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Online Signal Denoising Using
Adaptive Stochastic Resonance in
Parallel Array and Its Application
to Acoustic Emission Signals
Signal denoising has been significantly explored in various engineering disciplines. In par-
ticular, structural health monitoring applications generally aim to detect weak anomaly
responses (including acoustic emission (AE)) generated by incipient damage, which are
easily buried in noise. Among various approaches, stochastic resonance (SR) has been
widely adopted for weak signal detection. While many advancements have been focused
on identifying useful information from the frequency domain by optimizing parameters in
a post-processing environment to activate SR, it often requires detailed information
about the original signal a priori, which is hardly assessed from signals overwhelmed by
noise. This research presents a novel online signal denoising strategy by utilizing SR in a
parallel array of bistable systems. The original noisy input with additionally applied
noise is adaptively scaled, so that the total noise level matches the optimal level that is ana-
lytically predicted from a generalized model to robustly enhance signal denoising perfor-
mance for a wide range of input amplitudes that are often not known in advance. Thus,
without sophisticated post-processing procedures, the scaling factor is straightforwardly
determined by the analytically estimated optimal noise level and the ambient noise level,
which is one of the few quantities that can be reliably assessed from noisy signals in prac-
tice. Along with numerical investigations that demonstrate the operational principle and the
effectiveness of the proposed strategy, experimental validation of denoising AE signals by
employing a bistable Duffing circuit system exemplifies the promising potential of imple-
menting the new approach for enhancing online signal denoising in practice.
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1 Introduction
Noise is unavoidable in measurements. For example, in structural

health monitoring (SHM), the accuracy in assessing the structural
integrity may be significantly undermined due to noise contamina-
tion in the measurement of damage-induced signals. Since structural
damage often worsens over time to adversely affect the functioning
of the system, it is imperative to identify incipient, small-sized
damages. Yet, weak anomaly signals generated by incipient
damage can easily be buried in noise. Therefore, accurately recov-
ering the damage-induced signals from noise-contaminated mea-
surements is one of the major challenges in SHM [1,2].
Among various methods, a nonlinear phenomenon called sto-

chastic resonance (SR) has recently received significant attention
for signal processing. Unlike other conventional methods that
may weaken the original signal by generally filtering out the
noise [3,4], SR may amplify the weak signal buried in noise by uti-
lizing the attendant noise that is a free source of energy. Since the
concept of SR was first introduced to assess the periodic recurrence

of the Earth’s ice ages [5,6], it has been observed from various phe-
nomena in physical [7,8], chemical [9,10], biological [11–13], and
social [14,15] systems. SR often refers to a phenomenon where a
suitable amount of noise enhances the output signal quality, often
the signal-to-noise ratio (SNR) in a nonlinear system [16,17]. For
example, when right amount of noise is included in a weak input
signal, a nonlinear system may exhibit a large periodic response
that is statistically synchronized with the periodicity of the input
signal. As a result, the output power spectral density corresponding
to the periodic excitation frequency may be greatly increased and
exhibit a peak when SR occurs. Due to this constructive role of
noise when SR is activated, SR has been explored in a variety of
contexts, such as biomedical systems [18,19], image processing
[20,21], and fault diagnosis in mechanical systems [22–30].
The optimal amount of noise that activates SR has often been

estimated based on a classical theoretical framework of time-scale
matching that assumes adiabatic condition where the frequency
and amplitude of the deterministic input signal and noise intensity
are much smaller than unity [16,17]. Since the input signal in prac-
tical applications seldom satisfies the adiabatic assumption, SR has
generally been employed by tuning the system parameters that
adjust the restoring potential of the nonlinear system and/or by
scaling the frequency of the input signal to utilize the classical the-
oretical framework of time-scale matching [23–33]. On the other
hand, the system parameters, amplitude and frequency scaling
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factors, are often determined by computationally expensive optimi-
zation algorithms in a post-processing environment based on the
classical SR theory. Moreover, detailed information about the orig-
inal signal are often required to be known a priori for optimized
system parameter selections, which is hardly satisfied in practice
especially when the signal is overwhelmed by noise. In addition,
while SR has been exploited to successfully enhance SNR for
weak signal detection in the frequency domain, for example, by
identifying damage-induced frequency changes that become more
prominent by SR, relatively little attention has been made to
recover the time domain waveforms by harnessing SR.
To address these concerns, this research investigates a novel

signal conditioning methodology for online signal denoising. This
study focuses on exploring a new strategy that effectively utilizes
the SR in an array of bistable systems to reduce noise and recover
the original signal waveform by adaptively adjusting the input
amplitude based on the analytically determined optimal noise
level and the noise level of the given signal, which is one of the
few quantities that may be identified from practical measurements
overwhelmed by noise. The proposed approach is not limited to
small-amplitude periodic input signals by exploiting the suprathres-
hold SR in bistable system array [18,34,35]. In the following sec-
tions, we first discuss the potential of utilizing SR for signal
denoising in a parallel array of generalized bistable systems with
additional noise applied to the input signal. Then, the analytical
investigation that estimates optimal noise level and gain selection
strategy for readily activating SR are introduced considering practi-
cal implementations for online signal denoising. Numerical investi-
gations on denoising and recovering example acoustic emission
(AE) signals and aperiodic signals verify the denoising performance
of the new approach. Following proof-of-concept experimental
investigations on AE signal denoising, concluding remarks are pre-
sented to summarize and reflect upon the potential of the new
approach.

2 Stochastic Resonance in an Array of Bistable Systems
for Signal Denoising
2.1 System Model Formulation. A parallel array of N

identical bistable systems is considered for utilizing SR for signal
denoising, as illustrated in Fig. 1. The original signal of interest
s(τ) that is contaminated by zero-mean Gaussian white noise ξ(τ)
with autocorrelation ξ(τ)ξ(0) = 2Dξδ(τ) is applied to the parallel
array of bistable systems. Additional Gaussian white noise ηj(τ)
with zero-mean is applied to the jth bistable system in the array,
where j= 1, 2,…, N. The additional noise ηj(τ) having a common
noise intensity Dη are independent to each other and the original
attendant noise ξ(t). These signals are applied as input to each

bistable system SB following amplitude gain adjustments. The
output signals zj(τ) of each bistable system are averaged as �z(τ) to
recover the original signal as shown in Fig. 1. A heavily damped
bistable Duffing oscillator is employed as an archetypal model for
the bistable systems in the array. Considering a heavily damped
motion of a particle in a symmetric double-well potential, the
inertia of the particle is ignored to obtain the non-dimensional gov-
erning equation as [16]

z′j(τ) = −∂U(τ)/∂z + s(τ) + ξ(τ) + ηj(τ) (1)

The restoring potential of the oscillator is expressed as
U(zj) = −z2j /2 + z4j /4. ( )

′ indicates differentiation with respect to
non-dimensional time τ. In this section, the original ambient
noise ξ(τ) and gain adjustment are not considered (Dξ = 0 and
gain G= 1) to highlight the operational principle of utilizing SR
for signal denoising.
Figure 2 demonstrates a numerical example of signal denoising

using the algorithm presented in Fig. 1. In this example, we
employ an amplitude modulated sine wave as an exemplary original
signal of interest s(τ), which simulates a typical AE signal [2]:

s(τ) =
A

2
1 − cos

2πfo(τ − τd)
Ncyc

( )[ ]
cos(2πfo(τ − τd))Π(τ) (2)

Acoustic emission signals are transient high-frequency stress
waves that are often utilized to identify incipient small-sized
cracks in aerospace, mechanical, and civil structures. Since AE
signals by small-sized damages may easily be buried in noise in
practice, denoising is critical for AE-based SHM [2,36]. Further
details on the AE signals with experimental investigation results
are discussed in Sec. 4. A = 0.3 and fo= 0.006, respectively, repre-
sent the maximum amplitude and frequency of the signal. τd= 539
indicates the time when the amplitude modulated signal starts for
Ncyc= 10 cycles. Here, Π(τ)=H(τ− τd)−H(τ− (τd+Ncyc/f0)) and
H(τ) is the Heaviside step function.
Stochastic resonance is a phenomenon based on noise-activated

saddle-node bifurcations. It is well known that a bistable Duffing
oscillator may exhibit non-unique complex steady-state dynamics
when the excitation frequency becomes close to the oscillator’s
linear natural frequency [34,37–39]. On the other hand, if the exci-
tation frequency is much lower than the linear natural frequency, the
excitation threshold that triggers saddle-node bifurcation becomes
less influenced by the exact waveform of excitation s(τ) and its fre-
quency since it approaches to the quasi-static bifurcation threshold.
In this research, the bistable system is designed to exhibit a linear
natural frequency that is much higher than the input signal
frequency range in order to reliably activate the saddle-node

Fig. 1 Block diagram of the signal denoising algorithm using SR in an array of bistable
systems
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bifurcation. As a result, the SR in the bistable system may be
robustly realized regardless of the exact excitation form.
Figure 2(a) shows the signal s(τ) with additive Gaussian white

noise ηj(τ), which is applied as input to 100 bistable systems.
The noise independent to each otherwith a common intensity ofDη =
0.26 are generated using the MATLAB command randn. The responses
of the bistable oscillators are obtained by numerically integrating Eq.
(1) utilizing a fourth-order stochastic Runge–Kutta numerical
method in MATLAB [40]. Figure 2(b) shows a representative response
of the bistable oscillator. When the amplitude of the original signal
s(τ) is zero (τ< 539 or τ> 2206), noise-activated large amplitude
interwell transitions between the two stable equilibria of the bistable
Duffing oscillator do not occur periodically in time.However,we can
observe a trend of repeated interwell oscillations especiallywhere the
original signal s(τ) exists in the input signal, 539≤ τ≤ 2206.
Figure 2(c) presents the average �z(τ) of 100 output signals, which
recovers the original sinusoidal signal with great quantitative agree-
ment. The incoherent random transitions induced by the noise in each
bistable element are averaged out to negligible amplitudes when the
original signal is not included in the input. However, the original
signal in combination with additional noise ηj(τ) activates statisti-
cally coherent interwell oscillations that become more prominent
through the averaging process. As a result, the original signal is sto-
chastically amplified in amplitude and approximately reconstructed.
On the other hand, serving as a control for the proposed approach,
Fig. 2(d ) shows the output waveform obtained by simply averaging
100 runs of original signals with independently added noises without
employing the array of bistable elements, which results in
s(τ) +

∑100
j=1 ηj(τ)/100. It is observed that the averaged output

signal of the bistable system array utilizing SR
(�z(τ) =

∑100
j=1 zj(τ)/100), shown in Fig. 2(c), exhibits remarkably

superior denoising performance compared to the results shown in
Fig. 2(d ). In addition, the signal denoising results utilizing conven-
tional filtering is provided in Appendix A. These results clearly
demonstrate the merit and potential of utilizing the parallel array of
bistable systems for SR-based signal denoising.
The SR in this study is based on considering a heavily damped

motion of a particle driven by a zero-mean signal in a symmetric
double-well potential. As a result, if the original signal has a
non-zero bias, the output of each bistable element may tend to
exhibit intrawell responses more frequent in the biased direction,

which may result into a distorted waveform recovery. On the
other hand, by asymmetrically designing the double-well potential
to compensate the bias in the original signal, the proposed algorithm
may be effectively applied for denoising input signals with
non-zero-mean. For example, an asymmetric double-well potential
Ua(zj) = a0zj − z2j /2 + z4j /4 compensates the non-zero bias a0 in
the original signal to yield an identical governing equation as
Eq. (1):

z′j(τ) = −∂Ua(τ)/∂z + sa(τ) + ξ(τ) + ηj(τ) (3a)

=−∂U(τ)/∂z + s(τ) + ξ(τ) + ηj(τ) (3b)

where sa(τ)= a0+ s(τ) is the biased original signal.

2.2 Theoretical Framework for Stochastic Resonance in
Parallel Array. We employ the sample Pearson’s correlation coef-
ficient (CC) [41] as a metric for characterizing SR and evaluating
the signal denoising performance by quantifying the similarity
between the original signal s(τ) and the denoised signal �z(τ);
namely, CC closer to one implies superior signal denoising. Assum-
ing s(τ) is a zero-mean signal, CC is defined as [34]

CC =max
(s(τ) − s(τ))(�z(τ + τd) − �z(τ + τd))

σsσ�z

{ }
=max

s(τ)(�z(τ + τd) − �z(τ + τd))
σsσ�z

{ }
(4)

where the angular brackets (… ) denote an average over time, τd is a

time lag, and σX =
																	
(X(τ) − X(τ))2

√
corresponds to the sample

standard deviation of signal X. The phase shift between the output
and the original signal is a well-known phenomenon associated
with SR [16,42], which has been compensated when calculating
the CCs. By assuming the random output zj(τ) of each bistable
system as a summation of its nonstationary ensemble average
E[zj(τ)] related to the deterministic original signal and a random
fluctuation μj(τ) induced by the total input noise ξ(τ)+ ηj(τ)
around its mean [34,43,44], the recovered signal obtained by

Fig. 2 (a) Input signal to the bistable array: a combination of the original signal sτ and addi-
tional noise ηj(τ), (b) example response of a single bistable system, (c) average of 100 output
signals utilizing SR, and (d ) average of 100 input signals (scaled with respect to the original
signal amplitude for visual comparison). The original signal is shown (in dashed curve) in
all plots as a reference.
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ensemble averaging the outputs of N bistable systems is expressed
as

�z(τ) = E[zj(τ)] +
1
N

∑N
j=1

μj(τ) (5)

where E[zj(τ)] =
�z∞
−z∞

ρ(z, τ)z dz. The probability density function
ρ(z, τ) is obtained by numerically solving the Fokker–Planck equa-
tion associated with Eq. (1) for z∞≫ 1. Assuming the random fluc-
tuation μj(τ) in the output is independent of E[zj(τ)] and
monotonically increases with the total random input ξ(τ)+ ηj(τ),
we estimate μj(τ)= 0 and μ2j (τ) = KμD is proportional to that of
the total input noise intensity D = Dξ + Dη, where Kμ is a constant.
Thus, the sample variance of the recovered signal can be expanded
as follows:

σ2�z = var E[zj(τ)] +
1
N

∑N
j=1

μj(τ)

( )

= var(E[zj(τ)]) + var
1
N

∑N
j=1

μj(τ)

( )
(6)

As a result, the standard deviation of the recovered signal is deter-
mined as

σ�z = E[zj(τ)]
2 − E[zj(τ)]

2 +
1
N
μ2j (τ)

[ ]1/2
(7)

Substituting Eqs. (5) and (7) into Eq. (4) yields an expression for
the signal denoising performance (CC) of the parallel array with N
elements as

CC=max
s(τ)E[zj(τ+ τd)] + (1/N)

∑
s(τ)μj(τ+ τd)

σs[E[zj(τ+ τd)]2 − E[zj(τ+ τd)]2 + ((μ2j (τ+ τd))/N)]
1/2

{ }
(8)

The analytical predictions of the signal denoising performance
(CC) from Eq. (8) for an N-element bistable system array are
plotted as solid curves against

				
2D

√
in Fig. 3. Alongside the analyt-

ical results, numerical values are presented as markers, which are
obtained by extending the numerical case study in Sec. 2.1 for
various numbers of bistable elements in the array and additional
noise levels while keeping other conditions the same. Figure 3
clearly displays a non-monotonic trend of CC values with respect
to the total noise level, which is the characteristic behavior of SR
[16,45]. It can be observed from Fig. 3 that the theoretical curves

are in good agreement with the numerical results, predicting that
as the number (N) of bistable elements in the parallel array
increases, CC asymptotically approaches to a plateau near CC= 1
for a wide range of noise levels. It is worth noting that the CC
derived in Eq. (8) is a general form without reference to any partic-
ular form of bistable system in the parallel array or the original
signal waveforms. Thus, the analytical estimation of the CC and
the optimal noise level that provides maximum signal denoising
performance may be utilized for various systems that exploit SR
in array of bistable elements.

2.3 Optimal Noise Level for Signal Denoising. The investi-
gations presented in Sec. 2.2 demonstrate the potential of utilizing
SR by introducing an optimal quantity of noise for signal denoising.
While SR occurs by the interplay among the potential barrier of the
bistable system, the input signal, and noise, we focus on tailoring
the optimal noise level rather than modifying the original signal
or the bistable system parameters that may be difficult to practically
implement. The optimal noise level observed in Fig. 2 is found for
an original input signal with certain amplitude (A= 0.3 in Eq. (2)).
On the other hand, the optimal noise level that maximizes the SR
effect for denoising may depend on the amplitude of the original
signal. Figure 4(a) presents analytically predicted signal denoising
performance as a function of the noise level

				
2D

√
and the ampli-

tude of original signal s(τ). From Fig. 4(a), it is observed that the
optimal noise level (indicated as circles) that maximizes the
signal denoising performance (CC) is dependent on the amplitude
of the original signal. Thus, the results in Fig. 4(a) clearly show
that the information about the original signal amplitude is essential
for determining the optimal noise level for signal denoising.
However, in practice where the original signal may severely be cor-
rupted by noise, it may be extremely challenging to accurately
assess the original signal amplitude in advance to determine the cor-
responding optimal additive noise level. On the other hand, a favor-
able operational condition can be observed in Fig. 4(a) denoted by a
dashed line box, where great signal denoising performance is
obtained for a wide range of original input amplitudes. It is worth
noting that we can identify an optimal noise intensity Dopt= 0.72
that maximizes the average signal denoising performance over a
broad range of original signal amplitudes encompassing both sub-
threshold and suprathreshold input signals from Fig. 4(b). Note
that the original input signal is subthreshold if its amplitude is
smaller than the static bifurcation threshold Ac = 2/

			
27

√
≈ 0.385,

and suprathreshold otherwise [35,44]. Thus, in the proposed
approach, the input amplitude is not limited to be relatively small
compared to the bistable potential threshold. While Dopt is not the
optimal noise level for each input amplitude, it provides desirable
signal denoising performance for a wide range of input amplitudes
considering that the true amplitude of the original signal of interest
is hardly assessed from noisy signals and generally not known a
priori in practice. Therefore, we focus on utilizing this noise level
Dopt as a practical key value for operating the proposed denoising
strategy.

3 Operational Principle Detail and Numerical
Demonstration
3.1 Overview of Denoising Procedure for Practical

Implementation. The investigations in Sec. 2 are conducted
without considering the original attendant noise ξ(τ) and gain
adjustment shown in Fig. 1 to demonstrate the potential of utilizing
SR for signal denoising. This section describes the SR-based
denoising procedure considering the practical issues for implemen-
tation including the original ambient noise and gain adjustments to
realize the optimal noise level discussed in Sec. 2.3. As illustrated in
Sec. 2, the core principle of utilizing the SR in the array of bistable
systems for signal denoising is to average out the noise-induced
incoherent interwell transitions while enhancing the stochastically

Fig. 3 Signal denoising performance (CC) as a function of noise
level. The analytical predictions with Kμ= 0.188 (solid curves)
from Eq. (8) are in good quantitative agreement with the numer-
ically obtained values (symbols).

031006-4 / Vol. 144, JUNE 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/144/3/031006/6776178/vib_144_3_031006.pdf by The Pennsylvania State U

niversity user on 14 February 2022



coherent interwell transitions that are activated by the original
signal. As a result, it is essential that the total noise (ξ(τ)+ ηj(τ)
of Fig. 1) applied to each bistable system should be uncorrelated
to each other. In other words, the additional noise ηj(τ) should be
large enough to contaminate the original attendant noise ξ(τ) that
is commonly applied to all bistable elements in the array. For
example, if the additional noise is negligible compared to the orig-
inal attendant noise, the input signals s(τ)+ ξ(τ)+ ηj(τ) to each bis-
table element may be correlated to each other, resulting in correlated
responses that may provide little improvement in recovering the
original signal by averaging. If the additional noise intensity is
assumed as Dη = r2 Dξ, the CC between the total noises for
each bistable circuit can be determined as

C̃C(ξ + ηj, ξ + ηk) =
cov(ξ + ηj, ξ + ηk)

σξ+ηjσξ+ηk
(9a)

=
1

r2 + 1
, j ≠ k (9b)

Assuming the signals have negligible correlation when C̃C is
less than 0.1, in this study, we apply additional noise that has
nine times larger intensity (r= 3) than that of the input noise,
which yields C̃C = 0.1 and the total noise intensity D = 10 Dξ.
Then, the noisy input signal s(τ)+ ξ(τ) with additional noise ηj(τ)
becomes the input for each bistable element following gain adjust-
ment. In order to exploit the key operational condition discussed
in Sec. 2.3, which provides great signal denoising performance
for a broad range of original signal amplitudes, amplitude gain G
is applied so that the total noise intensity of the adjusted input
G2D matches the optimal noise intensity Dopt. As a result, the
gain G can be obtained as

G =

							
Dopt

10 Dξ

√
(10)

The output signals of the bistable elements are then averaged to
recover the original signal. If the ambient noise level changes (D′

ξ),
the additional noise level (D′

η = 10 D′
ξ) and gain values in Eq. (10)

are adaptively updated to utilize the optimal noise levelDopt as illus-
trated in Fig. 5.
It should be noted that (1) we take advantage of the analytically

estimated optimal quantity of noise Dopt to recover the original
signal by effectively activating SR in the array of bistable
systems, which does not require operating sophisticated optimiza-
tion algorithms in a post-processing environment for selecting
scaling parameters, thus enabling online signal denoising; (2) the
optimal noise intensity Dopt is determined based on a generalized
bistable Duffing oscillator in Eq. (1) without any reference to

Fig. 4 (a) Analytically estimated signal denoising performance (CC) as a function of the orig-
inal signal amplitude and total noise level. The optimal noise levels for each amplitude of the
original signal are indicated as circles. The dashed line box indicates a key operational area
that exhibits great signal denoising performance for a broad range of original signal ampli-
tudes. (b) Analytical (dashed curve) and numerical (filled circles) results of the mean signal
denoising performances over original signal amplitudes are presented with respect to the
total noise level. Dopt in both figures indicates the optimal noise level that maximizes the
average signal denoising performance over a broad range of original signal amplitudes.

Fig. 5 Flowchart of the proposed signal denoising approach
utilizing adaptive SR in parallel array
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particular original signal waveforms; thus, the optimal noise level
that provides maximum signal denoising performance could be uti-
lized for various systems that exploit SR in array of bistable ele-
ments, as will be exemplified in Sec. 4; (3) the additional noise
levelDη and gain value are adaptively determined to realize the ana-
lytically predicted optimal noise intensity Dopt solely based on the
original attendant noise intensity Dξ, which may be one of the
few quantities that can be readily assessed from signals contami-
nated by severe noise; and (4) the proposed approach could be
applied regardless of the waveform and amplitude of the input
signal since it is based on suprathreshold SR in an array of bistable
systems, provided the bistable system is designed such that the
waveform varies on a time scale that is much slower than the char-
acteristic time of the bistable system. Overall, the proposed
approach yields great potential for online signal denoising in prac-
tice by requiring little information on the original input signal a

priori and adaptively adjusting the additional noise level and gain
values only based on the attendant noise level.

3.2 Numerical Investigations. Numerical case studies are
conducted in this section to investigate and demonstrate the effec-
tiveness of the proposed SR-based signal denoising approach.
The case study is performed by numerically integrating the non-
dimensional governing equation (1) to recover the original signal
that is an amplitude modulated sine wave of Eq. (2). Figure 6(a)
shows an example of a noisy signal where the original signal with
peak amplitude A= 0.3 is contaminated by ambient noise
(Dξ = 0.21). The additional noise, of which intensity Dη = 1.88 is
determined based on the ambient noise level, is applied to the
bistable system along with the noisy input signal following gain
adjustment (G= 0.58) to utilize the favorable operational noise
level Dopt= 0.72. By averaging the output voltages of an array of
100 bistable systems, the denoised signal can be obtained as shown
in Fig. 6(b). It can be clearly observed that the proposed SR-based
approach markedly enhances the noisy signal to recover the original
waveform by increasing CC from 0.16 to 0.85. The procedure is
repeated for an aperiodic square wave with random amplitudes
(peak amplitude A= 0.3) having center frequency of 0.0061 and
−3 dB fractional bandwidth of 18%, where the input waveform
varies on a time scale that is much slower than the characteristic
time of the bistable system. The aperiodic square wave contaminated
by noise (Dξ = 0.21) is shown in Fig. 6(c). Figure 6(d) presents the
denoised output signal where CC increased from 0.25 to 0.87. These
results verify that the proposed SR-based approach effectively recov-
ers aperiodic waveforms as well from noisy input signals.
For a comprehensive evaluation, the proposed signal denoising

approach is conducted for a broad range of original signal amplitudes
and attendant noise levels using the amplitude modulated sine wave
in Eq. (2). In addition, the signal denoising results utilizing conven-
tional filtering are compared with the results of the proposed
SR-based approach. The average of 100 runs of low-pass filtered
(LPF) noisy input signal s(τ)+ ξ(τ) with independent additive
noises η(τ) is utilized to recover the original signal, as shown in
Fig. 7(a). The LPF-based method was numerically conducted
using the MATLAB command lowpass with a cutoff frequency fc at
10 times of the excitation frequency fo and a transition band steep-
ness of 0.99.
The CCs between the original s(τ) and noisy input s(τ)+ ξ(τ)

signals are shown in Fig. 8(a) as a function of the ambient noise
level and original signal amplitude. The increase of darkness in
the contour represents a greater CC value. It is observed from
Figs. 8(b) and 8(c) that the CC values are greatly increased

Fig. 6 (a) and (c) The original signals contaminated by noise, Dξ= 0.21. (b) and (d ) Denoised
signals using the proposed algorithm (scaled with respect to the original signal amplitude for
visual comparison). The original signals are shown (in dashed curves) in all graphs as a
reference.

Fig. 7 Block diagrams of (a) LPF-based approach and (b) pro-
posed SR-based method
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compared to those of Fig. 8(a) when the LPF-based and the pro-
posed SR-based denoising algorithms are respectively applied.
Figure 8(d ) displays the difference in CC values between the
SR-based and LPF-based results (CCSR−CCLPF). When the origi-
nal signal amplitude reduces or the attendant noise level increases,
in other words, when the noise contamination is sufficiently signif-
icant, the proposed SR-based approach outperforms the LPF-based
method as observed from Fig. 8(d ) and example noisy input and
recovered signals shown in Fig. 9. On the other hand, the
LPF-based approach may provide greater CC values than the pro-
posed approach when the input amplitude is relatively large with
low attendant noise, as observed from the conditions highlighted
by dashed lines in Figs. 8(d ), 9(a), and 9(b). However, both
methods provide CC values that are close to one for such condi-
tions, indicating that both methods provide excellent signal denois-
ing performance when the original signal is relatively mildly
contaminated by ambient noise. Overall, the numerical investiga-
tion results validate the remarkable performance of the proposed
SR-based signal denoising approach especially when the original
signal is significantly contaminated by attendant noise.

4 Experimental Investigations
In this section, experimental case study results are presented to

demonstrate and validate the effectiveness of the proposed

SR-based signal denoising. The proposed approach is applied to
recover noise-contaminated AE signals. AE is a phenomenon of
transient elastic waves generated in solids when the material under-
goes sudden redistribution of localized internal energy as a result of,
for example, aging, temperature, pressure changes, or external
mechanical loading [2,36]. Since AE signal is a high-frequency
stress wave that does not require external excitation source other
than the energy source from the defect occurrence, it has been
widely utilized for SHM entertaining high sensitivity to small-sized
damage and simple implementation [46–51]. On the other hand,
since AE signals by small-sized damage may easily be buried in
noise in practical implementations, signal denoising is critical for
AE-based SHM [2,36,52].
The experimental proof-of-concept configuration is shown in

Fig. 10(a). AE signals are generated by the Hsu–Nielson source
method [53] at a location 50 mm away from a piezoelectric (PZT)
transducer (PSI-5A4E) that is attached on the surface of an alumi-
num (Al-2024) beam structure. This method utilizes pencil lead
break of a mechanical pencil, which generates a stress pulse (AE)
due to a sudden release of mechanical stress on the target surface.
Since the AE signals experimentally measured in the laboratory
exhibited negligible level of noise, Gaussian white noise is added
to the AE signal to generate a noise-contaminated signal following
a pre-amplification of 20 dB. We employ a double-well Duffing
analog circuit [54] shown in Fig. 10(b) as the bistable element to

Fig. 8 CC values between the original s(τ) and noisy input s(τ)+ ξ(τ) signals for various original signal amplitudes and noise
levels. Denoising performances of (b) the LPF-based approach and (c) the proposed SR-based method, displayed by CC
between the original and denoised signals. (d ) The difference between the CC of SR-based and LPF-based methods (CCSR
−CCLPF).

Journal of Vibration and Acoustics JUNE 2022, Vol. 144 / 031006-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/144/3/031006/6776178/vib_144_3_031006.pdf by The Pennsylvania State U

niversity user on 14 February 2022



realize SR. This circuit exhibits bistability with piecewise-linear
characteristics introduced by the nonlinear feedback loop among
the op-amp and diodes. The bistable circuit involves saddle-node
bifurcation that activates sudden transitions between the intrawell
and interwell oscillations. As a result, bistable circuits have been
applied for various bifurcation-based applications [37,39,55–59].
Since this bistable circuit design exhibits negligible backward cou-
pling due to the characteristics of op-amp, it is suitable to utilize as a
signal conditioning device that has little effect on the input signal
[37]. Considering that the frequency range of AE signals is gener-
ally known to be approximately between 150 and 300 kHz [36],

the bistable circuit is designed to exhibit linear resonance frequency
at 13 MHz, approximately 50 times higher than the frequency range
of AE signals. The op-amp is TLE2141CP and the diodes are
1N4148. Table 1 provides relevant parameters of the beam struc-
ture, piezoelectric transducer, and bistable circuit used in the exper-
imental study. In this experimental investigation, we have employed
a proof-of-concept platform that exploits an iterative method with a
bistable circuit to realize the proposed denoising algorithm. Instead
of utilizing the noise-contaminated AE signal as an input sim-
ultaneously fed to an array of 100 bistable circuits, the noisy AE
signal is first recorded using the data acquisition system (NI

Fig. 9 Denoising results of a signal with A=0.3 for three noise levels:Dξ=0.02 in row (a) and (b),Dξ=0.26 in (c) and (d ), andDξ

=1.30 in (e) and ( f ). Noisy original signals s(τ)+ ξ(τ) are shown on the left column and the denoised signals are displayed along
the right column. The original signals are included (as dashed lines) in all plots for visual comparison. The CC values are given
next to each result in all plots.

Fig. 10 (a) Schematic diagram of the experimental proof-of-concept configuration. The dashed lines indicate data processed
in a PC and (b) Bistable circuit and its diagram utilized in the experiment.
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PXIe-6124) and the attendant noise level is assessed. Then the
recorded signal is iteratively fed to a bistable circuit for 100 runs.
For each iteration, independent additive noise is applied to the
noisy AE signal following gain adjustment. The responses of
the bistable circuit are then recorded for each iteration and averaged
to recover the original signal once all the iterations are
completed. The time delay induced by the analog-to-digital and
digital-to-analog conversion processes in the experimental investi-
gations was numerically compensated. The gain G is determined
so that the total noise (summation of original attendant noise and
additional noise) intensity matches the optimal value. Since the
optimal noise intensity (Dopt= 0.72) determined in Sec. 2 is the
optimal value for a non-dimensional bistable Duffing system, we
approximated the bistable circuit as a double-well Duffing oscillator
[56] and obtained the optimal noise intensity (�Dopt = 0.5 V2) for the
bistable circuit by a series of back calculations. A more detailed dis-
cussion is given in Appendix B.
Figure 11 illustrates denoising results of an AE signal with three

different ambient noise levels (
					
2Dξ

√
) of 100, 150, and 200 mV

root-mean-square (RMS) in row (a, b), (c, d ), and (e, f ), respec-
tively. It can be clearly observed that the noisy AE signals shown

on the left column of Fig. 11 are effectively denoised for all three
noise levels by employing the proposed algorithm and recovered
as shown on the right column. Figure 12 presents a quantitative
evaluation of the denoising performance for the three different
noise levels by comparing the values of CC before and after the
denoising algorithm is applied. The bar heights indicate mean
values of the CC determined from 10 AE experiments, while the
error bars show one standard deviation from the mean. The mean
values of CC increase for all three noise levels, which reflects
that the recovered waveform fidelity is improved when the proposed
denoising algorithm is applied. Since the proof-of-concept iterative
approach was based on utilizing the data acquisition system that is
capable of both generating and measuring analog signals, the cutoff
frequency of the white noise generated in the experimental investi-
gations was limited to Fs= 4 MHz by the maximum sampling rate
for the analog output of the equipment. This cutoff frequency yields
Fs/fo ratio approximately 17.7 based on the peak frequency ( fo≈
227 kHz) of the experimental AE signal identified from its power
spectrum. On the other hand, as illustrated in the numerical investi-
gation results provided in Appendix C, it is envisioned that the
experimental signal denoising performance would be greatly
improved when white noise that has significantly higher cutoff fre-
quency than the frequency band of the original AE signal is
employed, because the SR is based on the assumption that the orig-
inal input signal varies much slower than the stochastic influences
[60,61].
Overall, the experimental investigation results validate the effec-

tiveness of the proposed SR-based signal denoising method. In
addition, it is worth noting that the proposed denoising approach
adaptively determines the optimal additional noise level and gain

Table 1 Experimental system parameters

Beam (mm)
627.2 × 7.21 × 3.175

PZT (mm)
16.85 × 7.09 × 0.191

L (uH) C (pF) R (Ω) R1 (kΩ) R2 (kΩ) R3 (kΩ)

0.22 680 27 1 1 2

Fig. 11 Experimental denoising results of AE signals contaminated by three noise levels: row (a) and (b)=100 mV RMS, (c)
and (d )=150 mV RMS, and (e) and (f )=200 mV RMS. Noisy AE signals are shown on the left column and the denoised
signals (normalized with respect to the original signal amplitude) are displayed along the right column. The original AE
signals are included (in dashed lines) in all plots for visual comparison. The CC values are given next to each result in all plots.
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values based on the analytically estimated optimal noise level and
the readily assessable ambient noise intensity without employing
any sophisticated algorithms that often require a post-processing
environment, thus suitable for online signal denoising.

5 Summary and Conclusion
This research investigates a novel online signal denoising

approach that exploits adaptive SR phenomena in a parallel array
of bistable systems. The proposed approach adaptively applies addi-
tional noise to the noise-contaminated input signal following gain
adjustments to utilize the analytically estimated optimal noise level
providing reliable signal denoising performance for a wide range
of original signal amplitudes. The original signal is recovered by
averaging out the noise-induced stochastic transitions in the
responses of the array of bistable systems. The proposed method
does not require operating computationally expensive optimization
algorithms in a post-processing environment for selecting scaling
parameters, thus enabling online signal denoising. The additional
noise level and gain values are determined solely based on the
ambient noise level which may be one of the few quantities that
can be easily assessed from severely noise-contaminated signals in
practice. The optimal noise intensity theoretically estimated in this
study is determined based on a generalized bistable Duffing oscilla-
tor without any reference to particular original signal waveforms.
Therefore, the optimal noise level could be practically utilized for
various systems that exploit SR in an array of bistable elements.
Numerical investigation results reveal the effectiveness of the
denoising strategy for both periodic and aperiodic signals that are
often observed in practice. Compared to conventional low-pass fil-
tering, the proposed SR-based approach outperforms the LPF-based
method when the ambient noise is sufficiently large. On the other
hand, when the original signal is relatively mildly contaminated by
ambient noise, the LPF-based approach may provide higher CC
values than the proposed approach, while both SR-based and
LPF-basedmethods provide excellent signal denoising performance.
Experimental validation with denoising AE signals by employing a
proof-of-concept bistable analog circuit system demonstrates that
the new approach substantially enhances the signal quality by only
utilizing the ambient noise intensity to adaptively determine the
gain and additional noise level without any sophisticated post-
processing. Overall, the results of this study show promising poten-
tial of the new denoising strategy as an effective online preprocessor
for a broad range of applications where little information is known a
priori about the original signal.
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Appendix A
The input signal s(τ) contaminated by additional noise ηj(τ),

shown in Fig. 2(a), was LPF with a cutoff frequency fc at the exci-
tation frequency fo using the MATLAB command lowpass. Compared
to the LPF result shown in Fig. 13(a), the proposed SR-based
method yields a superior signal denoising performance as presented
in Fig. 13(b). In addition, the denoising performance (CC) of
low-pass filtering is significantly dependent on selecting the
cutoff frequency as illustrated in Fig. 13(c), which may be challeng-
ing to find the optimal cutoff frequency that often depends on the
original waveform parameters, especially when the signal of interest

Fig. 12 Denoising performance (CC) for different ambient noise
levels. Error bars indicate one standard deviation from the mean.

Fig. 13 Denoised signals obtained by (a) low-pass filtering and
(b) the proposed SR-based approach. Dashed curves in both
figures indicate the original signal. (c) Denoising performance
of low-pass filtering depending on the cutoff frequency.
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is corrupted by noise in practice. On the other hand, the proposed
SR-based approach may reliably recover the original signal since
the optimal noise intensity for SR can be determined solely based
on the original attendant noise intensity Dξ, which may be one of
the few quantities that can be readily assessed from signals contam-
inated by severe noise. Furthermore, the proposed approach could
be applied regardless of the exact waveform and amplitude of the
input signal, provided that the bistable system is designed such
that its linear natural frequency is much greater than the frequency
band of the original signal.

Appendix B
Assuming the qualitative piecewise-linear characteristics of the

nonlinear restoring function F(Vo) of the double-well Duffing
analog circuit as a cubic polynomial −αVo + βV3

o , the governing
equation can be approximated as a conventional double-well
Duffing equation that has a restoring force expressed by a cubic
polynomial with negative linear and positive cubic terms [56]:

LCV̈o(t) + RCV̇o(t) − αVo(t) + βVo(t)
3 = �A sin �ωt + �ν(t) (B1)

where L, C, and R represent the circuit inductance, capacitance, and
resistance, respectively; �A sin �ωt and Vo(t), respectively, indicate the
input and output voltages of the circuit with amplitude �A and fre-
quency �ω; �ν(t) is zero-mean Gaussian white noise with autocorrela-
tion �ν(t)�ν(0) = 2�Dνδ(t); the overdot indicates the time derivative.
Figure 14 shows that the polynomial fit (α= 0.643 and β= 0.389)
effectively emulates the global characteristics of the experimentally
obtained nonlinear voltage function, yielding a high value of R2

fitness (90.0%).
Considering a heavily damped motion of a particle in a sym-

metric double-well potential, we approximate Eq. (B1) as a period-
ically modulated Langevin equation by ignoring the inertia of the
particle [16]

τoV̇o(t) =
1
LC

(αVo − βV3
o + A sinωτ + ν(τ)) (B2)

where τo=R/L is a time constant related to the damping of the
system. By introducing a non-dimensional parameter z =
Vo/

					
α/β

√
and time τ = α(t/RC), a dimensionless equation is

obtained as

z′(τ) = z(τ) − z3(τ) + A sinωτ + ν(τ) (B3)

where the operator ( )′ represents differentiation with respect to non-
dimensional time τ and autocorrelation ν(τ) ν(0)= 2Dδ(τ). The
following parameters are defined:

ω =
RC

α
�ω; A =

�A

α
					
α/β

√ ; D = �Dν
β

α3
(B4)

By straightforward back calculations, the optimal noise Dopt≈
0.72 obtained from Sec. 3.1 can be used to determine

�Dopt ≈ 0.5 V2, the optimal intensity of total noise applied to the bis-
table circuit. The gainG is then determined by Eq. (10) based on the
ambient noise level.

Appendix C
The numerical case study shown in Fig. 2 is repeated for different

noise bandwidths to investigate the influence of noise bandwidth on
the signal denoising performance. Figure 15 illustrates that the
signal denoising performance (CC) is significantly deteriorated
when the ratio between the white noise bandwidth Fs and the orig-
inal signal frequency fo becomes smaller, because the SR is based
on the assumption that the original input signal varies much
slower than the stochastic influences [60,61]. Thus, as shown in
Fig. 15, the experimental signal denoising performance presented
in Sec. 4 would be greatly improved by employing white noise
that has considerably higher cutoff frequency than the frequency
band of the original AE signal.

References
[1] Farrar, C., and Worden, K., 2007, “An Introduction to Structural Health

Monitoring,” Philos. Trans. R. Soc. Lond. A, 365(1851), pp. 303–315.
[2] Grosse, C., and Ohtsu, M., eds., 2008, Acoustic Emission Testing,

Springer-Verlag, Berlin.
[3] Qin, Z., Chen, L., and Bao, X., 2012, “Wavelet Denoising Method for Improving

Detection Performance of Distributed Vibration Sensor,” IEEE Photon. Technol.
Lett., 24(7), pp. 542–544.

[4] Lei, Y., He, Z., Zi, Y., and Hu, Q., 2007, “Fault Diagnosis of Rotating Machinery
Based on Multiple ANFIS Combination With GAs,”Mech. Syst. Signal Process.,
21(55), pp. 2280–2294.

[5] Benzi, R., Sutera, A., and Vulpiani, A., 1981, “The Mechanism of Stochastic
Resonance,” J. Phys. A: Math. Gen., 14(11), pp. L453–L457 .

[6] Nicolis, C., and Nicolis, G., 1981, “Stochastic Aspects of Climatic Transitions—
Additive Fluctuations,” Tellus, 33(3), pp. 225–234.

[7] McNamara, B., Wiesenfeld, K., and Roy, R., 1988, “Observation of Stochastic
Resonance in a Ring Laser,” Phys. Rev. Lett., 60(25), pp. 2626–2629.

[8] Badzey, R., and Mohanty, P., 2005, “Coherent Signal Amplification in Bistable
Nanomechanical Oscillators by Stochastic Resonance,” Nature, 437(7061),
pp. 995–998.

[9] Leonard, D., and Reichl, L., 1994, “Stochastic Resonance in a Chemical-
Reaction,” Phys. Rev. E, 49(2), pp. 1734–1737.

[10] Yang, L., Hou, Z., and Xin, H., 1999, “Stochastic Resonance in the Absence and
Presence of External Signals for a Chemical Reaction,” J. Chem. Phys., 110(7),
pp. 3591–3595.

[11] Douglass, J., Wilkens, L., Pantazelou, E., and Moss, F., 1993, “Noise
Enhancement of Information Transfer in Crayfish Mechanoreceptors by
Stochastic Resonance,” Nature, 365(6444), pp. 337–340.

[12] Hänggi, P., 2002, “Stochastic Resonance in Biology How Noise Can Enhance
Detection of Weak Signals and Help Improve Biological Information Process-
ing,” ChemPhysChem, 3(3), pp. 285–290.

[13] Valenti, D., Fiasconaro, A., and Spagnolo, B., 2004, “Stochastic Resonance and
Noise Delayed Extinction in a Model of Two Competing Species,” Physica A,
331(3), pp. 477–486.

[14] Kuperman, M., and Zanette, D., 2002, “Stochastic Resonance in a Model of
Opinion Formation on Small-World Networks,” 26(3), pp. 387–391 .

[15] Meyer, B., 2017, “Optimal Information Transfer and Stochastic Resonance in
Collective Decision Making,” Swarm Intell., 11(2), pp. 131–154.

[16] Gammaitoni, L., Hänggi, P., Jung, P., and Marchesoni, F., 1998, “Stochastic
Resonance,” Rev. Mod. Phys., 70(1), pp. 223–287.

Fig. 15 Denoising performance (CC) as a function of Fsfo ratio

Fig. 14 Experimentally measured (circles) nonlinear voltage
function with respect to output voltage amplitude. The cubic
polynomial fit (solid curve) yields R2

fitness of 0.9.

Journal of Vibration and Acoustics JUNE 2022, Vol. 144 / 031006-11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/144/3/031006/6776178/vib_144_3_031006.pdf by The Pennsylvania State U

niversity user on 14 February 2022

http://dx.doi.org/10.1098/rsta.2006.1928
http://dx.doi.org/10.1109/LPT.2011.2182643
http://dx.doi.org/10.1109/LPT.2011.2182643
http://dx.doi.org/10.1016/j.ymssp.2006.11.003
https://dx.doi.org/10.1088/0305-4470/14/11/006
http://dx.doi.org/10.3402/tellusa.v33i3.10710
http://dx.doi.org/10.1103/PhysRevLett.60.2626
http://dx.doi.org/10.1038/nature04124
http://dx.doi.org/10.1103/PhysRevE.49.1734
http://dx.doi.org/10.1063/1.478227
http://dx.doi.org/10.1038/365337a0
http://dx.doi.org/10.1002/1439-7641(20020315)3:3%3C285::AID-CPHC285%3E3.0.CO;2-A
http://dx.doi.org/10.1016/j.physa.2003.09.036
http://dx.doi.org/10.1007/s11721-017-0136-7
http://dx.doi.org/10.1103/RevModPhys.70.223


[17] McNamara, B., and Wiesenfeld, K., 1989, “Theory of Stochastic Resonance,”
Phys. Rev. A, 39(9), pp. 4854–4869.

[18] Collins, J., Chow, C., and Imhoff, T., 1995, “Stochastic Resonance Without
Tuning,” Nature, 376(6537), pp. 236–238.

[19] Mori, T., and Kai, S., 2002, “Noise-Induced Entrainment and Stochastic
Resonance in Human Brain Waves,” Phys. Rev. Lett., 88(21), p. 218101.

[20] Rallabandi, V., and Roy, P., 2010, “Magnetic Resonance Image Enhancement
Using Stochastic Resonance in Fourier Domain,” Magn. Reson. Imag., 28(9),
pp. 1361–1373.

[21] Feng, X., Liu, H., Huang, N., Wang, Z., and Zhang, Y., 2019, “Reconstruction of
Noisy Images Via Stochastic Resonance in Nematic Liquid Crystals,” Sci. Rep.,
9(1), pp. 1–9 .

[22] Qiao, Z., Lei, Y., and Li, N., 2019, “Applications of Stochastic Resonance to
Machinery Fault Detection: A Review and Tutorial,” Mech. Syst. Signal
Process., 122, pp. 502–536.

[23] Qin, Y., Tao, Y., He, Y., and Tang, B., 2014, “Adaptive Bistable Stochastic
Resonance and Its Application in Mechanical Fault Feature Extraction,”
J. Sound Vib., 333(26), pp. 7386–7400.

[24] Qiao, Z., Lei, Y., Lin, J., and Jia, F., 2017, “An Adaptive Unsaturated Bistable
Stochastic Resonance Method and Its Application in Mechanical Fault
Diagnosis,” Mech. Syst. Signal Process., 84, pp. 731–746.

[25] Lai, Z., and Leng, Y., 2016, “Weak-Signal Detection Based on the Stochastic
Resonance of Bistable Duffing Oscillator and Its Application in Incipient Fault
Diagnosis,” Mech. Syst. Signal Process., 81, pp. 60–74.

[26] Lu, S., Zheng, P., Liu, Y., Cao, Z., Yang, H., and Wang, Q., 2019, “Sound-Aided
Vibration Weak Signal Enhancement for Bearing Fault Detection by Using
Adaptive Stochastic Resonance,” J. Sound Vib., 449, pp. 18–29.

[27] Li, J., Zhang, J., Li, M., and Zhang, Y., 2019, “A Novel Adaptive Stochastic
Resonance Method Based on Coupled Bistable Systems and Its Application in
Rolling Bearing Fault Diagnosis,”Mech. Syst. Signal Process., 114, pp. 128–145.

[28] He, B., Huang, Y., Wang, D., Yan, B., and Dong, D., 2019, “A Parameter-
Adaptive Stochastic Resonance Based on Whale Optimization Algorithm for
Weak Signal Detection for Rotating Machinery,” Measurement, 136, pp. 658–
667.

[29] Wang, S., Niu, P., Guo, Y., Wang, F., Li, W., Shi, H., and Han, S., 2020, “Early
Diagnosis of Bearing Faults Using Decomposition and Reconstruction Stochastic
Resonance System,” Measurement, 158, p. 107709.

[30] Fu, Y., Kang, Y., and Liu, R., 2020, “Novel Bearing Fault Diagnosis Algorithm
Based on the Method of Moments for Stochastic Resonant Systems,” IEEE Trans.
Instrum. Meas., 70, pp. 1–10 .

[31] Dong, H., Wang, H., Shen, X., and Jiang, Z., 2018, “Effects of Second-Order
Matched Stochastic Resonance for Weak Signal Detection,” IEEE Access, 6,
pp. 46505–46515.

[32] Xu, B., Duan, F., Bao, R., and Li, J., 2002, “Stochastic Resonance With Tuning
System Parameters: The Application of Bistable Systems in Signal Processing,”
Chaos Solitons Fractals, 13(4), pp. 633–644.

[33] Xu, B., Li, J., and Zheng, J., 2003, “How to Tune the System Parameters to
Realize Stochastic Resonance,” J. Phys. A: Math. Gen., 36(48), pp. 11969–11980.

[34] Collins, J., Chow, C., Capela, A., and Imhoff, T., 1996, “Aperiodic Stochastic
Resonance,” Phys. Rev. E, 54(5), pp. 5575–5584.

[35] Stocks, N., 2000, “Suprathreshold Stochastic Resonance in Multilevel Threshold
Systems,” Phys. Rev. Lett., 84(11), pp. 2310–2313.

[36] Hellier, C., 2001, Handbook of Nondestructive Evaluation, McGraw-Hill
Professional, New York.

[37] Harne, R. L., and Wang, K. W., 2013, “Robust Sensing Methodology for
Detecting Change With Bistable Circuitry Dynamics Tailoring,” Appl. Phys.
Lett., 102(20), p. 203506.
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