio a=b is
0.61. The resonant frequency of the fourth mode is observed at 1078 Hz when for the case of damping A with gm ¼ 0:02,
am ¼ 5� 10�5, bm ¼ 9� 10�5 shown by the green solid curve in Fig. 6. When the damping in the inclusions slightly decreases
to damping B with gm ¼ 0:02, am ¼ 1� 10�7, bm ¼ 2� 10�7 shown by the blue dash-dot curve in Fig. 6, a narrowband atten-
uation of the TF is observed at 1010 Hz, around the third and fourth modes. With a further decrease in damping in the inclu-
sions to damping C with gm ¼ 0:002, am ¼ 1� 10�9, bm ¼ 2� 10�9 shown by the cyan dashed curve in Fig. 6, a local minima
of TF, termed a ‘‘notch”, at 1010 Hz becomes more apparent and results in two large resonances at adjacent frequencies, in a
manner similar to TMD influences upon a host structure. In addition, a second and notable reduction of the TF becomes more
prominent around 1223 Hz, i.e. around the fourth mode. Based on the understanding that such notches are eliminated by an
increase in damping, it is concluded that these narrowband attenuation zones are evidence of TMD-like behaviors provided
by the metamaterial inclusions. Pai et al. [1,3] also found that increase in damping decreased such more dramatic, narrow-
band frequency response function attenuation.

To explore the mechanisms by which the metamaterial inclusions exert forces on the host beam to attenuate the vibra-
tion, Fig. 7 shows the analytical predictions of displacements along the host beam and metamaterial lengths. Fig. 7(a) pre-
sents the translational displacements for the host structure with and without metamaterial inclusions at 1223 Hz where the

parameters are taken from the study of Fig. 6: Lm=Rh = 4.22, Rb=Rh = 0.73, a=b = 0.61, and the damping C model for the inclu-
sions with gm ¼ 0:002, am ¼ 1� 10�9, and bm ¼ 2� 10�9. The frequency from Fig. 6 for which the spatial plots in Fig. 7 are
generated is 1223 Hz, which is highlighted by the circle marker in Fig. 6. Fig. 7(a) shows that the bare beam exhibits large
lateral vibration that is greatly suppressed by the inclusions. To investigate the TMD-like behavior at 1223 Hz, the bending,
shear, and torsional displacements of the inclusions are computed. Here, bending and torsional displacements are the dis-
placement in the z axis induced by bending deformation and torsion of the inclusion, respectively. Shear displacement is
defined by the displacement in the x axis in the xz plane induced by the shear angle of the inclusion. For the fourth mode
TF notch, the bending, shear, and torsional displacements of the inclusions placed at the left and right ends of the host struc-
Fig. 7. (a) Analytical spatial translational displacements of host structure with and without metamaterial inclusions with Lm=Rh = 4.22, Rb=Rh = 0.73, a=b =
0.61, gm ¼ 0:002, am ¼ 1� 10�9, and bm ¼ 2� 10�9 at 1223 Hz. (b) Displacement responses of left metamaterial. (c) Displacement responses of right
metamaterial.
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ture are shown in Fig. 7(b) and (c), respectively. The inclusions have greater translational (i.e. bending) deformation than
shear and torsional deformations. In other words, the inclusions deliver an anti-phase lateral force to attenuate the motion
of the host structure. It can be concluded that the TMD behavior at 1223 Hz is induced by bending deformations of the inclu-
sions, encouraging a term ‘‘bending TMD behavior”.

The inclusion deformations are shown at 1010 Hz, i.e. around the third and fourth modes of the host beam, in Fig. 8 for the
case of inclusion damping model C using gm ¼ 0:002, am ¼ 1� 10�9, and bm ¼ 2� 10�9. This frequency is highlighted in Fig. 6
by the square marker. In Fig. 8, it is seen that the inclusions undergo greater shear deformations in comparison to the trans-
lational and torsional deformations. In other words, for the TMD behavior around the third and fourth modes, the cross-
sections of the inclusions rotate in the y-axis, in a way to rock back-and-forth to attenuate the beam vibration. It can be con-
cluded that the TMD behavior at 1010 Hz is induced by shear deformations of the inclusions, encouraging the term a ‘‘shear
TMD behavior”.

The bending and shear deformations are analogous to two degrees-of-freedom. As a result, the metamaterial inclusions
studied in this research may be conceptualized as two-degree-of-freedom TMDs according to the distinct ways by which
they interact with the host structure. In other words, one metamaterial inclusion achieves a combination of influences com-
parable to a two-degree-of-freedom TMD. Consequently, this study reveals that multiple interactions mechanisms of the
metamaterial inclusions may enhance the versatility of vibration attenuation using fewer attached treatments.

5.6. Adaptation of shear TMD vibration attenuation phenomena

The results of Section 5.5 indicate that the metamaterials exhibit multiple TMD-like mechanisms by which to control the
host beam vibration. To uncover strategies to tailor the working frequency range for the shear TMD phenomena, Fig. 9(a)
presents the analytical TF frequency response of the host beamwith the metamaterial inclusions for three values of the open
angle ratio of the radially arrayed beams, a=b = 0.25, 0.50, and 0.75. For the metamaterials considered in Fig. 9(a), the nor-

malized length Lm=Rh is 4.22, the normalized radius of the core bulk metamaterial inclusion Rb=Rh is 0.50, and the inclusion
damping coefficients are gm ¼ 0:02, am ¼ 1� 10�7, and bm ¼ 2� 10�7. Additional parameters used in the analysis for the
results of Fig. 9 are reported in Table 2.

In Fig. 9(a), one observes a first notch, around the third and fourth modes, at 912 Hz for a=b = 0.25. As the open angle ratio
is varied to a=b = 0.50 the notch shifts downwards to 907 Hz and still further downwards to 876 Hz for a=b = 0.75. Assessing
the influences on the inclusion geometry with the parameter chance, for increase in the open angle ratio a=b the total inclu-
sion mass reduces while the overall dynamic stiffness of the porous metamaterial layer decreases. Stiffness reduction (with-
out mass change) reduces the frequency of a TMD behavior, whereas mass reduction (without stiffness change) increases the
frequency of a TMD behavior. Based on the trends of decreasing notch frequency by increasing the open angle ratio a=b, it is
apparent that the most influential aspect of tailoring the open angle ratio of the inclusions is to change the dynamic stiffness
of the overall porous layer and thus result in a decrease of the notch frequency.

Fig. 9(b) presents the analytical TF frequency responses of the host beam with the metamaterial inclusions when the nor-

malized radius of the core bulk metamaterial inclusion is either Rb=Rh = 0.25, 0.50, or 0.75. For the metamaterials considered

in Fig. 9(b), the normalized length Lm=Rh is 4.22, the open angle ratio of the radially arrayed beams a=b is 0.25, and the inclu-
sion damping coefficients are gm ¼ 0:02, am ¼ 1� 10�7, and bm ¼ 2� 10�7. In Fig. 9(b), one observes how change of the nor-
malized radius of the central core layer of the metamaterial inclusion tailors the significance of the TMD behaviors. For
Fig. 8. (a) Analytical displacement responses of left metamaterial. (b) Displacement responses of right metamaterial. Results at frequency 1010 Hz.
Parameters used are Lm=Rh = 4.22, Rb=Rh = 0.73, a=b = 0.61, gm ¼ 0:002, am ¼ 1� 10�9, and bm ¼ 2� 10�9.



Fig. 9. (a) Analytical TF frequency responses of host beam with the inclusions with three values for open angle ratio, a=b= 0.25, 0.50, and 0.75. The length
Lm=Rh is 4.22, and the radius ratio Rb=Rh is 0.50. (b) Analytical TF frequency responses of host beam with the inclusions with three values for radius ratio
Rb=Rh is 0.25, 0.50, and 0.75. The length Lm=Rh is 4.22, and the open angle ratio a=b is 0.25.
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instance, a first notch occurs around the third and fourth modes at 902 Hz for Rb=Rh = 0.25, then shifts upwards to 912 Hz for

Rb=Rh = 0.50, and shifts further to higher frequencies around 1027 Hz for Rb=Rh = 0.75. The increase in the normalized radius

Rb=Rh of the core layer of the metamaterial inclusion results in an increase in the dynamic mass yet also reduces the length of
the radially arrayed beams without changing the beam thickness. The latter influence thus increases the overall dynamic
stiffness of the porous metamaterial layer. The results of Fig. 9(b) suggest that the increase in the normalized radius

Rb=Rh leads to an increase in the notch frequency. Consequently, the change of the normalized radius Rb=Rh, all other meta-
material inclusion parameters remaining the same, is more influential to change the overall stiffness of the inclusions than to
change the dynamic mass.

Generally, shear deformation is more influential for thick beams than for slender beams. When the open angle ratio a=b
reduces, the radially arrayed beams become thicker (i.e. reduced slenderness) so as to increase the amplitude of shear dis-

placement. When the normalized radius Rb=Rh increases, the radially arrayed beams also become less slender. These param-

eter changes using a=b and Rb=Rh help to govern the activation of the shear TMD effect.

5.7. Adaptation of bending TMD vibration attenuation phenomena

As shown through the results of Fig. 7, at frequencies around fourth mode of the host structure the primary deformation
of the inclusions is lateral translation associated with relative displacement between the bulk metamaterial layer and host
structure. Small changes in such bending TMD effect are observed through the shifting of the notch in Fig. 9(a) and (b)

according to change in the parameters of open angle ratio a=b and the radius ratio Rb=Rh. Yet, change in other design param-
eters may be more influential to tailor the dynamics associated with the bending TMD behavior.

To investigate the parameter that may greatly influence the existence of such bending TMD effects, Fig. 10 presents the
analytical TF frequency responses of the host beam with the metamaterial inclusions for three values of Young’s modulus,
Fig. 10. Analytical TF frequency responses of host beam with the inclusions with three values for Young’s modulus, Em= 150 MPa, 752 MPa, and 3760 MPa.
The length Lm=Rh is 4.22, the radius ratio Rb=Rh is 0.22, and the open angle ratio a=b is 0.61.
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Em = 150 MPa, 752 MPa, and 3760 MPa. For the metamaterials considered in Fig. 10, the normalized length Lm=Rh is 4.22, the

normalized radius of the core bulk metamaterial inclusion Rb=Rh is 0.22, the open angle ratio of the radially arrayed beams
a=b is 0.61, and the inclusion damping coefficients are from the damping model B using gm ¼ 0:02, am ¼ 1� 10�7, and
bm ¼ 2� 10�7.

As seen in Fig. 10, for an increase of the Young’s modulus of the inclusions, the resonant frequency at which the bending
TMD behavior occurs increases. In Figs. 3(e), 4(e), and 5(e), the frequency shifts for the fourth, fifth, and sixth modes are seen
to be less than the frequency shifts induced for the three lowest order modes. For the metamaterials considered in Figs. 3–5,
the bending TMD effects all occur at the frequencies around the third and the fourth modes since the Young’s modulus values
are the same for all of the results presented in Figs. 3–5. Consequently, it is apparent that the smaller frequency shifts of the
higher modes are associated with frequencies greater than the bending TMD behavior. In Fig. 10, for the metamaterial inclu-
sions with Young’s modulus Em = 150 MPa, the resonant frequency of the bending TMD is at the frequency around the second
and third mode, in the frequency range around 400–600 Hz. For this selection of the Young’s modulus, the modal frequency
shifts are less from the third mode and above, than for the first and second modes. For the case of the metamaterial inclu-
sions with Young’s modulus Em = 3760 MPa in Fig. 10, the resonant frequency of bending TMD is around the fifth and sixth
modes, in the frequency range from around 1900 to 3000 Hz. Consequently, the reduced shifts of the modal resonant fre-
quencies are apparent for modes greater than the sixth mode. These results reveal that the significance of the resonant fre-
quency shifts is associated with the frequencies around which the bending TMD behaviors occur. At frequencies greater than
this range, the resonant frequency shifts are significantly reduced.

6. Conclusions

This research establishes and experimentally validates an analytical modeling framework to elucidate the working mech-
anisms of broadband vibration attenuation realized by elastomeric metamaterial inclusions within host cylindrical struc-
tures. Leveraging the analysis reveals a wealth of non-intuitive insight on the specific ways by which the elastomeric
inclusions couple with the host structure. For instance, change in open angle ratio of the inclusion cross-section geometry
and change in the central core mass diameter are primarily stiffness-tuning mechanisms although one may anticipate that
the more visually apparent mass changes may be more influential. While the open angle ratio and radius ratio parameters
are seen to slightly influence frequency range and depth of the notch-like vibration attenuation features, only change of the
radius ratio influences bending TMD effects at higher frequencies. In addition, the Young’s modulus of the metamaterial
inclusions is another means by which to dramatically shift the frequencies at which the bending TMD phenomena occur.
Overall, this work uncovers the specific existence and adaptation mechanisms of two distinct TMD behaviors manifest by
the single metamaterial inclusion design, paving the way for future designs of broadband vibration mitigation material
systems.
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A.1. Constants of area and area moment inertia
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