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Reconfigurable Acoustic Arrays
With Deployable Structure Based
on a Hoberman–Miura System
Synthesis
Curved surfaces are often used to radiate and focus acoustic waves. Yet, when tessellated
into reconfigurable surfaces for sake of deployability needs, origami-inspired acoustic
arrays may be challenging to hold into curved shape and may not retain flat foldability.
On the other hand, deployable mechanisms such as the Hoberman ring are as low-dimen-
sional as many origami tessellations and may maintain curved shape with ease due to ideal
rigid bar compositions. This research explores an interface between a Hoberman ring and
Miura-ori tessellation that maintain kinematic and geometric compatibility for sake of
maintaining curved shapes for sound focusing. The Miura-ori facets are considered to
vibrate like baffled pistons and generate acoustic waves that radiate from the ring structure.
An analytical model is built to reveal the near field acoustic behavior of acoustic arrays
resulting from a Hoberman–Miura system synthesis. Acoustic wave focusing capability is
scrutinized and validated through proof-of-principle experiments. Studies reveal wave
focusing phenomena distinct to this manifestation of the acoustic array and uncover
design and operational influences on wave focusing effectiveness. The results encourage
exploration of new interfaces between reconfigurable mechanisms and origami devices
where low-dimensional shape change is desired. [DOI: 10.1115/1.4048745]
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1 Introduction
Acoustic wave focusing has broad applications in many scientific

and engineering fields, including biomedical imaging [1], ultrasonic
therapy [2,3], energy harvesting [4], nondestructive testing [5,6],
and acoustic energy confinement [7], to name a few. Based on
the need, numerous wave focusing methods have been devised,
such as conventional curved transducer surfaces [8] like those
employed in optics [9], metasurfaces [10–13], photonic crystals
[4], or digital control of transducer element signals [14,15]. In prac-
tices of high-intensity focused ultrasound (HIFU), curved transdu-
cers are employed to converge acoustic waves at a focal point to
thermally ablate tumors [2,16]. Although HIFU techniques are
found to effectively treat cancerous tumors, it is challenging to
employ the technique on tumors concealed deep in tissues [17]
since the highly localized focal points have short stand-off distances
from the transducers, such as in the cm scale. Digitally steered
HIFU transducers offer opportunities to focus ultrasound for in
vivo procedures, yet intrinsic limitations on real-time control, com-
putational stability, and portability challenge the proliferation of
digitally steered HIFU use for in vivo cancer ablation [18–20].
Thus, recent studies have proposed using shape adaptive transdu-
cers inspired by origami structures to transport HIFU devices in
compacted configurations through the body to the point of care,
where a deployed transducer shape is realized for treatment, prior
to reversal of the shape change sequence to exit the body [17].
Origami is in fact widely considered as inspiration to devise

complex three-dimensional (3D) structures that exhibit high por-
tability by virtue of planar fabrication and folding-based shape

change [21–23]. Researchers have examined origami-like folding
for robotics [24,25], structural and material design [26–28], space
deployable systems [29], and biomedical devices [30,31].
Origami inspiration has recently motivated explorations for acoustic
wave guiding structures that may be compacted for applications
with severe access limitations, such as in-the-body HIFU [17,32].
Zou and Harne [33,34] employed reconfigurable origami-based
structures to realized tessellated acoustic arrays and studied the
near field and far field wave radiation behaviors, revealing that
curved tessellated arrays may focus acoustic waves. Srinivas and
Harne [35] demonstrated that doubly curved origami-inspired
arrays focus on acoustic waves using circularly symmetric array
geometries. While these array structures focus on acoustic waves,
the tessellations are either not flat-foldable to maximize portability
or are not easily held in curved shapes indicating practical chal-
lenges. Consequently, fundamental research is needed to formulate
reconfigurable origami-inspired structures that may repeatably yield
curved shapes for acoustic wave focusing while providing nominal
flat foldability in kinematic properties.
Motivated by the shortcomings in the state-of-the-art, this

research proposes a new interface between reconfigurable mechan-
ical structures and origami folding to yield an acoustic array with
exceptional control over shape, flat foldability, and wave focusing.
The proposed technique to realize focused waves is to position
acoustic transducers on regular Miura-ori unit facets with folding
behavior intrinsically coupled with that of a one-degree-of-freedom
(1DOF) expandable structure: the Hoberman ring [36,37]. Dai et al.
[38] studied the mobility of the Hoberman sphere and decomposed
the structure into a four-legged platform and movable parallelogram
links. Here, the Hoberman ring is utilized, which can be considered
as an equatorial kinematic loop-chain in the Hoberman sphere [38].
The Hoberman ring consists of several Hoberman ring units, which
are modified scissor elements in the shape of connected angulated
bars. The pairs of angulated bars are connected to each other by a
revolute joint, highlighted in Fig. 1(a) [39]. When such ring units
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are assembled together according to requirements of kinematic
compatibility, the whole Hoberman ring is a 1DOF radially deploy-
ing closed loop structure [40–42].
In this research, the angulated bars of the Hoberman ring are used

as a 1DOF mechanism to control the folded configuration of wave
radiating Miura-ori units (Fig. 1(b)). Here, the Miura-ori units are
attached to the outer bar of the Hoberman ring so that folding of
the Miura facet is determined by the expansion of the Hoberman
ring, as shown in Fig. 1(b), between contracted and deployed ring
configurations. Yet, a fully enclosed ring is not practical to focus
acoustic waves at a distance from the array structure. As a result,
the arrays considered in this research adopt the Hoberman–Miura
synthesis shown in Fig. 1(c). An arc-shaped acoustic array of min-
iature vibrating Miura-ori surfaces radiates acoustic waves toward
the center of the array coincident with the Hoberman ring center.
In other words, by placing the Miura-ori units into the curved
shape of the Hoberman ring, a wave focusing region occurs along
the z-axis near to the ring center, as anticipated on the basis of geo-
metric acoustics [8].
In this research, an analytical model is built and validated to scru-

tinize the wave focusing behavior of the Hoberman–Miura synthe-
sized acoustic array. Section 2 introduces the analytical model
spanning geometric and acoustic characteristics, and Sec. 3 presents
experimental efforts to support salient analytical trends. Then,
Sec. 4 describes theoretical investigations to uncover parametric
influences of array design, driving frequency, and folding extent
on wave focusing capability. Finally, the new findings of this
research are summarized with concluding remarks.

2 Model Formulations
In this section, the geometric model of a controllable, reconfigur-

able acoustic array is developed based on an integration of the
regular Miura-ori tessellation and the Hoberman ring. The geome-
tries are first defined, after which compatibility of shape is identi-
fied. With the Miura-ori facet surfaces related to the change of
Hoberman ring shape, the direct acoustic radiation from the vibrat-
ing Miura facets is found using Rayleigh’s integral.

2.1 Kinematic Modeling of Hoberman Ring and Miura-Ori
Integration. The kinematic relationships among geometric param-
eters for Miura-ori crease patterns and Hoberman ring structures are
first introduced. Figure 2(a) shows the geometry of a regular
Miura-ori unit cell that may be repeated in x- and y-axes or
altered to achieve broad curvature [43,44]. Each regular Miura-ori
unit consists of four facets, such that the coordinates of the nine

vertices are denoted by Eqs. (1)–(9):

(X1, Y1, Z1) = (−S, L − V , 0) (1)

(X2, Y2, Z2) = (0, L, 0) (2)

(X3, Y3, Z3) = (S, L − V , 0) (3)

(X4, Y4, Z4) = (−S, −V , H) (4)

(X5, Y5, Z5) = (0, 0, H) (5)

(X6, Y6, Z6) = (S, −V , H) (6)

(X7, Y7, Z7) = (−S, −L − V , 0) (7)

(X8, Y8, Z8) = (0, −L, 0) (8)

(X9, Y9, Z9) = (S, −L − V , 0) (9)

The relationships among H, S, L, and V and facet design param-
eter A, B, and γ and dihedral folding angle θ are given by Schenk
and Guest [45], as summarized in Eqs. (10)–(13):

H = A sin θ sin γ =
���������
A2 − L2

√
(10)

S = B
cos θ tan γ��������������������

1 + (cos θ tan γ)2
√ (11)

L = A
�������������������
1 − (sin θ sin γ)2

√
(12)

V = B
1��������������������

1 + (cos θ tan γ)2
√ (13)

Figure 2(b) shows the geometry of one Hoberman ring unit [41]. As
the Hoberman ring changes shape around the originO, the nodes on
the angulated bars pass through three circles with radii Rin, Rmid, and
Rout. The relationships among the radii Rmid and Rout and the angu-
lated bar parameters are given in Eqs. (14) and (15). As will be
found in the derivation, the radius Rin is a design parameter of the
Hoberman ring unit:

Rmid = Rin cos
α

2
+

�������������������
K2 − Rin sin

α

2

[ ]2√
(14)

(a) (b) (c)

Fig. 1 (a) Hoberman ring in the fully contracted state and fully deployed state, (b) synthesized Miura-ori based, Hoberman ring
mechanism with one radial degree-of-freedom, and (c) semi-circular acoustic array for sound wave focusing created from a
segment of the full ring mechanism, where acoustic waves are generated by infinitesimal vibrations of the facets like baffled pistons

063301-2 / Vol. 143, JUNE 2021 Transactions of the ASME



Rout = Rin + 2K cos

× π − arcsin
1
K

�������������������
K2 − Rin sin

α

2

[ ]2√( )
−
1
2
(π − α)

[ ]
(15)

Here, the angle α is the central angle of the Hoberman unit that
remains constant during the expanding process. The angle α is
determined by α = 2π/N rad, where N is the number of units in
the whole ring. The K is the length of the angulated bar. Angle ζ
is the obtuse angle created by the triangle defined by each identical
angulated bar. The angle ζ is computed from Eq. (16):

2K2(1 − cos ζ) = R2
in + R2

out−2RinRout cos α (16)

Angle β, shown in both Figs. 2(a) and 2(b), is defined as expan-
sion angle, which is a parameter that connects the geometry of
Hoberman ring and Miura-ori units, and it reflects both the expan-
sion state of the Hoberman ring and folding extent of Miura-ori tes-
sellations. The highlighted edges of the Miura-ori unit overlapped
with the angulated bars of the Hoberman ring, presented in
Fig. 2(a), show how the Miura-ori units are attached to the Hober-
man ring.
To enforce geometric compatibility, the edge length A of the

Miura-ori unit is the same as the angulated bar length K of the
Hoberman ring, A=K. The Miura-ori unit and Hoberman unit are
also geometrically related through expansion angle β, Eq. (17)
(Fig. 2(a)):

(2L)2 = A2 + A2−2A2 cos 2β (17)

The folding angle θ of each Miura unit is, therefore, found accord-
ing to Eq. (18) by relation with the expansion angle β:��

2
√

sin θ sin γ =
������������
1 + cos 2β

√
(18)

The expansion angle β is related to the Hoberman ring design
according to Eq. (19):

K sin
π + α

2
− β

[ ]
=

�������������������
K2 − Rin sin

α

2

[ ]2√
(19)

Based on the geometry derived above, the configuration of the
Hoberman ring is uniquely defined by three independent variables:
the bar length K, the Hoberman unit number N over a full circular
ring, and the inner circle radius Rin. Based on geometric and kine-
matic limits, the minimum value of Rin is 0, while the maximum
value of Rin is K/[sin(α/2)]− 2Ksin(α/2). When Rin reaches its
maximum value, this synthesized structure is fully deployed and
that facets on adjacent Miura-ori units will be coplanar. This
creates a seemingly singular configuration [46,47] where adjacent
Hoberman ring units have colinear angulated bars. Yet, since
each Miura-ori unit is independently attached to each respective
Hoberman ring unit, the collinearity of adjacent ring unit bars
would not inhibit reconfiguration away from the fully deployed
state. In this research, while the geometry is determined for a full
Hoberman ring, only a portion of the structure is considered for
acoustic purposes for sake of focusing waves radiated from the
Miura-ori units that vibrate like baffled pistons.
Figure 2(c) shows a schematic of the synthesized mechanism

while Fig. 2(d ) provides a closer view of two units in the mecha-
nism. The geometry of one Hoberman unit consists of nodes H21,
H12, and H13. For the convenience of calculation, the origin O is
defined such that the Hoberman ring is positioned in the y− z
plane. As the mechanism expands and contracts, the nodal locations
for H11, H12, and H13 for the first Hoberman unit are defined by
Eqs. (20)–(22):

(xH11 , yH11 , zH11 ) = 0, Rmid sin
α

2
, Rmid cos

α

2

( )
(20)

(a) (b) (c)

(d) (e)

Fig. 2 (a) Geometry of the regular Miura-ori unit, (b) geometry of the Hoberman ring unit, illustration of expanding between two
extremities of the Hoberman ring unit, (c) a 12-unit Hoberman ring with six ring units synthesized with six Miura-ori units, (d ) sche-
matic of synthesized Miura-ori based Hoberman ring section and related reconfiguration, and (e) expansion ratio of Hoberman ring
as a function of number of Hoberman units in the ring
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(xH12 , yH12 , zH12 ) = (0, 0, Rin) (21)

(xH13 , yH13 , zH13 ) = (0, 0, Rout) (22)

Due to the rotational symmetry of the Hoberman ring, the coor-
dinates of the remaining Hoberman ring nodes are given for the nth
Hoberman unit in Eqs. (23)–(25):

(xHn1 , yHn1 , zHn1 )

=

0, Rmid sin
α

2
cos[(1 − n)α]

−Rmid cos
α

2
sin(1 − n) + Rmid sin

α

2
,

Rmid sin
α

2
sin[(1 − n)α]

+Rmid cos
α

2
cos[(1 − n)α] + Rmid cos

α

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(23)

(xHn2 , yHn2 , zHn2 )= (0, −Rin sin[(1− n)α], Rin cos[(1− n)α]+Rin)

(24)

(xHn3 , yHn3 , zHn3 )= (0, −Rout sin[(1− n)α],

Rout cos[(1− n)α]+Rout)
(25)

Once the coordinates of the Hoberman ring are identified, the
folding angle θ of the Miura unit is identified from Eq. (18). The
nodal locations for nine vertices of the first Miura-ori unit, which
is attached to the first Hoberman unit, are given by Eqs. (26)–(34):

(x11, y11, z11)= −S, Rmid sin
α

2
−V , Rmid cos

α

2

( )
(26)

(x12, y12, z12)= 0, Rmid sin
α

2
, Rmid cos

α

2

( )
(27)

(x13, y13, z13)= S, Rmid sin
α

2
−V , Rmid cos

α

2

( )
(28)

(x14, y14, z14)= (−S, −V , Rout) (29)

(x15, y15, z15)= (0, 0, Rout) (30)

(x16, y16, z16)= (S, −V , Rout) (31)

(x17, y17, z17)= (−S, −L−V , Rout −H) (32)

(x18, y18, z18)= (0, −L, Rout −H) (33)

(x19, y19, z19)= (S, −L−V , Rout −H) (34)

The coordinates for the mth vertex on the nth Miura-ori unit are
computed via Eq. (35), which essentially rotates the mth vertex with
respect to the first Miura unit according to the positioning on the
Hoberman ring

xnm
ynm
znm

⎡
⎣

⎤
⎦=

1 0 0
0 cos[−(n−1)α] −sin[−(n−1)α]
0 sin[−(n−1)α] cos[−(n−1)α]

⎡
⎣

⎤
⎦ x1m

y1m
z1m

⎡
⎣

⎤
⎦ (35)

In the mechanism shown in Fig. 2(c), the parameters defining the
synthesized mechanism are Hoberman unit number N= 12, center
angle α= 30 deg, angulated bar length K= 50 mm, and angulated
bar angle ζ = 150 deg.
Although each Miura-ori unit is attached to a given Hoberman

unit, the adjacent Miura-ori units are not interfaced since facet
bending would be required for such a monolithic structure. Thus,
the semi-circular shaped array considered here is a 1DOF

deployable kinematic mechanism, with configuration defined by
bar length K, Hoberman unit number N, inner radius of the Hober-
man ring Rin, Miura side length B, and edge angle γ.
The extremity of the shape change enabled by the Hoberman–

Miura synthesized mechanism is also defined. An expansion ratio
is, therefore, defined as the ratio of the maximum value of the
outer circle radius to the minimum value of the outer circle
radius, Eq. (36):

Rout max

Rout min
=

1
sin α

(36)

In other words, the expansion ratio provided by the mechanism is
determined by the Hoberman unit number N. Figure 2(e) presents
the change of expansion ratio as a function of N. A Hoberman
ring with greater number of units results in greater expansion
capacity.

2.2 Acoustic Modeling and Analysis. Each Miura-ori facet is
assumed to be a vibrating baffled piston, as thoroughly discussed
and supported through previous research [32,17]. By virtue of
this assumption, Rayleigh’s integral is employed to predict the
acoustic waves radiated from the Miura-ori facets that are attached
to the Hoberman ring. The direct acoustic field is considered, while
reflected and diffracted wave field contributions are recognized to
be influential only in certain spatial and frequency regimes [48].
A spherical coordinate system is defined using a radial distance
R, elevation angle ψ, and azimuth angle ϕ, as shown in Fig. 1(c).
By Rayleigh’s integral and linear superposition, the total acoustic
pressure at a field point is given by Eq. (37):

p(R, ψ , ϕ, t) = j
ρ0ωu0
2π

e jωt
∑Nf

n=1

∫
An

e−jkRn

Rn
dAn

[ ]
(37)

The ρ0 is the atmospheric density of the fluid medium, ω is the
angular frequency, u0 is the amplitude of the normal particle velo-
city of the vibrating facet, Nf is the number of facets, An is the area of
the nth facet, k=ω/c0 is the wavenumber where c0 is the sound
speed, and Rn is the distance from the center of the nth facet
to the field point. In this study, air is the fluid medium so that
ρ0 = 1.21 kg/m3 and c0= 343 m/s.
A general solution to Eq. (37) may only be evaluated numeri-

cally, although the integrals become computationally challenging
to converge for all field points. To surmount this limitation, this
research employs the technique developed by Ocheltree and
Frizzel [49] to discretize the vibrating baffled piston surfaces into
a large number of discrete point sources. The distance between
point sources is much less than the wavelength and much less
than the facet dimensions. Consequently, upon superposition of
all acoustic field contributions from each point source, an accurate
representation of the direct acoustic field for the near field and far
field of the array is obtained [49–52]. Thus, the discretized Ray-
leigh’s integral to account for all point source contributions from
the vibrating Miura-ori facets is Eq. (38), where Amn is the mth dis-
cretized surface element on the nth facet andM is the number of dis-
cretized surfaces on a given facet:

p(R, ψ , ϕ, t) = j
ρ0ωu0
2π

e jωt
∑Nf

n=1

∑M
m=1

e−jkRmn

Rmn
Amn

[ ]
(38)

Once the acoustic pressure is obtained, the sound pressure level
(SPL) is calculated from Eq. (39):

SPL = 20 log10
prms(R, ψ , ϕ)

pref

[ ]
(39)

The prms(R, ψ, ϕ) is the root-mean-square value of p(R, ψ, ϕ),
while pref= 20 μPa is the reference acoustic pressure in air.
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3 Experimental Validation
A proof-of-concept specimen is designed and fabricated to under-

take experimental validation efforts for the analytical model. The
comparison of analytical and experimental results is reported in
this section.

3.1 Experimental Proof-of-Concept Array of Hoberman–
Miura Wave Radiating Units. Figure 3(a) provides a schematic
representation of the array structure represented by the
proof-of-concept specimen shown in Fig. 3(b). The mechanism
employs six Miura-ori units each attached to a Hoberman ring
unit that are, respectively, connected in series. The facet dimensions
of the Miura-ori units are B= 50 mm and γ = 70 deg. The Miura-ori
facets are composed of corrugated polypropylene with square cross
section flutes of square edge length 5 mm. The thickness of the
polypropylene sheet in the corrugations is 0.3 mm. The polypropyl-
ene sheets shaped by the laser cutter (Epilog Laser Mini 24) and
then assembled. Each Miura-ori unit cell is made of four facets,
and each facet is made of four laser cut sub-facets that are
adhered together in the facet shape with a miniature 2.5 cm diameter
loudspeaker (Parts Express) at the center. The dimensions of the
Hoberman ring are N= 12, bar length K= 50 mm, ζ = 150 deg,
although only six of the 12 units are used in the proof-of-concept
specimen. The angulated bars of the Hoberman ring are printed
by a 3D printer (FlashForge Creator Pro) using acrylonitrile buta-
diene styrene (ABS) and are fastened together. The Miura-ori
facets are attached to the Hoberman units by inserting threaded
rods into the fluted, square-shaped edges of the Miura-ori facets
and the flutes on the angulated Hoberman bars. The threaded rods
function as hinges to enforce revolute joint behavior required for
the Miura folding process compatible with the expansion process
of the Hoberman ring. The miniature loudspeakers are driven by
the external amplifier with the same signal. Figure 3(e) verifies
the shape change of the analytical representation of the array along-
side the experimental photos of the deployed and contracted config-
urations of the Hoberman–Miura proof-of-concept specimen.

3.2 Experimental Methods. Experiments are conducted
inside a hemi-anechoic chamber, with interior dimensions of

7.78 m, 10.9 m, and 4.66 m, as shown in Fig. 3(d ). The specimen
is affixed to fiberglass wedge surfaces to serve as a baffled
backing. The folded angle of the array is measured directly. A
microphone (PCB Piezotronics, Depew, NY, 130E20) is used to
measure the axial acoustic pressure of the array, as shown in
Fig. 3(c). A displacement sensor (WDS-1500-P60-SR-U, SN
51712) is used to directly measure the axial location of the micro-
phone. The microphone measures the axial acoustic pressure in
the azimuthal angle ϕ = 0 deg. A single frequency signal is sent
to an audio amplifier that drives the array loudspeakers. Measure-
ments from the microphone are post-processed by MATLAB to deter-
mine the acoustic pressure amplitude and sound pressure level that
is recorded along the axial distance.

3.3 Experimental and Analytical Result Comparisons.
Figure 4 presents a comparison between experimental and analytical
results. The normal velocity amplitude used in the analyticalmodel is
determined empirically to be 0.6 mm/s. In Fig. 4(a), the folding
angle of the array is θ = 71.55 deg and the driving frequency is
4 kHz. For this condition, the peak of SPL is 92 dB around R=
0.080 m. As the frequency is increased to 5 kHz and 6 kHz, the
axial acoustic SPL peak reduces to 91 dB and 88 dB, respectively,
at axial distances near R= 0.085 m and R= 0.09 m, locations more
distance from the origin than the focal point at 4 kHz. Figure 4(c)
shows the corresponding experimental results. The results suggest
that when driven by 4 kHz, the axial SPL peak reaches around
91 dB at R= 0.08 m. When the driving frequencies are 5 kHz and
6 kHz, the axial SPL peaks are 92 dB and 90 dB, respectively,
both peaks occurring at R= 0.11 m. Compared with Fig. 4(a), the
focusing trends qualitatively agree, although inability to exactly
realize the ideal model geometry through the proof-of-concept
array and precise environmental conditions lead to discrepancies
with exact SPL and distance values. In other words, the miniature
loudspeakers do not fully activate the Miura-ori facet surfaces of
the array, which contributes to imprecise realization of the
modeled ideal Hoberman–Miura synthesized array. In addition,
mounting of the array in the hemi-anechoic environment is unable
to perfectly simulate anechoic conditions, thus leading to minor
room reflections that degrade measurements, especially at low SPL
values such as for axial distances greater than 0.35 m. Yet, there is

(a)

(e)

(b) (c) (d)

Fig. 3 (a) Analytical model of the semi-Hoberman ring array, with six activated Miura-ori units, (b) proof-of-concept specimen,
(c) top view schematic of the experiment setup in an anechoic chamber, a microphone is employed to measure the axial SPL,
(d ) experiment setup in the hemi-anechoic chamber, and (e) specimen under five different folding states, with folding angles of
20.3 deg, 30.4 deg, 47.5 deg, 63.1 deg, and 83.7 deg
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strong overall qualitative agreement of predicted behavior as
observed experimentally, especially nearer to the focal point.
Figure 4(b) shows the axial SPL as a function of axial distance for

a smaller value of folding angle 63.07 deg. The three SPL peaks at
4, 5, and 6 kHz occur near R= 0.1 m, with the peak SPL value of
about 91, 90, and 89 dB, respectively. The focusing characteristics
for folding angle 63.07 deg in Fig. 4(b) are similar to those for
folding angle 71.55 deg in Fig. 4(a). Experimental results for the
folding angle 63.07 deg are likewise shown in Fig. 4(d ). Here,
the trends of focal point locations increasing with increase of fre-
quency observed analytically are also seen experimentally. These
results confirm the efficacy of the analytical model to predict the
salient near field behaviors of a proof-of-concept Hoberman–
Miura synthesized acoustic array, despite inability to fabricate an
ideal experimental specimen. With such foundation in place, it
remains to investigate design techniques by which the synthesized
mechanism is constructed maintaining kinematic compatibility
while acoustic wave focusing is maintained.

4 Exploring Wave Focusing Methods Using
a Hoberman–Miura Synthesized Array
In this section, the analytical model is employed to gain insight

on combined acoustic and mechanical geometries that enable
wave focusing behaviors via the Hoberman–Miura synthesized
array. Sections 4.1–4.4 investigate design and operational parame-
ters relevant to wave focusing provided by the array.

4.1 Mechanism Expansion and Folding Angle Effects on
Acoustic Wave Focusing. The influence on array expansion or
folding on the focal point SPL is investigated. Here, an array is con-
sidered using six Hoberman–Miura units assembled as shown in the
insets of Fig. 5. The bar length is K= 50 mm, obtuse angle
ζ = 150 deg, the Miura facet edge length is B= 50 mm, and the
edge angle is γ = 70 deg. Figures 5(a)–5(c) present the results of
axial SPL for driving frequencies 4 kHz, 5 kHz, and 6 kHz, respec-
tively, with five different folding angles in each sub-figure. The five
folding angles are determined by the inner radii of the Hoberman
ring, which are 40 mm, 50 mm, 60 mm, 70 mm, and 80 mm,

respectively. In each sub-figure, the line styles indicate the
folding extents of the array, while the inset images illustrate the
array when folded to θ = 71.5 deg so that the inner radius of
the Hoberman ring is 40 mm.
In Fig. 5(a) for a driving frequency value of 4 kHz, as the Hober-

man ring expands, which occurs for smaller folding angle, the SPL
focal point location increases from 0.08 m to 0.12 m. In Figs. 5(b)
and 5(c), similar trends are observed at 5 kHz and 6 kHz, respec-
tively. On the other hand, the respective changes of focal point
SPL value with change in array configuration differ based on the
wave interference corresponding to the driving frequency. For
instance, the focal points at 4 kHz in Fig. 5(a) reduce from 91 dB
to 90 dB as the folding angle decreases from 71.5 deg to
55.2 deg, while at 6 kHz in Fig. 5(c), the peak SPL values increase
from 87 dB to 89 dB. By contrast, at 5 kHz in Fig. 5(b), there is no
quantitative change in focal point SPL as the Hoberman–Miura
mechanism is reconfigured over the range studied. These distinc-
tions indicate that near field interference in this frequency range
affects stability of acoustic energy delivery to the focal point.
In these examples, 5 kHz is the exemplary frequency for which

small controlled changes of the array shape by the mechanism
expansion and contraction do not appreciably influence the sound
pressure level received at the focal point. Despite the frequency-
dependent behavior, for this Hoberman–Miura synthesized acoustic
array, the focusing behavior leads to around 6 dB increase in SPL
(around three times increase in pressure amplitude) at the focal
point compared with the SPL close to the surface and center of
the array.

4.2 Activation of Array Facets Across a Frequency
Bandwidth. In this section, the sensitivity of peak axial SPL result-
ing from changes to the driving frequency and number of activated
sound radiating facets is examined. The synthesized acoustic array
studied here employs 12 Hoberman ring units, bar length K=
50 mm, B= 50 mm, and edge angle γ = 70 deg. In Fig. 6(a), the
folding angle is θ = 33.86 deg. The insets show that each line
style represents an array containing either 4, 6, or 8 activated
Miura-ori units attached to the Hoberman ring. For greater
numbers of activated Miura-ori units, the peak SPL values increase,
which is consistent in Figs. 6(b) and 6(c) for folding angles θ =

(a) (b)

(c) (d)

Fig. 4 Comparison between experimental and analytical results of SPL as a function of axial distance:
(a and b) analytical results of the axial SPL as a function of axial distance, with different folding angles
and (c and d ) experimental SPL
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44.68 deg and 58.29 deg, respectively. This confirms a general
intuition that for sound focusing wave radiators, the greater the
vibrating surfaces are, the greater sound pressure amplitudes will
be the focal point. In Fig. 6(a), regardless of folding angle, the
driving frequency increase results in the increase of focal point
SPL. In Figs. 6(b) and 6(c), frequencies are observed where the
peak axial SPL values reach maxima. Because the radiating surfaces
of the Miura-ori units do not direct point to the focal point, destruc-
tive interference phenomena occur in close relation with the wave-
length. This causes frequency-dependent focal point SPL,
especially when the array is highly folded as shown in Fig. 6(c).
In absence of this unique characteristic of the Hoberman–Miura
synthesized acoustic array, the pressure amplitude at the focal
point of a nominally ideal spherical or arc-shaped sound radiator
uniformly increases with increase in frequency [8].

4.3 Influence of Hoberman Unit Numbers on the Wave
Focusing Capability. As shown in Fig. 2(e), greater number N
of Hoberman ring units results in greater expansion ratio
between deployed and contracted states, which has a variety of
practical benefits. Consequently, it is needed to illuminate how
the number of ring units N in the synthesized acoustic array
tailors wave focusing capability. Here, throughout Fig. 7, each
array considered employs eight activated Miura-ori units while
the number of ring units varies, thus governing the overall array
shape as shown through inset schematics in Fig. 7. In all cases
in Fig. 7, the folding angle is 60 deg and the driving frequency
is 4 kHz. The results in Fig. 7 are shown as a function of normal-
ized axial distance R/Rin since the absolute focal point locations
change for change in ring number N.
It is observed in Fig. 7 that as a greater number of Hoberman ring

units are employed, the focal point SPL value decreases. This result
is intuitive because the radius of curvature of the array decreases
with fewer ring units N, and a greater proportion of an arc activated
around a focal point will nominally increase sound pressure

amplitude at the focus [50]. Figure 7(a) also indicates that the
peak SPL of each Hoberman ring number value occurs at a normal-
ized radial distance around 1, demonstrating that the focal point of
the synthesized arrays consistently occurs around the center of the
semi-Hoberman ring mechanism.
Both these trends of focal point position and focal point SPL are

confirmed for driving frequencies 5 kHz and 6 kHz, as shown in
Figs. 7(b) and 7(c), respectively. The results present intuitive find-
ings in multiple respects. First, the focal point is nominally at the
geometric acoustic center [8], which is the center of the semi-
Hoberman ring mechanism in these studies. Second, the reduction
of SPL at the focal point for increasing number N of Hoberman
ring units is intuitive because the Miura-ori units are more distant
to the focusing center for larger values of N. Thus, while greater
values of N for the Hoberman ring assembly lead to increased
shape change, a similarly greater number of Miura-ori units must
be used to retain high focal SPL for the acoustic array
implementation.

4.4 Discussion, Multi-Dimensional Concept Extension, and
Practical Assessments. In Secs. 4.1–4.3, the deployability and
acoustic focusing capability of the Hoberman–Miura synthesized
array is examined from the standpoints of design and implementa-
tion. Here, the primary findings are summarized and considered in
an extension of the concept to multidimensional arrays.
By leveraging the straightforward 1DOF reconfiguration of the

Hoberman mechanism, this research identifies a potential means
to control the shape change of wave focusing origami-inspired
acoustic arrays. By enforcing kinematic compatibility between
Miura-ori facet and Hoberman ring unit cells, the synthesized mech-
anism created here provides inspiration for other researchers
seeking programmed shape change functionality for origami tessel-
lations. For a partial ring of the Hoberman–Miura synthesized
acoustic array, the unique tessellated sound radiating facets
do not propagate and focus acoustic waves in a way precisely

(a) (b) (c)

Fig. 6 Focal point SPL as a function of driving frequency of the synthesized array. Array with (a) folding angle of 33.86 deg,
(b) folding angle of 44.68 deg, and (c) folding angle of 58.29 deg. Line styles indicate different numbers of activated Miura-ori
units attached to the 12-unit Hoberman ring.

(a) (b) (c)

Fig. 5 Folding influence on acoustic wave focusing. Driving frequencies for the array are (a) 4 kHz, (b) 5 kHz, and (c) 6 kHz. In each
sub-figure, the folding angles θ shown by line styles are 71.5 deg, 67.2 deg, 63.1 deg, 59.1 deg, and 55.2 deg.
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analogous to geometrical acoustics. Due to inwardly directed facets,
sound focusing by the proposed array exhibits frequency depen-
dence that is atypical for nominal ring-shaped sound radiators,
although reports indicate that sound focusing gains are as substan-
tial as for the ideal acoustic geometries [50,35]. Through the
example synthesized array studied in this report, greater varieties
of origami-mechanism integrations may be uncovered and explored
for distinctive application needs.
Here, it is found that the acoustic array creates a focal point at the

center of the Hoberman ring mechanism and that the position of the
focal point is manipulated by expansion and contraction of the ring.
Figure 8 gives an illustration of how this concept may be extended
to the design of the Hoberman sphere [38], using a part spherical
region as the functional surface to be used for sake of an acoustic
array platform. Figure 8(a) shows representative contracted and
deployed states of a Hoberman sphere-based extension of the
concept studied here, featuring four rings of the Hoberman–Miura
synthesized mechanism radially extending from a shared nodal
location on a Hoberman sphere. According to Dai et al. [38], the
shared node at the origin can be designed as a stable, eight-legged
platform, while the Hoberman rings are guided in the deployed and
contraction process by the linkages. As shown in the cross-sectional
view in Fig. 8(b), each ring contains seven Hoberman–Miura units.
Since the mechanism has a shared central unit, one means of
practically changing the shape of the array is to centrally locate a
linear actuator or spring as shown in Fig. 8(b). While there are
potentially numerous embodiments of such actuation, this research
exemplifies that versatile reconfigurable structures like the Hober-
man mechanism may be exploited for sake of changing the shape

of origami-inspired devices, here studied in the context of acoustic
arrays.

5 Conclusion
This research explores an interface between reconfigurable struc-

tures and origami devices to propose a concept for reconfigurable
tessellated acoustic arrays with straightforward shape change for
sound focusing. By establishing kinematic and geometric compati-
bility between a Hoberman ring unit and Miura-ori unit for sound
radiation, a reconfigurable acoustic array is assembled and investi-
gated. Following experimental validation of salient model trends,
the influences of wave focusing governed by array geometry are
investigated. The results reveal similarities between geometric
acoustics and the proposed tessellated array approach as well as
uncover principles that balance synthesized mechanism simplicity
with the effectiveness of wave focusing. The significance of this
research is an exemplary integration of kinematic mechanisms
with origami adaptive systems with first application to wave focus-
ing structures where controllable curvatures are central to focusing
properties. This research motivates other mechanism-tessellation
integrations where low degree-of-freedom shape change of
origami devices is desired.
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Fig. 7 Axial SPL as a function of normalized axial distance. Arrays with eight activated Miura-ori units, each with the folding angle
of 60 deg are tested at driving frequency of (a) 4 kHz, (b) 5 kHz, and (c) 6 kHz. Line styles and insets indicate Hoberman rings with
three different Hoberman ring numbers that the eight Miura-ori units are attached to.

(a) (b)
(c)

Fig. 8 Overview of a 3D Hoberman ring mechanism: (a and b) illustration of the contracted and deployed states of the 3D acoustic
array and (c) cross-section of the mechanism employed to control the expansion of the array
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