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a b s t r a c t

Systems characterized by the governing equation of the bistable, double-well Duffing oscillator are ever-
present throughout the fields of science and engineering. While the prediction of the transient dynamics
of these strongly nonlinear oscillators has been a particular research interest, the sufficiently accurate
reconstruction of the dissipative behaviors continues to be an unrealized goal. In this study, an enhanced
averaging method using Jacobian elliptic functions is presented to faithfully predict the transient, dis-
sipative dynamics of a bistable Duffing oscillator. The analytical approach is uniquely applied to recon-
struct the intrawell and interwell dynamic regimes. By relaxing the requirement for small variation of the
transient, averaged parameters in the proposed solution formulation, the resulting analytical predictions
are in excellent agreement with exact trajectories of displacement and velocity determined via numerical
integration of the governing equation. A wide range of system parameters and initial conditions are
utilized to assess the accuracy and computational efficiency of the analytical method, and the consistent
agreement between numerical and analytical results verifies the robustness of the proposed method.
Although the analytical formulations are distinct for the two dynamic regimes, it is found that directly
splicing the inter- and intrawell predictions facilitates good agreement with the exact dynamics of the
full reconstructed, transient trajectory.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The governing equation of the bistable, double-well Duffing
oscillator has been widely used to evaluate a large variety of non-
linear systems including slender aerostructures that may buckle
under loads [1], microelectromechanical switches [2], vibration-
based energy harvesters [3,4], electrical circuits [5], and optical
systems [6]. Recent developments in smart/adaptive structures have
particularly focused on bistable/buckled platforms for performance
and functionality enhancements [7], while commercial attention is
even lately recognizing the potential for bistability to provide
favorable new potentials [8]. The characteristic and strongly non-
linear dynamics of well escape, stochastic resonance, and chaos are
uniquely captured by the governing equation of the archetype bis-
table Duffing oscillator. Together, these features illustrate the broad
applicability of the oscillator model in terms of disciplinary rele-
vance as well as for rich, dynamical studies.
Historically, the transient dynamics of bistable oscillators have
been of great interest, for example as relate to excitations that are
impulsive in nature such as blast loading [9], plastic impact [10], and
thermal shocks [11], which could induce a critical well escape event
or multiple of the "snap-through" behaviors. Based upon the wide
applicability of the governing equation of the bistable Duffing
oscillator, there is great merit to develop an accurate prediction
strategy for the transient, dissipative dynamics of bistable systems.

Using structural terminologies in the study hereafter (e.g.,
displacement, mass, etc.), the governing equation of the double-
well Duffing oscillator and initial conditions examined in this
research are expressed using

m€xþd_x�k1xþk3x3 ¼ 0; x tð Þjt ¼ 0 ¼ x0; _x tð Þjt ¼ 0 ¼ _x0 ð1Þ
where m is mass, d is damping constant, ki i¼ 1;3ð Þ are stiffness
constants. Note that while the above expressions and the proposed
approach are applicable for all sets of initial conditions x0; _x0ð Þ, for
the purpose of illustration it is assumed that the oscillator is ori-
ginally at rest in a statically stable equilibrium with finite initial
velocity _x tð Þjt ¼ 0 ¼ _x0 throughout this paper. This can be viewed as
an example with the system at static equilibrium for to0, and
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Fig. 1. (a) Schematic of the bistable, double-well Duffing oscillator illustrating the displacement coordinate x tð Þ convention. (b) Initial velocity imposed on the bistable
oscillator originally at rest: interwell vibrations transition into intrawell oscillators as time increases.
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under impact loading at t ¼ 0 such that the velocity immediately
changes according to the impulse-momentum theorem. Fig. 1
(a) shows a schematic model of such a bistable oscillator and
illustrates the double-well potential energy profile according to
the coordinate convention that x tð Þ ¼ 0 is the unstable equilibrium
when k140 and k340. In the case where k1o0 and k3a0, Eq. (1)
represents the monostable Duffing oscillator which undergoes
motions within the individual well of potential energy. In contrast
to such behaviors, the bistable oscillator may exhibit two quali-
tatively distinct dynamics: intrawell oscillations confined to one
local well of potential energy and interwell motions which cross
the unstable equilibrium. Fig. 1(b) illustrates these distinct
dynamic regimes for a bistable oscillator excited with finite initial
velocity from a starting position of a stable equilibrium. The dark
trajectory in three dimensions is the phase plane of displacement
and velocity in time, whereas the projections in displacement–
time or velocity–time show the unique contributions in those
planes. The (light solid curve) mapping on the far plane of dis-
placement–velocity indicates the homoclinic orbits which differ-
entiate intra- from interwell behaviors according to the instanta-
neous level of system energy for the undamped oscillator. Due to
the amplitude of the imposed initial velocity, interwell dynamics
are first activated which lead to approximately 8 crossings
between the local wells of potential energy. Then, a period occurs
such that the dynamics transition from inter- to intrawell on a
time scale sufficiently slower than the natural period of the free
oscillations [12]. Finally, the oscillator mass vibrates with small,
decaying amplitudes within one of the local wells of potential
energy. The accurate analytical prediction of the system response
and characterisitics in these two dynamic regimes is the objective
of this research.

Numerous methods have been proposed to analytically predict
the transient dynamics of the monostable and bistable Duffing
oscillator equations. Individual trigonometric functions, specifi-
cally sine and cosine, are sometimes assumed to be the analytical
solutions [13]. Yet, in practice, such selection leads to poor accu-
racy when the nonlinearity is considerable [14], k3=k1

�� ��ZO 1ð Þ, due
to the diffusion of energy to many harmonics away from the
fundamental [15]. For enhanced accuracy, Barkham and Soudack
[16] introduced the Jacobian elliptic functions as generating solu-
tions for the Duffing equation. Since then many approximate
analytical solution strategies have been proposed based on the
properties of Jacobian elliptic functions. A large variety of such
studies have sought to predict the transient dynamics of the
monostable Duffing oscillator. Notable contributions have
employed these functions in the context of approximate analytical
solution strategies including the method of multiple scales [17],
the Krylov–Bogoliubov method [18,19], the "C–J" method [20], the
averaging method [21], the method of harmonic balance [22], and
the homotopy analysis method [23,24].

The Jacobian elliptic functions have also been utilized towards
the prediction of the dynamics of bistable Duffing oscillators.
Lakrad and Belhaq [25] adopted the multiple scales method to
approximate the undamped oscillations. Yuste and Bejarano [14]
studied the amplitude decay of a bistable oscillator and reported
satisfactory agreement with directly numerically integrated results
for small degrees of nonlinearity. Yuste [26] extended the har-
monic balance method to enable the approximation of several
cycles of oscillation when the nonlinearity was non-trivial. Cveti-
canin [27] approximated the transient behaviors using complex
generating functions and demonstrated two examples that
showed good agreement with numerical results. These advance-
ments have provided new pathways towards the prediction of the
transient behaviors of bistable Duffing oscillators. On the other
hand, by their implementation of the Jacobian elliptic functions
having fixed modulus/phase, the approximations are suitable for
only a few cycles of dissipative oscillation and may be severely
limited in parameter selection for favorable results.

The objective of this research is to develop an enhanced ana-
lytical prediction strategy for the transient dynamics of bistable
oscillators. The aim is to faithfully reconstruct the motions over a
large number of free decay vibration cycles including both intra-
and interwell behaviors, and with high-fidelity for a significant
range of system parameters. A promising idea to meet this goal is
to leverage the averaging method with the Jacobian elliptic func-
tions. Indeed, Coppola and Rand [28,29] employed these tools to
approximate the transient dynamics of several monostable, non-
linear oscillators, which was the strategy likewise followed by
Belhaq and Lakrad [30]. However, the classical averaging method
is based upon a near-identity transformation [15] which assumes
that the time rate of change of the averaged amplitude of oscil-
lation is sufficiently small [28]. As a result, the applicability of the
classical method is limited to generating accurate predictions for
the case of small oscillations near equilibria. Yet, when considering
bistable Duffing oscillators, the interwell vibrations are char-
acteristically "far from equilibrium" and therefore undergo large
amplitude decay from initial conditions, prior to transitioning to
intrawell behaviors which eventually become near-linear motions.
It is clear that the classical averaging method is unsuitable to
predict such a significant variation in dynamics.

To advance the state of the art and overcome these limitations
for an accurate and long-time prediction of the transient dynamics
of bistable oscillators, this research develops an enhanced aver-
aging method with the Jacobian elliptic functions building upon
the method established by Coppola and Rand [28]. Yet, instead of
applying near-identity transformations that limit applicability to
oscillations near equilibria, the approach developed here enables
slow variation in oscillation amplitude and modulus/phase so that
the full dynamic range of motions of the bistable system may be
accurately reconstructed. The following sections detail this new
strategy as individually applied to the intrawell and interwell
oscillations regimes. Because previous endeavors have only suc-
ceeded in reconstructing a few of the transient oscillation cycles of
bistable oscillators or the overall amplitude decay [31], the most
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constructive and comprehensive assessments of the developments
in this research are obtained by comparison of the current analy-
tical predictions to results of numerically integrating the govern-
ing equations, considered to be the exact dynamics. Such a rigor-
ous assessment is then presented, exploring the accuracy of the
proposed approach using a large range of system and excitation
parameters. Prior to concluding remarks, a discussion is provided
to summarize and examine the applicability, limitations, and
potential of the proposed analytical approach.
2. Analytical prediction formulations for the undamped sys-
tem: intra- and interwell oscillations

The schematic model illustrated in Fig. 1(a) is analyzed here.
From Eq. (1), by setting

γ ¼ d=m; α¼ k1=m; β¼ k3=m; ð2Þ
the governing equation is simplified as

€xþγ _x�αxþβx3 ¼ 0; xj t ¼ 0 ¼ x0; _xj t ¼ 0: ð3Þ
Eq. (3) is used throughout the remainder of this research. Note

that the fixed points (equilibria) of the system occur at
x� ¼ 0; 7

ffiffiffiffiffiffiffiffiffi
α=β

pn o
, where the unstable equilibrium is x� ¼ 0 and

the latter two, non-zero values are stable equilibria. Additionally,
note that the total energy of the system is
E tð Þ ¼ 2_x2�2αx2þβx4

� �
=4, so that the homoclinic orbits (here at

E¼ 0) are defined by _x¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αx2�βx4=2

p
. Therefore, intrawell

behaviors satisfy Eo0 whereas interwell oscillations occur when
E40.

In the absence of damping γ ¼ 0
� �

€x�αxþβx3 ¼ 0; xj t ¼ 0 ¼ x0; _xj t ¼ 0 ¼ _x0: ð4Þ
Researchers have shown that the equation of motion for the

undamped, bistable Duffing oscillator is exactly solved using
Jacobian elliptic functions [15,32]. In the following, xd represents
the intrawell vibration and xc denotes the interwell vibration.

For intrawell vibration, the response is obtained by assuming
the solution of Eq. (4) in the form [32]

xd ¼ ζD0dn ωdtþφd0; kd
� �¼ ζD0dn ud; kdð Þ≡ζD0dn ð5Þ

where ζ ¼ 71 is defined in Eq. (8); ud and kd are the argument
and modulus of Jacobian elliptic function dn ud; kdð Þ, respectively
[33]. The period of dn ud; kdð Þ is 2K kdð Þ, where K kdð Þ is the complete
elliptic integral of the first kind and is hereafter expressed as Kd for
brevity. In the absence of damping, ωd and kd are constants, and
φd0 is the initial argument and is determined by initial conditions.
By taking the derivatives of Eq. (5) and substituting appropriate
relations into (4), one finds that

ω2
d ¼ βD2

0=2; k2d ¼ 2�2α= βD2
0

� �
: ð6Þ

Thus, the undamped, intrawell oscillations are described using

xd ¼ ζD0dn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βD2

0=2
q

Utþφd0; 2�2α= βD2
0

� �h i1=2� 	
: ð7Þ

In Eq. (7), the sign indicator ζ, initial amplitude D0, and initial
argument φd0 are all determined by the initial conditions. ζ indi-
cates the intrawell position and is expressed as

ζ ¼
sgn x0½ �; if x0a0
sgn _x0½ �; if x0 ¼ 0

:

(
ð8Þ

The initial displacement and velocity when t ¼ 0 satisfy

x0 ¼ ζD0dn φd0; kd
� �

; _x0 ¼ �ζD0ωdk
2
dsn φd0; kd
� �

cn φd0; kd
� �

: ð9Þ
Using the identities of the Jacobian elliptic functions [33], the
initial amplitude and phase are found to be

D0 ¼ β�1=2 U αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α�βx20
� �2þ2β _x20

q� 	1=2

;
sn φd0; kd
� �

cn φd0; kd
� �

dn φd0; kd
� �

¼ � _x0
x0ωdk

2
d

: ð10Þ

When the initial energy of the bistable oscillator is sufficient to
induce interwell vibration Ejt ¼ 040ð Þ, the exact vibration response
can be found by assuming the solution of Eq. (4) in the following
form [15]

xc ¼ C0cnðωctþφc0; kcÞ ¼ C0cnðuc; kcÞ � C0cn ð11Þ
where uc and kc are the argument and modulus of the Jacobian
elliptic function cn uc; kcð Þ, respectively. The period of cn uc; kcð Þ is
4K kcð Þ, where K kcð Þ is the complete elliptic integral of the first kind
with respect to the modulus of kc and is hereafter expressed as Kc

for brevity. When damping is absent, ωc and kc are constants, and
φc0 is the initial argument which is determined by initial condi-
tions. Likewise, by taking the derivatives of Eq. (11) and sub-
stituting appropriate relations into (4), one finds that

ω2
c ¼ βC2

0�α; k2c ¼ βC2
0= 2ω2

c

� �¼ βC2
0= 2ðβC2

0�αÞ
h i

: ð12Þ

Thus, the unperturbed interwell vibration of Eq. (4) is expres-
sed by

xc ¼ C0cn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βC2

0�α
q

U tþφc0;
βC2

0

2ðβC2
0�αÞ

 !1=2
0
@

1
A: ð13Þ

From Eq. (13), the argument uc and modulus kc are functions of
the amplitude C0. Here, the initial amplitude C0 and argument φc0
depend on initial conditions:

x0 ¼ C0cnðφc0; kcÞ; _x0 ¼ �ωcC0snðφc0; kcÞUdnðφc0; kcÞ ð14Þ
Using the elliptic function identities [33], the initial amplitude

and phase are found

C0 ¼ β�1=2 U αþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α�βx20
� �2þ2β _x20

q� 	1=2

;
snðφc0; kcÞ
cnðφc0; kcÞ

Udnðφc0; kcÞ

¼ � _x0
ωcx0

: ð15Þ

2.1. Constraints on the parameters

For the Jacobian elliptic functions sn u; kð Þ, cn u; kð Þ and dn u; kð Þ,
the modulus is intrinsically constrained to satisfy 0rk2r1. By
applying this constraint to the analytical solution of intrawell
vibration, one finds

0rk2dr1 3 1=2r α= βD2
0

� �
r1: ð16Þ

Considering the instantaneous displacement and velocity of
intrawell vibration are xd ¼ ζD0dn and _xd ¼ �ζD0ωdk

2
dsncn,

respectively, the instantaneous system energy then can be derived
as

Ed ¼ _x2d=2�αx2d=2þβx4d=4¼D2
0 βD2

0�2α
� �

=4: ð17Þ

According to Eqs. (16) and (17), when the instantaneous energy
is negative, the bistable oscillator undergoes intrawell oscillations
which are expressible using dn ud; kdð Þ. On the other hand, for
interwell vibration, application of the above modulus constraint
leads to

0rk2dr1 3 0rα= βC2
0

� �
r1=2: ð18Þ
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Considering that the displacement and velocity are expressed
using xc ¼ C0cn and _xc ¼ �C0ωcsndn, the instantaneous energy is

Ec ¼ _x2c=2� αx2c=2þβx4c=4¼ C2
0 βC2

0 � 2α
� �

=4: ð19Þ

Similarly, when the energy is positive, the bistable oscillator
undergoes interwell vibration such that the undamped dynamics
are described by cnðu; kÞ. Therefore, βA2 ¼ 2α is the critical con-
dition demarcating the intra- from the interwell oscillation
regimes, in which A is the amplitude corresponding to D0 and C0,
respectively.
3. Approximate prediction of the damped, intrawell vibration

The intrawell vibration of the damped bistable oscillator, γ40,
is assumed to satisfy the form in Eq. (5) while the amplitude D¼
D tð Þ and argument ud ¼ 2Kdψd tð Þ both slowly vary in time. The
new variable 2Kdψd is used as the argument because it leads to
periodically variational equations that can be averaged. The other
variables are amplitude dependent and satisfy Eq. (6) from the
undamped relations.

xd tð Þ ¼ ζD tð Þdn 2Kdψd; kd
� �¼ ζD tð Þdn ud; kdð Þ � ζDdn ð20aÞ

_xd ¼ ζDωddn
0 ð20bÞ

Kd ¼ K kdð Þ; k2d ¼ 2�2α=βD2; ω2
d ¼ βD2=2: ð20cÞ

Differentiating Eq. (20a), one obtains the first-order derivative
of xd as

_xd ¼ ζ
dD
dt

dnþ2DψdK
0
dk

0
ddn

0 þDk
0

d
∂dn
∂kd


 �
þζ

dψd

dt
⋅2DKddn

0 ð21Þ

where Uð Þ0 denotes differentiation of the variable with respect to
its argument, thus

K 0
d �

dKd

dkd
; k0d �

dkd
dD

; ω0
d �

dωd

dD
; dn0 � ∂dn ud; kdð Þ

∂ud
: ð22Þ

Comparing Eqs. (20b) and (21) one finds

dD
dt

dnþ2DψdK
0
dk

0
ddn

0 þDk0d
∂dn
∂kd


 �
þdψd

dt
U2DKddn

0 ¼Dωddn
0: ð23Þ

From Eq. (20b), the second-order derivative of xd can be derived
as

€xd ¼ ζ
dD
dt

ωdþDω0
d

� �
dn0 þ2DψdωdK

0
dk

0
ddn″þDωdk

0
d
∂dn0

∂kd


 ��

þdψd

dt
U2DKdωddn″


: ð24Þ

Substituting Eqs. (20) and (24) into (3), one obtains

dD
dt

ωdþDω0
d

� �
dn0 þ2DψdωdK

0
dk

0
ddn″þDωdk

0
d
∂dn0

∂kd


 �

þdψd

dt
U2DKdωddn″þγDωddn

0 �αDdnþβD3dn3 ¼ 0: ð25Þ

Combining Eqs. (23) and (25), dD=dt and dψd=dt are solved to
yield

dD
dt

¼ �γD

k2d
dn02 ¼ �γD

k2d
k2d�1þ 2�k2d

� �
dn2�dn4

h i
ð26aÞ

dψd

dt
¼ ωd

2Kd
þ γdn0

2Kdk
2
d

dn� 2�k2d
k2d 1�k2d
� � Z ud; kdð Þdn0 þdn 1�dn2� �� �8<

:
9=
;
ð26bÞ

where Z ud; kdð Þ is the Jacobian Zeta function. Eq. (26) is non-
integrable so that here the averaging method is utilized to obtain
analytical approximations of the amplitude D and phase ψd.

3.1. Approximation of the decaying amplitude D for intrawell
vibration

The oscillation amplitude smoothly decreases as time proceeds
and is assumed to be nearly constant over one period of the
vibration (i.e., a period of 2Kd with respect to argument ud). Thus,
parameters k2d , ωd, and Kd which are functions of the amplitude D
are also considered to remain nearly constant over one period.
Consequently, instead of being assumed sufficiently small as in the
classical averaging method, by Eq. (26) the variables _D and _ψd are
assumed to slowly vary by a finite degree due to the relation to the
Jacobian elliptic functions. Therefore, the averaged variables over
one period 2Kd are smooth, local means of the instantaneous
variables and are thus termed "averaged instantaneous variables".
The averaged instantaneous amplitude is derived from Eq. (26a) to
yield

_D¼ �
γD k2d�1
� �
k2d

�
γD 2�k2d
� �
k2d

U
1

2Kd

Z 2Kd

0
dn2dud

þγD

k2d
U

1
2Kd

Z 2Kd

0
dn4dud

¼ �γD
2 k2d�1
� �
3k2d

þ2�k2d
3k2d

U
Ed
Kd

2
4

3
5) _D¼ �γD

2 k2d�1
� �
3k2d

2
4

þ2�k2d
3k2d

U
Ed
Kd

#
ð27Þ

where Kd and Ed denote the complete elliptic integrals of the first
and second kinds, respectively; and D is very close to D and so that
D is replaced by D since the latter is nearly constant over one
period of oscillation. Eq. (27) is non-integrable and the right side is
an implicit function of D. To find an explicit and integrable
approximation of Eq. (27), a polynomial fit is employed. Eq. (27) is
rewritten as

_D¼ �γDU f ðk2dÞ; f k2d
� �

¼
2 k2d�1
� �
3k2d

þ2�k2d
3k2d

U
Ed
Kd

: ð28Þ

Considering the values of elliptic integrals Ed and Kd are com-
pletely determined by k2d , thus f k2d

� �
is a pure function depending

on k2d . Recalling Eqs. (6) and (16), the mapping correspondence α
=βD2-k2d is a bijection. Thus f k2d

� �
could also be expressed as a

function of α=βD2 by changing the independent variable from k2d
to α=βD2. The values of k2d and f k2d

� �
are calculated sequentially on

the range of 1=2rα=βD2r1 by using Eqs. (6) and (28), respec-
tively. Accordingly, the mapping correspondence of α=βD2-f k2d

� �
is numerically established to enable the analytical integration of
Eq. (27).

It is found that f k2d
� �

is smooth on a large range of 0:55rα=β

D2r1 and is sufficiently approximated via an individual poly-
nomial fit using

f k2d
� �

� p1 ¼ μ⋅
α
βD2

 !λ

þυ: ð29Þ

where μ, υ, and λ are undetermined coefficients. A beneficial
advantage of Eq. (29) is that it provides an integrable approx-
imation of Eq. (27). For different values of λ, μ and υ are calculated
using a linear fit. The performance of various fitting parameter sets
is estimated using R2 ¼ 1�SSE=SST , where SSE is the sum of
squared residuals and SST is the sum of squared f k2d

� �
, so that
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higher values of R2 indicate improvements in the fitting to the
exact f k2d

� �
. By this procedure, a high-fidelity fit of R2 ¼ 0:9987 is

realized across 0:55rα=βD2r1 using λ¼ 2, μ¼ �0:15011, and
υ¼ 0:14714. By substituting Eq. (29) into (28) and integrating the
result, the decaying amplitude of intrawell oscillation is found

D¼ μ
υ
α2þβ2D4

0

� �
e�4υγt�μ

υ
α2

h i1=4
⋅β�1=2 ð30Þ

where D0 is the initial amplitude determined by initial conditions,
expressed in Eq. (10). Thus, the velocity amplitude of the oscillation is
given by Eq. (20b) according to the displacement amplitude D.

3.2. Time trajectories of intrawell displacement

The instantaneous displacement is expressed in Eq. (20a). To
reconstruct the trajectory in time, the unknown argument ud ¼ 2
Kdψd of the Jacobian elliptic function dn ud; kdð Þ must be approxi-
mated. The first order derivative of 2Kdψd is

_ud ¼
d
dt

2Kdψd

� �¼ 2ψd
dKd

dkd

dkd
dD

dD
dt

þ2Kd
dψd

dt
¼ 2ψdK

0
dk

0

d
_Dþ2Kd _ψd:

ð31Þ
Then, K 0

d and k0d are expressed by

K 0
d �

dKd

dkd
¼ 1
kd

Ed
l2d
�Kd

 !
; k0d �

dkd
dD

¼ 1
kd

2α
βD3 ¼

2�k2d
kd

U
1
D
: ð32Þ

Substituting Eqs. (27) and (32) into (31) and averaging the
result, one obtains

_u¼ � 2γψd
2� k2d
k2d

Ed
l2d

� Kd

 !
2 k2d � 1
� �
3k2d

þ2� k2d
3k2d

Ed
Kd

0
@

1
Aþωd: ð33Þ

Note that ψd and ud depend on the intrawell oscillation
amplitude D and thus they slowly vary during one period 2Kd.
Accordingly, ψd and ud are approximated by the averaged
instantaneous parameters ψd and ud, and from Eq. (5) the initial
values of ψd and ud are φd0=2Kd and φd0, respectively. By aver-
aging over one period 0; 2Kd½ �, it is found that _ψd ¼ωd=2Kd. Thus,
ψd and ud can be approximated as

ψd tð Þ ¼ψd 0ð Þþ
Z t

0
_ψddtffi

φd0

2Kd
þ
Z t

0

_ψddt ¼
φd0

2Kd
þ
Z t

0

ωd

2Kd
dt ð34aÞ

ud tð Þ ¼ ud 0ð Þþ
Z t

0
_uddtffiφd0þ

Z t

0
�2γψd

2�k2d
k2d

Ed
l2d
�Kd

 !(

2 k2d�1
� �
3k2d

þ2�k2d
3k2d

Ed
Kd

0
@

1
Aþωd

9=
;dt ð34bÞ

in which φd0 is the initial argument determined by initial condi-
tions in Eq. (10) which is readily calculated using the Jacobian
inverse elliptic functions. Though the integration of Eq. (34) is not
possible analytically, the integrand contains only functions of the
amplitude and thus the integration may be numerically deter-
mined. As a result, in this study ψd and ud are calculated using
trapezoidal integration based upon the analytically-derived
amplitude following the approach developed in Section 3.1.
4. Approximate prediction of the damped, interwell vibration

The bistable oscillator undergoes interwell vibration when the
transient system energy is positive, E tð Þ40. Using a similar
strategy as that employed for the intrawell vibrations in Section 3,
the analytical prediction of the transient, dissipative interwell
dynamics is developed for the bistable oscillator. The interwell
vibration of the damped system in Eq. (3) is assumed to satisfy the
solution form in Eqs. (11) and (12) while parameters C ¼ C tð Þ and
ψ c ¼ψ c tð Þ are assumed to slowly vary in time. The variable 4Kcψ c
is used as the argument. Then,

xc ¼ C tð Þcn uc; kcð Þ ¼ C tð Þcn 4Kcψ c; kc
� �� Ccn ð35aÞ

_xc ¼ Cωccn0 ð35bÞ

Kc ¼ K kcð Þ; k2c ¼ βC2= 2ω2
c

� �
; ω2

c ¼ βC2�α: ð35cÞ
The velocity _xc is also obtained by differentiating Eq. (35a)

_xc ¼
dC
dt

cnþ4Cψ cK
0
ck

0
ccn

0 þCk0c
∂cn
∂kc


 �
þdψ c

dt
U4CKccn0 ð36Þ

and

K 0
c � dKc=dkc; k0c � dkc=dC; ω0

c � dωc=dC; cn0 � ∂cn uc; kcð Þ=∂uc:

ð37Þ
Comparing Eqs. (35b) and (36) leads to

dC
dt

cnþ4Cψ cK
0
ck

0
ccn

0 þCk0c
∂cn
∂kc


 �
þdψ c

dt
U4CKccn0 ¼ Cωccn0: ð38Þ

From Eq. (35b), the second order derivative of xc is derived as

€xc ¼
dC
dt

ωcþCω0
c

� �
cn0 þ4Cψ cωcK

0
ck

0
ccn″þCωck

0
c
∂cn0

∂kc


 �

þdψ c

dt
U4CKcωccn″: ð39Þ

Substituting Eqs. (35) and (39) into Eq. (3) one obtains

dC
dt

ωcþCω0
c

� �
cn0 þ4Cψ cωcK

0
ck

0
ccn″þCωck

0
c
∂cn0

∂kc


 �

þdψ c

dt
U4CKcωccn″þγCωccn0 �αCcnþβC3cn3 ¼ 0: ð40Þ

Combining Eqs. (38) and (40), dC=dt and dψ c=dt are found

dC=dt ¼ �γC cn0ð Þ2 ð41aÞ

dψ c=dt ¼
�
ωcþγcn0 cn� 1�2k2c

� �
Z uc; kcð Þcn0 þk2c cn 1�cn2� �� �

=
h

1�k2c
� �i

=4Kc ð41bÞ

where Z u; kð Þ is the Jacobian Zeta function and Zc is the notation
used here to indicate Z uc; kcð Þ. Like before, Eq. (41) is not able to be
integrated analytically so a similar strategy of averaging and
polynomial fitting is employed to develop approximate predic-
tions for the averaged instantaneous interwell vibration amplitude
and argument.

4.1. Approximation of the decaying amplitude C for interwell
vibration

The averaged instantaneous amplitude of oscillation is
obtained using the averaging method over one period 0;4Kc½ �.

_C ¼ �γC
1

4Kc

Z 4Kc

0
cn02 uc; kcð Þduc ¼ � γC

4Kc

Z 4Kc

0
sn2duc

"

�
Z 4Kc

0
k2c sn

4duc

#

¼ �γC
1�k2c
3k2c

þ2k2c �1

3k2c

Ec
Kc

" #
) _C ¼ �γC

1�k2c
3k2c

þ2k2c �1

3k2c

Ec
Kc

" #

ð42Þ
where Ec ¼ E kcð Þ and Kc ¼ K kcð Þ are the complete elliptic integral of
the second and first kinds, respectively; and the averaged instan-
taneous amplitude C is smooth local mean of the vibration
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amplitude C. Considering that C is very close to C, C is therefore
replaced by C in Eq. (42). The right side of Eq. (42) is an implicit
function of the amplitude C. To enable a polynomial fitting pro-
cedure for the right-hand side of Eq. (42), the equation may be
written

_C ¼ �γC Uh k2c
� �

; h k2c
� �

¼ 1�k2c
3k2c

þ2k2c �1

3k2c

Ec
Kc

: ð43Þ

Note that the complete elliptic integrals Ec and Kc are deter-
mined by k2c , and h k2c

� �
is a function that depends on argument k2c .

Recalling Eqs. (18) and (35c), it is evident that the mapping cor-
respondence α=βC2-k2c is a bijection. Thus, one may change the
argument from k2c to α=βC2, and h k2c

� �
could be expressed as a

function of α=βC2. On the range of 0rα=βC2r0:5, the values of
k2c and h k2c

� �
are calculated sequentially by Eqs. (35c) and (43),

respectively. Accordingly, the mapping correspondence α=βC2-h

k2c
� �

is numerically established to enable the analytical integration
of Eq. (42).

It is found that h k2c
� �

is sufficiently approximated by an indi-

vidual polynomial fit across the broad range of 0:05rα=βC2r
0:45 using

h k2c
� �

� q1 ¼ aU
α
βC2

 !n

þb ð44Þ

where a, b, and n are undetermined coefficients. Using linear
polynomial fitting,a and b are determined for a range of selections
of n where the best fitting performance is obtained at R2 ¼ 0:9962
when n¼ 2, a¼ �0:78592, and b¼ 0:32051. By substituting Eq.
(44) into (42) and integrating the result, the amplitude of interwell
oscillation is found to be

C tð Þ ¼ β2C4
0þ

a
b
α2

� �
e�4bγt�a

b
α2

h i1=4
⋅β�1=2 ð45Þ

where C0 is the initial amplitude determined by initial conditions,
Eq. (15). By Eq. (35b), the velocity amplitude is calculated from the
decaying amplitude of displacement. Considering the criteria
which demarcates intra- from interwell oscillations, βA2 ¼ 2α, the
time at which the analytical prediction estimates the interwell
oscillations to cease is given by

tend ¼ � ln 4þa=b
� �

α2 U β2C4
0þα2a=b

� ��1

 �

=4bγ: ð46Þ

4.2. Time trajectories of interwell displacement

The instantaneous interwell displacement is expressed in Eq.
(35a). Prior to its determination, the argument uc ¼ 4Kcψ c of the
Jacobian elliptic function cn uc; kcð Þ must be estimated. The first
order derivative of the argument is obtained as

_uc �
duc

dt
¼ d
dt

4Kcψ c

� �¼ 4ψ c
dKc

dkc

dkc
dC

dC
dt

þ4Kc
dψ c

dt
¼ 4ψ cK

0
ck

0
c
_Cþ4Kc _ψ c:

ð47Þ

Then, K 0
c and k0c are expressed by

K 0
c≡

dKc

dkc
¼ Kc

kcl
2
c

Ec
Kc

� l2c

� 	
¼ 1
kc

Ec
l2c

� Kc

 !
;

k0c≡
dkc
dC

¼ � βCα

βC2 � α
� �2⋅ 12kc ¼ � 2k2c � 1

� �
⋅
kc
C
: ð48Þ
Substituting Eq. (48) into (47) and averaging the result, one
obtains

_uc ¼ 4γψ c
Ec
l2c
�Kc

 !
2k2c �1
� �

a
α
βC2

 !2

þb

2
4

3
5þωc: ð49Þ

Considering that ψ c and uc are functions of the interwell
vibration amplitude and thus also slowly vary during one period
4Kc , ψ c and uc can be approximated by the averaged instantaneous
parameters ψ c and uc , having initial values ψ c and uc are φc0=4Kc

and φc0, respectively, from Eq. (11). By averaging over one period
0; 4Kc½ �, it is found that _ψ c ¼ωc=4Kc . Thus ψ c and uc are
approximated by

ψ c tð Þ ¼ψ c 0ð Þþ
Z t

0
_ψ cdtffi

φc0

4Kc
þ
Z t

0

_ψ cdt ¼
φc0

4Kc
þ
Z t

0

ωc

4Kc
dt ð50aÞ

uc tð Þ ¼ uc 0ð Þþ
Z t

0
_ucdtffiφc0þ

Z t

0
4γψ c

Ec
l2c
�Kc

 !
2k2c �1
� �(

� a
α
βC2

 !2

þb

2
4

3
5þωc

9=
;dt ð50bÞ

in which, φc0 is the initial argument determined by the amplitude
and velocity and is calculated via the Jacobian inverse elliptic
functions. Though the integration of Eq. (50) is not possible ana-
lytically, the integrand contains only functions of the amplitude
and may be determined numerically. Thus, as for intrawell oscil-
lations, the interwell argument uc is determined numerically by
trapezoidal integration from the analytically-derived amplitude
C tð Þ, after which the instantaneous displacement xc tð Þ is found by
Eq. (35).
5. Accuracy of the analytical predictions

This section assesses the accuracy of the proposed analytical
solution strategy towards predicting the transient, dissipative
dynamics of the bistable oscillator. The prediction capabilities for
intra- and interwell dynamics are individually evaluated. For
consistency throughout, the value of linear stiffness is α¼ 1 and
the initial displacement is the stable equilibrium x0 ¼ þ

ffiffiffiffiffiffiffiffiffi
α=β

p
.

Thus, to initiate the dynamics away from equilibrium, a variety of
initial velocities are imposed, which, by the constraints described
in Section 2.1, accordingly induce either intra- or interwell oscil-
lations. The exact transient dynamics are presumed to be those
solutions obtained by direct numerical integration of the govern-
ing Eq. (3) with a fourth-order Runge–Kutta algorithm conducted
in the software MATLAB where the relative integration tolerance is
set to be three orders of magnitude more refined than the default
tolerance (further refined tolerances did not affect results). In
addition to several examples providing qualitative comparisons
between time/velocity trajectories as predicted by the analysis and
by numerical integration, a quantitative evaluation of the analy-
tical prediction accuracy is achieved by computing the correlat-
ion coefficient ρa;n � cov xa; xnð ÞU cov xa; xað ÞUcov xn; xnð Þ½ ��1=2A 0;1½ �
between the analytical xa and numerical xn displacement results.
This measure has the merit that it simultaneously evaluates
the accuracy of both amplitude and phase properties of the
trajectories.

5.1. Transient intrawell oscillations

For initial qualitative assessments of the analysis against the
numerical computations, the dynamics of a bistable oscillator
having parameters γ ¼ 0:034427 and β¼ 0:98237 are considered
in the regime in which initial conditions lead to only intrawell



Fig. 2. Transient intrawell dynamics of the bistable oscillator for x0 ¼ þ
ffiffiffiffiffiffiffiffi
α=β

p
. Displacement when (a) _x0 ¼ 0:92Uα=

ffiffiffiffiffiffi
2β

p
and (b) _x0 ¼ 0:99Uα=

ffiffiffiffiffiffi
2β

p
. Velocity when (c) _x0 ¼

0:92Uα=
ffiffiffiffiffiffi
2β

p
and (d) _x0 ¼ 0:99Uα=

ffiffiffiffiffiffi
2β

p
.
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oscillations. To satisfy the constraint 0:5rα=βD2
0r1 for intrawell

vibration, the initial velocities considered for the intrawell beha-
viors satisfy _x0rα=

ffiffiffiffiffiffi
2β

p
.

Fig. 2 illustrates two examples of (a,b) displacement and the
corresponding (c,d) velocity trajectories for two initial velocities.
Fig. 2(a) and (c) shows results for _x0 ¼ 0:92Uα=

ffiffiffiffiffiffi
2β

p
; the results

plotted in Fig. 2(b) and (d) are for _x0 ¼ 0:99Uα=
ffiffiffiffiffiffi
2β

p
which indi-

cates the initial velocity is only 1% less than that required to
activate interwell oscillations. In the figures, the dark/solid curves
are the exact, numerically-integrated results, while the light/
dashed curves are the analytical predictions. For the smaller initial
velocity, the analytical predictions shown in Fig. 2(a) and (c) are in
excellent agreement with the numerical findings. On the other
hand, for the larger initial velocity, the instantaneous displace-
ment and velocity phases exhibit greater deviation with respect to
the numerical, exact results, Fig. 2(b) and (d). This is due to the
reduced fidelity of the polynomial fit for the regimes α=βD2

0 near
0.5. Recalling Section 3.1, the fit was made across 0:55rα=βD2r1
with good success (very large R2), although intrawell oscillations
may also be obtained for α=βD2 as low as 0.5 (see Section 2.3). For
the larger initial velocity condition of _x0 ¼ 0:99Uα=

ffiffiffiffiffiffi
2β

p
, one finds

that at the start of the transient oscillation prediction α=βD2
0 ¼

0:5025 which is outside of the polynomial fitting regime. Thus, the
approximated form of the function f k2d

� �
has reduced fidelity for

the case having larger initial velocity, which is the source of the
deviation between the numerical and analytical results shown in
Fig. 2(b) and (d). On the other hand, the analytically-predicted
time-varying amplitudes of displacement and velocity are still in
excellent agreement in spite of the instantaneous deviation of
phases with respect to the exact, numerical results.

The dissipative intrawell oscillations should ultimately settle to
the stable equilibrium xjt-1 ¼ x� ¼ þ

ffiffiffiffiffiffiffiffiffi
α=β

p
. Yet, due to the fitting
limitations for one polynomial, a finite deviation exists between
the fit at the extreme of the range where α=βD2 ¼ 1 such that D
¼ þ

ffiffiffiffiffiffiffiffiffi
α=β

p
when t-1. In fact, according to the parameters used

for the fit, after a long time of oscillation, the analytically predicted
final displacement amplitude, Eq. (30), is found to be

lim
t-1

D tð Þ ¼ �μ
υ

� �1=4
U
ffiffiffiffi
α
β

r
� 1:005

ffiffiffiffi
α
β

r
: ð51Þ

In other words, the final displacement amplitude predicted by
the analytical method (according to the current fit parameters
λ;μ;υ) deviates from the exact value with a relative error near
0:5%, such that the dissipative dynamics continue to oscillate even
after an infinite time elapses (albeit, oscillate with equal positive
and negative values around the stable equilibrium). Fig. 3 illus-
trates this interesting result for the cases (a) _x0 ¼ 0:92Uα=

ffiffiffiffiffiffi
2β

p
and

(b) _x0 ¼ 0:99Uα=
ffiffiffiffiffiffi
2β

p
, also verifying that the relative errors remain

small, 	0.5%. Since the focus of this analytical approach is on the
transient dynamics – thus primarily on those motions which occur
while the system dissipates considerable energy – the accuracy
achieved for intrawell vibrations close to the initial time, as shown
in Fig. 2, is of greater interest than the small, persistent intrawell
oscillations occurring at large times.

For a quantitative evaluation of the analytical prediction accu-
racy for intrawell oscillations across a large range of system
parameters, the correlation coefficients between the analytical and
numerical results are shown in Fig. 4 for three different initial
velocities _x0 ¼ (a) 0:92α=

ffiffiffiffiffiffi
2β

p
, (b) 0:955α=

ffiffiffiffiffiffi
2β

p
, and (c)

0:99α=
ffiffiffiffiffiffi
2β

p
. The damping factor γ is chosen from a logarithmically

spaced range of 300 values spanning 0:007079; 0:1½ �, while the
nonlinearity β is chosen from a linearly spaced range of 320 values
over the range α=βD2

0; 2α=βD2
0

h i
to satisfy the constraint 0:5rα

=βD2
0r1 according to the initial velocity considered, and thus the



Fig. 4. Correlation coefficient between the numerical and analytical results of intrawell dynamics (using 103 U log 10 ρa;n
� �

) with different initial velocities: _x0 ¼ (a)
0:92α=

ffiffiffiffiffiffi
2β

p
; (b) 0:955α=

ffiffiffiffiffiffi
2β

p
and (c) 0:99α=

ffiffiffiffiffiffi
2β

p
. Lighter contour shadings indicate greater accuracy in the analytical prediction.

Table 1
Computation efficiency comparison for the intrawell vibration regime.

Initial velocity
[m/s], _x0

Computation time [min] Analytical efficiency
enhancement [%],
100UCTn �CTa

CTa
Analytical, CTa Numerical, CTn

0:92Uα=
ffiffiffiffiffiffi
2β

p
8.6090 45.4986 428

0:955Uα=
ffiffiffiffiffiffi
2β

p
8.5924 45.6261 431

0:99Uα=
ffiffiffiffiffiffi
2β

p
8.5717 57.4610 570

Fig. 3. Persistent intrawell oscillations at large times. x0 ¼ þ
ffiffiffiffiffiffiffiffi
α=β

p
. Displacement when (a) _x0 ¼ 0:92Uα=

ffiffiffiffiffiffi
2β

p
and (b) _x0 ¼ 0:99Uα=

ffiffiffiffiffiffi
2β

p
.
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initial displacement amplitude D0 via Eq. (10). The correlation
coefficient is computed over the time during which the difference
in intrawell vibration amplitude from cycle-to-cycle is ⩾0.1%. In
effect, this takes the computation of ρa;n out to very long times
sufficient such that the instantaneous energy in the oscillators are
negligible fractions of the initial input.

The results are plotted in Fig. 4, where the correlation coeffi-
cients are shaded in the contours using 103 U log 10 ρa;n

� �
: dark

shadings indicate large coefficient logarithms which indicates poor
correlation and thus greater error between the analytical and
exact numerical displacement trajectories. In other words, a
shading value corresponding to 103 U log 10 ρa;n

� �¼ 0 indicates
perfect agreement (the lightest shading level employed in the
figure). As seen in Fig. 4(a), when the initial velocity is only 8% less
than that required to activate interwell oscillations (_x0 ¼ 0:92α=ffiffiffiffiffiffi
2β

p
), the accuracy of the analytical prediction is very good for a

significant range of the nonlinearity and damping parameters. For
progressively increasing initial velocity, from Fig. 4(b) and (c), the
fidelity of the analytical result reduces from the exact, num-
erically-integrated values, but primarily only for large nonlinearity
strengths and smaller damping factors, as evidenced by the darker
shading of the contours in those parameter regions. Yet, overall,
for a substantial range of nonlinearity and damping parameters,
the proposed analytical method yields exceptionally accurate
results with respect to the exact intrawell dynamics, even when
the initial velocity is only marginally smaller than that sufficient to
activate interwell behaviors.

Taking another perspective, Table 1 presents the findings of the
computation time required by the analytical and numerical
approaches to reconstruct the intrawell trajectories, such that the
results of Fig. 4 may be determined. The computations are carried
out on a computer with 4 GB of RAM memory and a 3.00 GHz Intel
Core 2 Duo processor. For these results, the evaluations for dif-
ferent damping factors γ and nonlinearity β parameters are over a
grid 100 by 120, respectively, across the range of values shown in
Fig. 4. Table 1 shows that the analytical approach enhances the
computational efficiency of the large parametric evaluation of
intrawell dynamic trajectories reconstruction, on average, by about
476%. In other words, to reconstruct to the transient intrawell
dynamics to a high degree of accuracy (see Fig. 4), the analytical
method developed herein provides a valuable computational
efficiency improvement for those designing and operating struc-
tures which are bistable or buckled in such a way that the Duffing
oscillator model is applicable.



Fig. 5. Transient interwell dynamics of the bistable oscillator for x0 ¼ þ
ffiffiffiffiffiffiffiffi
α=β

p
. Displacement when (a) _x0 ¼ 2:5Uα=

ffiffiffiffiffiffi
2β

p
, (b) _x0 ¼ 3:5Uα=

ffiffiffiffiffiffi
2β

p
, and (b) _x0 ¼ 4:5Uα=

ffiffiffiffiffiffi
2β

p
.

Velocity when (d) _x0 ¼ 2:5Uα=
ffiffiffiffiffiffi
2β

p
, (e) _x0 ¼ 3:5Uα=

ffiffiffiffiffiffi
2β

p
, and (f) _x0 ¼ 4:5Uα=

ffiffiffiffiffiffi
2β

p
.
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5.2. Transient interwell oscillations

Although intrawell dynamics may be predicted with high
accuracy, the dissipative, interwell oscillations – which are far
from equilibrium and indeed cross between both of them! – are
historically challenging to analytically predict. To examine the
accuracy of the proposed analytical method towards reconstruct-
ing the interwell dynamics, a first set of qualitative assessments is
shown in Fig. 5 where the system parameters are γ ¼ 0:054317
and β¼ 0:70128. Displacement predictions are shown in Fig. 5(a)–
(c) while the corresponding velocity trajectories are given in Fig. 5
(d)–(f); the solid/dark curves indicate the numerical integration
findings whereas light/dashed curves are the analytical predic-
tions. The initial velocities are chosen such that _x0Zα=

ffiffiffiffiffiffi
2β

p
which

is derived from Eq. (15) to satisfy the constraint for interwell
vibration: 0rα=βC2r0:5. Fig. 5 provides examples for which the
initial velocity _x0 is (a,d) 2:5Uα=

ffiffiffiffiffiffi
2β

p
, (b,e) 3:5Uα=

ffiffiffiffiffiffi
2β

p
, and (c,f)

4:5Uα=
ffiffiffiffiffiffi
2β

p
and plots out each pair of analytical and numerical

predictions to the time at which the instantaneous energy of the
respective result is E tð Þ ¼ 0.
The examples in Fig. 5 demonstrate that the analytical predic-
tions are in excellent qualitative agreement with the exact,
numerical dynamics. A small degree of phase error is observed to
accumulate over the prediction times which is more apparent for
larger values of the initial velocity such as that in Fig. 5(c) and (f).
An interesting feature is evident in Fig. 5(a) and (d) where the last
analytically-predicted values of displacement and velocity,
respectively, undergo a jump. Following close examination of such
cases, it is seen that the integrand term 4γψ c Ec=l

2
c

� �
�Kc

h i
for the

elliptic function argument uc in Eq. (50b) increases asymptotically
at the final times of analytical prediction prior to E tð Þ ¼ 0, where
the rate of increase is dependent upon system parameters and the
initial velocity. Since the argument uc (i.e., instantaneous total
phase) determines the output of the Jacobian elliptic function
evaluation via Eq. (35), an argument which varies dramatically can
induce a switch of sign between incremental evaluations of the
elliptic function. The consequence is a potential for sudden
deviation in value for the predicted displacement/velocity trajec-
tories at the last sample of time prior to E tð Þ ¼ 0. Although this
feature is found to occur somewhat at random based upon the



Fig. 6. Correlation coefficient between the numerical and analytical results of interwell dynamics (using 103 U log 10 ρa;n
� �

) with different initial velocities: _x0 ¼ (a)
2:5Uα=

ffiffiffiffiffiffi
2β

p
; (b) 3:5Uα=

ffiffiffiffiffiffi
2β

p
and (c) 4:5Uα=

ffiffiffiffiffiffi
2β

p
. Lighter contour shadings indicate greater accuracy in the analytical prediction.

Table 2
Computation efficiency comparison for the interwell vibration dynamic regime.

Initial velocity
[m/s], _x0

Computation time [min] Analytical efficiency
enhancement [%],
100UCTn �CTa

CTa
Analytical, CTa Numerical, CTn

2:5Uα=
ffiffiffiffiffiffi
2β

p
8.2771 31.1330 276

3:5Uα=
ffiffiffiffiffiffi
2β

p
8.7314 37.2208 340

4:5Uα=
ffiffiffiffiffiffi
2β

p
9.0337 41.8872 364
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system parameters and initial velocity selections, it ultimately only
influences the final displacement/velocity point predictions, and
plays a small role as relates to the accuracy computed via the
correlation coefficient.

A comprehensive assessment of the accuracy of the analytical
method is given in Fig. 6 where a large range of nonlinearity and
damping parameters are employed and the correlation coefficient,
as 103 U log 10 ρa;n

� �
, is plotted by the contour shading. To keep the

computation consistent and meaningful, the correlation coefficient
is taken between the numerical and analytical displacement data
series from the initial time to the time that first results in E tð Þ ¼ 0,
whether this condition occurs numerically or by the analytical
prediction. Three different initial velocities _x0 are considered in
Fig. 6, (a) 2:5Uα=

ffiffiffiffiffiffi
2β

p
, (b) 3:5Uα=

ffiffiffiffiffiffi
2β

p
, (c) and 4:5Uα=

ffiffiffiffiffiffi
2β

p
. The

damping factor γ is chosen on the range of 0:007079; 0:1½ �, while
the nonlinearity strength β meets βZ2α=C2

0 to satisfy the con-
straint 0rα=βC2r0:5.

The results in Fig. 6 show that across this large span of system
parameters a very high correlation coefficient (light shading of
103 U log 10 ρa;n

� �
) is obtained which indicates high accuracy from

the analytical predictions. Several trends are worth noting. First, a
banded or striped feature is observed in the contours of Fig. 6. This
is found to result from small changes in system parameters which
induce one more or one less well-crossing event. Such cases show
vulnerability in the analytical approach since these examples
exhibit a significant slowing-down of dynamics prior to ultimately
undergoing one more cross-well dynamic or returning to the local
well of potential energy. On the other hand, the accuracy of ana-
lytical predictions is still very high as attested by the large corre-
lation coefficients in the banded regions. Second, local, dark con-
tour shadings are evident (almost dot-like) which indicate
reductions in the prediction accuracy. These features result from
the local parametric selections which induce the poor final time
predictions and thus jump in the displacement trajectories, such as
the example shown in Fig. 5(a) and elucidated above. Finally, for
the results obtained using the larger initial velocity, Fig. 6(c), an
increase in the error is shown via darker shading when the non-
linearity values β are larger, regardless of the damping factor. It is
seen that this trend results from a small accumulation of phase
error between the analytical predictions and numerical results
since the larger initial velocities induce longer periods of interwell
oscillation for the same system parameters. On the other hand, the
examination of specific examples amongst these parameters
reveal that the final amplitude and final time at which the inter-
well oscillations are predicted to occur do not significantly deviate
from the exact, numerical values in spite of the phase error. Thus,
for a large range of parameters and initial velocities, the analytical
method also leads to exceptionally high accuracy of predictions for
the interwell dynamics.

Table 2 presents the corresponding computational time and
efficiency assessment results for the interwell dynamic regime
evaluation shown in Fig. 6. By using the analytical method
developed in this research, the data in Table 2 indicate that the
computation time to obtain accurate transient dynamics recon-
struction is reduced on average by more than a factor of 3: thus,
the efficiency enhancement averages about 327%. These results
suggest that for engineering applications, such as understanding
the number of snap-through cycles that might occur for buckled
and impulse-excited aircraft panels, able to be modeled using the
bistable Duffing oscillator governing equation, the analytical
method may greatly enhance the predictive capabilities of the
engineer and designer via providing an accurate and computa-
tionally efficient trajectory reconstruction scheme.
6. Discussion

In this section, final remarks are provided to summarize the
capabilities and limitations of the analytical prediction strategy
developed in this research. First, although this investigation has
examined the sensitivity of the analytical strategy using different
initial velocities while the initial displacements have remained
fixed, the authors note from a large variety of case studies not
presented here that the strategy is found to be similarly accurate
in predicting the transient dynamics for any combination of initial
conditions. On the other hand, while providing high overall
accuracy according to the correlation coefficient criterion, as
observed in Figs. 2 and 5 the analytical reconstruction of trajec-
tories may induce an accumulation of phase error for certain initial
conditions. In practice, this may be unfavorable should one be
interested in the instantaneous oscillator phase, for example to
prescribe active controls to the bistable system. The planned,



Fig. 7. Comparing the fully-reconstructed analytical prediction (light dashed
curves) with the numerically-integrated, exact results (dark solid curves). The light
solid curve on the far displacement–velocity plane is the homoclinic orbit.
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future efforts of the authors include a comprehensive study on the
role of initial conditions on the dynamical reconstruction accuracy.

Next, although good agreement is obtained for a vast range of
system parameters of nonlinearity and damping in terms of pre-
dicting the dynamic response amplitudes D tð Þ and C tð Þ – which are
derived in a purely analytical closed-form, see Eqs. (30) and (45) –
the reconstruction of the instantaneous displacement and velocity
trajectories necessitate a pseudo-analytical determination. This is
because such trajectories rely on the time-varying amplitudes as
well as on the time-varying arguments and moduli, the former
which must be numerically evaluated, see Eqs. (34) and (50). On
the other hand, as summarized via Tables 1 and 2, the analytical
method leads to appreciable computational performance
improvements when compared to direct numerical integration by
a fourth-order Runge–Kutta algorithm. Thus, despite the pseudo-
analytical nature of the transient displacement and velocity tra-
jectories, the analytical prediction tools developed in this study are
accurate as well as computationally efficient. Moreover, the
designer or engineer that requires knowledge only of the dynamic
regime time extents or the instantaneous response amplitude or
frequency may take full advantage of the closed-form analytical
approximations of these characteristics for expedited develop-
ment and design iteration of systems that incorporate bistable or
buckled components suitable to be modeled using the bistable
Duffing oscillator governing equation of motion.

Finally, one may ask why the solution strategy developed here
does not integrate the interwell and intrawell dynamics predic-
tions when the initial velocity is great enough to induce cross-well
behaviors. In other words, why does the strategy reconstruct the
dynamics in pieces rather than continuously like that shown in
Fig. 1(b)? In fact, several efforts to achieve this ideal were under-
taken in this research, but none were fruitful. A number of chal-
lenges could be elucidated from such experiences, but a more
meaningful justification for the difficulties may be given by a
qualitative commentary. Consider that the transition from inter- to
intrawell oscillations represents a bifurcation in the overall
dynamics: the trajectory crosses the homoclinic orbit, see Fig. 1(b),
and the global dynamical behavior of the oscillations change sig-
nificantly. Under such conditions, the bifurcating dynamics occur
on a time scale sufficiently slower than the natural periods of free
decaying oscillation [12]. As a result, the effective mathematical
treatment and reconstruction of such dynamics transition requires
an assessment of the system when reduced to a more appropriate
equation form, namely a normal form [34,35]. This is not to sug-
gest that a unified prediction approach is impossible but rather
that alternative methods may be needed to establish such a fra-
mework. Nevertheless, a direct splicing of inter- to intrawell
dynamics predictions may be effected by using the final states
determined for the interwell dynamics as the initial conditions for
the intrawell prediction. It is seen that this strategy results in
overall good agreement in many cases. For example, the example
shown in Fig. 7 plots the corresponding analytical results with the
numerical data previously presented in Fig. 1(b). Albeit imperfect,
the agreement is nevertheless very good and represents a major
step forward in the accurate prediction of such strongly nonlinear,
transient dynamics.
7. Conclusion

This research developed a new and enhanced averaging
method using the Jacobian elliptic functions to analytically
reconstruct the transient, dissipative dynamics of a bistable Duff-
ing oscillator. By relaxing the requirement for small variation of
the averaged parameters as employed classically, the proposed
analytical strategy enables an accurate, long-time prediction of the
transient dynamics, whether of the intra- or interwell dynamic
regimes. Comprehensive assessments find that the analytical
predictions realize excellent agreement in the decaying ampli-
tudes of oscillation when compared to the exact results deter-
mined by numerical integration. The instantaneous phase exhibits
small deviation with respect to the exact results for some system
parameters and initial conditions. The time-varying amplitudes of
displacement and velocity are derived in an analytical closed-form,
while the reconstruction of the corresponding instantaneous tra-
jectories requires a pseudo-analytical approach that is found to be
much more computationally efficient, for a high degree of accu-
racy, than a conventional numerical integration scheme. Overall,
the considerable accuracy and efficiency of the proposed predic-
tion method open the door to the implementation of the method
in settings where such transient behaviors are of importance,
including understanding the shock vulnerability in structural
design and the effective development of bistable vibration-based
energy harvesters under impulsive excitations.
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