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Low-frequency sound attenuation is often pursued using Helmholtz resonators (HRs). The
introduction of a compliant wall around the acoustic cavity results in a two degrees-of-
freedom (2DOF) system capable of more broadband sound absorption. In this study, we
report the amplitude-dependent dynamic response of a compliant-walled HR and investi-
gate the effectiveness of wall compliance to improve the absorption of sound in linear
and nonlinear regimes. The acoustic-structure interactions between the conventional HR
and the compliant wall result in non-intuitive responses when acted on by nonlinear ampli-
tudes of excitation pressure. This paper formulates and studies a reduced order model to
characterize the nonlinear dynamic response of the 2DOF HR with a compliant wall com-
pared to that of a conventional rigid HR. Validated by experimental evidence, the modeling
framework facilitates an investigation of strategies to achieve broadband sound attenua-
tion, including by selection of wall material, wall thickness, geometry of the HR, and
other parameters readily tuned by system design. The results open up new avenues for
the development of efficient acoustic resonators exploiting the deflection of a compliant
wall for suppression of extreme noise amplitudes. [DOI: 10.1115/1.4052870]
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1 Introduction
Low-frequency noise may be radiated by various sources such as

compressors, boilers, vehicles, ships, and aircraft. This poses a
potential health hazard for humans, a nuisance for communication,
or a concern for the integrity of structures [1,2]. Yet, elimination of
such undesirable noise at the source may often not be feasible due to
the complexities in the system design and implementation. Accord-
ingly, the use of either passive or active noise control, including
Helmholtz resonators (HRs), has attracted significant interest
[3,4]. Conventional HRs, in which the air in the neck acts as an
acoustic mass and the air expansion in the rigid-walled cavity repre-
sents a compliance, provide sound absorption by virtue of the reso-
nant operational principle [5]. In this respect, Tang and Sirignano
[6] investigated neck lengths for improved HR acoustic energy
absorption. Moreover, various approaches have been presented to
improve the attenuation of HRs, for example, by introducing
tapered necks [7], variable-area and perforated extended necks
[8], and spiral necks [9]. By another approach, Selamet et al. [10]
partially filled an HR cavity with fibrous material and investigated
the effect of the density and thickness of this material on the reso-
nant behavior. While the conventional rigid HR is most effective
over a narrow frequency range, recent efforts have been devoted
to broaden the frequency range in addition to improving sound
absorption capacity of HRs.
Tuning techniques including the integration of an active piezo-

electric backplate in the HR are leveraged to adjust in real-time
the resonant frequency [11,12]. In this technique, by changing the
shunted electrical loads, the resonator volume changes, resulting
in adaptive tuning of natural frequency and acoustic impedance.
To avoid the cost and complexity associated with the active

control techniques, serial and parallel assemblies of HRs have
drawn attention, providing broadband resonant characteristics
[13–17]. Yet, use of multiple HRs may not be feasible because of
space constraints. In this respect, Hu et al. [18] revealed that the
HR with an embedded soft structural membrane can generate mul-
tiple resonances in the low-frequency regime, achieving a better
performance than traditional rigid HRs. In this system, the mem-
brane element introduces an additional degree-of-freedom (DOF)
to the HR and the coupling between elastic and acoustic physics
allows for improved acoustic energy transfer [19]. A similar
approach was adopted in Refs. [20,21], where a compliant dia-
phragm substitutes the rigid wall of a cylindrical HR to obtain an
enhanced transmission loss and a shift in the resonance frequency.
In addition, Cui and Harne [22] leveraged a flexible structural

member in an adaptive HR to control structural-acoustic coupling
via controlled elastic buckling phenomena. While previous
studies have illustrated the potential of HR with a compliant mem-
brane for broadband absorption of sound in the condition of low
pressure amplitude, i.e., linear regime [3,20,21], the assessment of
amplitude-dependent dynamic response of compliant-walled HR
is lacking. It is established that when the pressure amplitude level
is high (greater than about 100 dB), sound absorption in conven-
tional rigid HR is a function of pressure wave amplitude due to
the nonlinear effects [23–25]. The nonlinear damping due to the
jet loss and the nonlinear restoration (with quadratic and cubic
term) coming from the nonlinear elasticity of the cavity air compres-
sion and rarefaction are the two primary sources of nonlinearity
[23,26,27]. Thus, understanding the nonlinear acoustic-structure
interaction in a compliant-walled HR is of importance for their
use in low-frequency, broadband sound attenuation applications.
Motivated by the shortcomings in the state-of-the-art, this study

develops, validates, and leverages a reduced order model derived
from first principles to articulate the capability for compliant-walled
HRs to capture nonlinear amplitude sound. The paper is organized
as follows: in Sec. 2, a proof-of-concept HR with a single, compli-
ant aluminum wall is developed and the effectiveness of wall com-
pliance to improve the absorption of sound is investigated in linear
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and nonlinear regimes. In Sec. 3, governing equations of the
coupled system are determined wherein the linear damping, nonlin-
ear damping, nonlinear restoration, external excitation, and the
effective mass, compliance, and damping of the flexible wall are
taken into account. In Secs. 4 and 5, the model is first experimen-
tally validated and then leveraged to investigate the interaction
mechanisms between HR and compliant wall at various excitation
amplitudes, resonator geometries, and wall materials that may
give rise to unique noise attenuation capabilities. Finally, the
paper is concluded in Sec. 6 with a summary of the knowledge
gained.

2 Helmholtz Resonator Composition and Experimental
Setup
In this work, the acoustic-structure interaction between the HR

and a compliant wall is studied. The experimental setup in
Figs. 1(a) and 1(b) is used to examine the resonant frequency of
the HR with rigid walls or when one wall is replaced with the com-
pliant aluminum structure. The HR with five square walls enclosing
a cubic inner cavity having a volume of V1= 0.0153 m3 is fabri-
cated from 1.9 cm thick, rigid medium-density fiber (MDF)
board. The front wall of the HR has a square opening (side length
b= 0.13 m) marked by the square in Figs. 1(a) and 1(b). Either a
rigid 1.9 cm thick MDF wall is installed in this square window or
the compliant aluminum wall with thickness 30 µm is installed.
The necks for tuning the length of the cylindrical opening are
made by 3D printing ABS plastic (FlashForge Creator Pro). The
experimental setup includes an electrodynamic shaker (LDS
V408) attached to a square MDF piston (side length 0.17 m),
where the movement of the piston acts as an excitation for the
HR system. The resonator is placed on an aluminum truss above
the piston so that the HR side walls are sealed with rubber to the
piston. In the low-frequency range considered in this work, the
acoustic wavelength is much larger than the side lengths of the
inner cavity. As a result, the acoustic pressure inside HR is
uniform, measured by a microphone (PCB 130E20), inserted into
the HR cavity and secured to the HR side wall. To determine the
acceleration of the piston, the accelerometer (PCB 333B40) is

mounted on top of piston. A feedback-based vibration controller
(Vibration Research, VR9500) electronically governs the shaker
piston acceleration. The shaker is excited with constant acceleration
so that in the free field, the piston would drive a constant sound
pressure level (SPL) at all frequencies. At large amplitude excita-
tions, the effects of the nonlinearities may notably influence the
acoustic behavior of the HR. Thus, the HR was subjected to excita-
tion acceleration amplitudes from 0.1 m/s2 to 6 m/s2 to assess the
effectiveness of wall compliance to improve the absorption of
sound in both linear and nonlinear regimes. To compare the influ-
ence of neck length on the structural-acoustic responses, three
neck lengths are considered, L= 0.035, 0.075, and 0.115 m each
with a neck radius dimension of a= 0.02 m.

3 Analytical Modeling of Resonator With Compliant
Wall
The schematic of the nonlinear HR with a compliant wall inves-

tigated in this paper is presented in Fig. 1(c). The governing equa-
tions of motion for the HR assembly are derived in the following.
The governing equation of motion for the air mass m1 and displace-
ment u in the resonator neck is derived by Newton’s second law.
Here, we consider nonlinear compression of the air in enclosed
chamber, nonlinear aerodynamic loss by viscous motion of air in
the neck, linear radiation damping, as well as external pressure exci-
tation. The resulting single DOF equation of motion is given in
Eq. (1) [23,28,29].

m1ü + δu̇ + ξu̇|u̇| + ΔPcavA1 = f (t) (1)

Here, the air mass in the neck is m1= ρ1L1eA1, where ρ1 is the
density of air, A1 is the cross section of the straight neck, and
L1e is the effective length of neck. The effective length of the
neck accounts for the outer and inner opening of the neck
whether both ends are flanged or unflanged, with the approximation
of L1e= L+ (16a/3π) for the case of both ends flanged, where L is
the geometric neck length and a is the radius of the neck [30].
The coefficient for linear damping is δ = δ∗m1, where
δ∗ = (A1/ρ1L1e)Re{Zin + Zvis}, in which Re represents the real
part of a complex variable [24]. The Zin is the acoustic impedance
at the inlet of the HR and Zvis is the impedance of the acoustic fric-
tion. The nonlinear damping accounts for the force due to the accel-
eration of air from the external pulsating system into the neck [26].
The nonlinear damping coefficient is ξ = ξ∗m1/2L1e, where ξ

∗ is the
total hydraulic resistance coefficient of the neck. Thus, with a
proper choice of ξ∗, a mean-flow pressure drop in the neck, pro-
duced by boundary layer friction, is considered [26]. The f (t)=
P(t)A1 is the applied harmonic acoustic force to the neck from the
exterior.
The restoring force to return the air mass to equilibrium origi-

nates from the compressibility of air enclosed in the cavity. The
change in the volume of the cavity ΔV = − A1u − ∫wdA2

( )
is due

to the displacement u of the air in the neck and deflection w of a
plate with area of A2, resulting in an approximate condensation of
Δρ/ρ1=−ΔV/V1= (u−ψw)A1/V1. Here, the coefficient ψ can be
approximated by the ratio of area of flexible plate to that area of
neck.
When the excitation SPL is high, the nonlinear pressure change

ΔPcav (in the acoustic approximation) caused by the finite distortion
of the air in the cavity is expanded in Taylor’s series approximation
using [23–25]

ΔPcav = ρ1L1eω
2
1

[
(u − ψw) −

(γ + 1)A1

2V1
(u − ψw)2

+
(γ + 1)(γ + 2)A1

6V2
1

(u − ψw)3
]

(2)

Here, V1 is the undisturbed volume in the cavity, γ is the specific
heat ratio of the air, and ω1 =

�������
k1/m1

√
is the linear resonant

Fig. 1 (a) Schematic and (b) photograph of the setup for mea-
suring the resonant frequency of experimental HR. The compli-
ant aluminum or rigid MDF wall is installed at the position
marked by the square, with side length of b. (c) Schematic of
the lumped parameter model of the HR with one compliant wall.
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frequency of the resonator considering linear acoustic stiffness k1 =
ρ1c

2
1A

2
1 /V1 with sound speed c1.

Equation (2) is substituted into Eq. (1) to yield Eq. (3).

m1ü + δu̇ + ζu̇|u̇| + m1ω
2
1

[
(u − ψw) −

(γ + 1)A1

2V1
(u − ψw)2

+
(γ + 1)(γ + 2)A1

6V2
1

(u − ψw)3
]
= p(t)A1 (3)

The compliant wall is modeled as a thin, flexible panel. The
compliant wall vibrates in the lowest order mode due to uniform-
phase pressure applied over the surface that interfaces with the
cavity. The equation of motion for the displacement w of the
lowest order modal mass m2 of the compliant panel is derived by
Newton’s second law.

m2ẅ + d2ẇ + k2w − m1ω
2
1ψ

[
(u − ψw) −

(γ + 1)A1

2V1
(u − ψw)2

+
(γ + 1)(γ + 2)A1

6V2
1

(u − ψw)3
]
= 0 (4)

The mass contribution to the lowest order vibration of the flexible
plate is obtained by m2=Λρ2V2, where ρ2 and V2 are the flexible
plate density and volume, respectively. The Λ= 0.25 chosen in
this study is obtained from Refs. [31,32]. The lowest order,
in-vacuo natural frequency of the square panel is
ω2 = (λ/m2b2)

������
D/ρ2

√
. The vibration frequency factor λ is tabulated

by Leissa [33] based on the panel boundary conditions and aspect
ratio. Here, we consider a square compliant wall plate with
clamped edges, having length and width b, and thickness h. The
bending stiffness, D, is determined by the isotropic Young’s
modulus E, Poisson’s ratio ν, and thickness h of the flexible plate,
i.e., D=Eh3/[12(1− ν2)]. Using the equivalent relation
ω2 =

�������
k2/m2

√
, the stiffness of the lowest order plate bending

mode k2 is computed.
The relative displacement between the air and compliant wall is

defined to be z= u−ψw. By substitution, Eqs. (5) and (6) are
obtained.

ü +
δ

m1
u̇ +

ξ∗

2L1e
u̇|u̇|

+ ω2
1 z −

(γ + 1)A1

2V1
z2 +

(γ + 1)(γ + 2)A1

6V2
1

z3
[ ]

=
p(t)
ρ1L1e

(5)

ü − z̈ +
d2
m2

(u̇ − ż) +
k2
m2

(u − z)

−
m1

m2
ψ2ω2

1 z −
(γ + 1)A1

2V1
z2 +

(γ + 1)(γ + 2)A1

6V2
1

z3
[ ]

= 0 (6)

The time is non-dimensionalized by τ=ω1t so that ( )′ = ∂/∂τ.
Also, u∗ = A1u/V1 and z∗ = A1z/V1. The mass ratio is defined to
be μ=m1/m2. The frequency ratio is f=ω1/ω2. We also define
ξ1 = δ∗/ω1, ξ2= d2m2/ω2, and ηa = (ξ∗/2)V1/A1L1e. The nonlinear
pressure coefficients are defined as α2= (γ+ 1)/2 and α3=
(γ + 1)(γ + 2)/6. The harmonic applied pressure is p(t)= p0 cos
Ωt. The normalized applied pressure amplitude is P = p0/ρ1c

2
1.

The non-dimensional excitation frequency is given to be ω=Ω/
ω1. Thus, the non-dimensional equations of motion are as follows:

u′′ + ξ1u
′ + ηau

′|u′| + [z − α2z
2 + α3z

3] = P cosΩt (7)

f 2(z′′ − u′′) + ξ2f (z
′ − u′) + (z − u) + f 2μψ[z − α2z

2 + α3z
3] = 0

(8)

where for simplification, the asterisk * is omitted. In this research,
harmonic response is assumed for the lowest order behaviors of
the structural-acoustic system, presuming the wavelengths are
much greater than any physical dimension of the HR. Solutions
to Eqs. (7) and (8) are assumed of the form

u(t) = x1(t) + x2(t) sin(ωt) + x3(t) cos(ωt) (9)

z(t) = x1(t) + x4(t) sin(ωt) + x5(t) cos(ωt) (10)

Given that z= u−ψw, the approximation of the response w(t) is

w(t) = (1/ψ)[(x2(t) − x4(t)) sin(ωt) + (x3(t) − x5(t)) cos(ωt)] (11)

The attached compliant wall does not have a constant term in the
expansion due to the notation that w represents a relative coordinate.
Equations (9) and (10) are substituted into (7) and (8). Then the
higher order harmonics are neglected, the constant, sin(ωt), and
cos(ωt) terms are grouped, and the unknown, time-varying coeffi-
cients are presumed to change slowly x′′1, x′′2, x′′3, x′′4, x′′5≈ 0. These
operations and assumptions yield five governing equations for coef-
ficients x1, x2, x3, x4, x5:

ξ1x
′
1 = −α3x31 + α2x

2
1 − 1 +

3
2
α3(x

2
4 + x25)

( )
x1 +

1
2
α2(x

2
4 + x25) (12)

2ωx′3 − ξ1x
′
2 = −ω2x2 − ξ1ωx3 −

8
3π

ω2ηax3

��������
x22 + x23

√
+ 1 − 2α2x1 + 3α3x

2
1 +

3
4
α3x

2
5

( )
x4 +

3
4
α3x

3
4 (13)

−2ωx′2 + ξ1x
′
3 = −P + ξ1ωx2 − ω2x3 +

8
3π

ω2ηax2

��������
x22 + x23

√
+ 1 − 2α2x1 + 3α3x

2
1 +

3
4
α3x

2
4

( )
x5 +

3
4
α3x

3
5 (14)

f ξ2x
′
2 − 2f 2ωx′3 − f ξ2x

′
4 + 2f 2ωx′5 = (−1 + f 2ω2)x2 + f ξ2ωx3 + (1 + f 2μψ2 − f 2ω2 − 2f 2α2μψ

2x1 + 3f 2α3μψ
2x21)x4

+
3
4
f 2α3μψ

2x34 − f ξ2ωx5 +
3
4
f 2α3μψ

2x4x
2
5 (15)

f ξ2x
′
3 + 2f 2ωx′2 − f ξ2x

′
5 − 2f 2ωx′4 = (−1 + f 2ω2)x3 − f ξ2ωx2 + (1 + f 2μψ2 − f 2ω2 − 2f 2α2μψ

2x1 + 3f 2α3μψ
2x21)x5

+
3
4
f 2α3μψ

2x35 + f ξ2ωx4 +
3
4
f 2α3μψ

2x5x
2
4

(16)

Journal of Vibration and Acoustics JUNE 2022, Vol. 144 / 031008-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/144/3/031008/6804740/vib_144_3_031008.pdf by The Pennsylvania State U

niversity user on 14 February 2022



The steady-state responses of the system are determined by
solving the coupled equations (12)–(16). As such, the five coeffi-
cients x1, x2, x3, x4, x5 are obtained by simultaneously solving non-
linear equations (12)–(16), using a nonlinear least-squares
minimization approach in MATLAB.
After acquiring the coefficients from Eqs. (12)–(16), the SPL

inside the HR at each frequency is obtained

SPL = 20 log10 ρ1c
2
1 x1 +

��������
x22 + x23

√( )/ ��
2

√
/(20 × 10−6)

∣∣∣∣
∣∣∣∣ (17)

The transfer function (TF) is predicted as the amplitude of the
acoustic pressure inside the HR (SPL) to that of applied acoustic
pressure.

4 Experimental Validation of the Analytical Model
An experimental validation of the analytical model is undertaken.

A comparison between experimental and predicted results of the
resonance frequency of the HR is presented in Table 1. The influ-
ences of change in excitation amplitude to result in the linear and
nonlinear regimes as well as the effects of neck length (0.035,
0.075, 0.115 m) and wall compliance (i.e., rigid MDF or
30-µm-thick complaint aluminum) are assessed. In the following
investigation, we use the material properties and empirical parame-
ters given in Table 2 unless otherwise indicated. For modeling the
MDF HR, the walls are assumed to be sufficiently rigid so that
the physical properties and the thickness of the walls do not
affect the resonator behavior. To predict linear as well as nonlinear
acoustic behavior of the rigid HR, excitation SPLs of 80–160 dB are
considered. To replicate this transition from linear to nonlinear

regime experimentally, the excitation acceleration amplitudes are
varied from 0.1 to 6 m/s2, thus generating SPLs inside the HR
from 91 to 122 dB. Note that the dissimilarity between the internal
experimental SPL values with the external modeled SPL values is
associated with the difference between the driving mechanisms of
the fabricated HR and the modeled HR. In this low-frequency
range of consideration, the sound pressure amplitude of 140 or
160 dB could not be achieved experimentally for comparison
with the predicted ones because of the displacement limit of the
shaker.
Table 1 shows that the model that predicts the resonance fre-

quency of the conventional rigid HR reduces from 33 to 18 Hz
when the excitation increases, from 120 to 160 dB, sufficiently to
drive the HR into a nonlinear acoustic regime. Moreover, under
the excitation SPL of 120 dB, the 8 cm increase in neck length
results in the decrease in resonance frequency of conventional HR
from 52 to 31 Hz. Yet, for the HR with a compliant aluminum
wall, the reduction in resonance frequency is less, from 34 to
23 Hz, with the same increase in neck length. Considering the
experimental data, the resonance frequency reduction trends pre-
dicted by the model for increasing nonlinearity, increasing neck
length, and introduction of compliant wall are in qualitative agree-
ment with the experimental findings. The discrepancies may result
from the choice of empirical effective length of the neck L1e, loss
coefficient ξ= 1.87 which corresponds exactly to the geometrical
length [26], and the ideal approximation of the compliant wall to
be a thin, flexible panel in the model. The discrepancy can be com-
pensated using separate expressions for effective length of the neck
and nonlinear damping coefficients to represent the linear, nonlinear
transition, and highly nonlinear regimes. Several correction factors
are presented in earlier studies [34,35]. The model also shows that
the max SPL increases with decreasing neck length, which is due to
decreased losses, while in experiment, max SPL decreases because
of reduced flow resistance. Yet, the overall agreement of salient
trends is sufficient justification to further explore the model to
help uncover the nonlinear acoustic-structure interaction mecha-
nisms in a compliant-walled HR.
Furthermore, it is seen that the alteration in resonance frequency

with replacement of one rigid wall with compliant wall occurs due
to the creation of a 2DOF system. This influence is considerable in
the low-frequency range. For instance, for each of the three neck
lengths, when the excitation SPL is 120 dB, the resonance fre-
quency of the HR with one compliant aluminum wall is estimated
to be 26–35% lower than that of HR with rigid walls, which is
similar to the 32–36% measured in the experiments. This demon-
strates that the HR with a compliant wall can have a potential appli-
cation for low-frequency noise control. Such an outcome is
especially beneficial when space limits large HR cavities, which
is a common way to reduce the frequency of resonance while main-
taining effective inertial force of air. This shows the importance of
an inclusive model that takes into account the important sources of

Table 1 Experimental and model results comparison

Backwall
Length of

HR neck (m)

Model predictions Experimental measurements

Excitation
SPL (dB) Max SPL (dB)

Resonance
frequency (Hz) Acceleration (m/s2) Max SPL (dB)

Resonance
frequency (Hz)

MDF 0.115 80 80 33 0.1 91 36
100 100 32 2 116 33
120 120 31 4 120 30
140 140 29 6 122 27
160 158 18 – – –

MDF 0.035 120 122 52 3 113 41
0.075 120 121 40 3 118 37
0.115 120 120 31 3 120 33

30-µm-thick aluminum 0.035 120 127 34 3 114 28
0.075 120 125 28 3 118 24
0.115 120 124 23 3 119 21

Table 2 Physical and empirical parameters for modeling

ρair(kg/m
3)

1.2
cair(m/s)
343

γ
1.4

Ealuminum(GPa)
81

ρaluminum(kg/m
3)

2710
νaluminum

0.33
Ecork(GPa)
0.03

ρcork(kg/m
3)

168
νcork
0.1

Esilicone(GPa)
0.01

ρsilicone(kg/m
3)

1552
νsilicone
0.49

Eepoxy(GPa)
3.7

ρepoxy(kg/m
3)

1330
νepoxy
0.33

ECFRP(GPa)
111

ρCFRP(kg/m
3)

1552
νCFRP
0.1

Esteel(GPa)
228

ρsteel(kg/m
3)

8240
νsteel
0.1

ξ
1.87

ψ
1
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nonlinearity as well as the dynamics between compliant wall and
HR in order to accurately predict the resonator behavior.

5 Acoustic-Structure Interaction Phenomena
in a Compliant-Walled Helmholtz Resonator
5.1 Resonant Behavior in Linear and Nonlinear Regimes.

To develop an understanding of the nonlinear dynamics of the
HR with compliant wall, we leveraged the analytical formulation
to show in Fig. 2(a) the effects of nonlinear damping (ξ= 1 and
1.87) as well as neck length (0.035 and 0.115 m) on acoustic char-
acteristics of HR. The natural frequency of rigid HR is 60 Hz for
L = 0.035 m and 41 Hz for L= 0.115 m and the lowest order
natural frequency of a flexible aluminum panel is approximated to
be 42 Hz. In the coupled compliant-walled HR system, due to the
presence of the 2DOF, there are two resonance peaks. The first
and second resonance frequencies are illustrated in Fig. 2(a) by
solid and dashed curves, respectively. It is found that at low SPL
of 80 dB, the resonant frequencies of the primary two vibration
modes are 24 and 63 Hz for L= 0.115 m and 35 and 72 Hz for
L = 0.035 m. Figure 2(a) presents that when the excitation increases
from 80 dB to 160 dB, where the nonlinearity plays a more signifi-
cant role, the resonant frequencies of both peaks shift toward lower
frequencies gradually. Yet, the first TF resonant peak is more sen-
sitive to the amplitude of the excitation pressure.
The nonlinear damping is the nonlinear separation effect for the

air flow in and out of the neck. In other words, ξ= 1 corresponds to
a loss free inlet with a static pressure drop of one dynamic head
across the neck inlet [26]. Figure 2(a) depicts that for high SPL,
at a certain neck length, a higher nonlinear damping of ξ= 1.87
[24] leads to greater reduction in the resonance frequencies than
those of ξ= 1, showing that nonlinear damping plays an important
role in the design and tuning of a compliant-walled HR. One possi-
ble approach to reduce the loss coefficient and thus nonlinear
damping is to replace the sharp edges of the neck with flared or

tapered neck ends having a moderate arc, which may suppress
flow separation [26]. Figure 2(a) also illustrates the nonlinear beha-
vior of the reduction in resonance frequency with changing neck
length. Especially, at high SPL, with a shorter neck, having a
higher nonlinear damping may result in a more significant shift in
resonance frequencies.
The corresponding mode shapes of the HR assembly at the first

and second eigenfrequencies are determined from the positions of
the air mass in the neck, u, and compliant wall, w. The resulting
mode shapes are schematically demonstrated in Fig. 2(a). It can
be seen that the motions of the air mass in the neck and compliant
wall are in-phase at mode I, while it changes to 180 deg
out-of-phase at mode II. Figure 2(b) shows the displacement ampli-
tude of air mass in the neck and compliant wall as a function of time
at modes I and II when the excitation SPL is 90 dB and 150 dB. At
mode I, when the excitation increases from 90 dB to 150 dB, the
ratio of amplitude of displacements |u|/|w| increases from 1.7 to
2.3, respectively. This indicates that in the nonlinear regime, the dis-
placement amplitude of air mass in the neck is more affected by the
degree of nonlinearity than that of complaint wall. This may be
expected because the compliant structural nonlinearity is not
modeled, while nonlinearity is included for the air compression.
Also, the compliant wall is not directly subjected to applied pressure
unlike the air in the neck.

5.2 Assessment of Helmholtz Resonator Geometrical
Features. To achieve a particular resonant frequency or configura-
tion of two resonant peaks, the influence of geometrical features of
HR on the TF amplitude of the acoustic pressure inside the HR to
the acoustic excitation pressure is investigated at excitation SPL
of 140 dB. Figure 3(a) presents the effect of neck opening radii a
of 0.01, 0.02, and 0.03 m on the TF amplitude frequency response
for both the conventional rigid and compliant-walled HRs. In con-
ventional rigid HR, only one resonance peak arises which can be
leveraged for acoustic energy absorption. Yet, the 2DOF coupled
HR generates two TF resonant peaks, where the second peak

Fig. 2 Predictions of (a) first and second resonance of HR with compliant wall when the exci-
tation increases from 80 dB to 160 dB, showing the influence of nonlinear damping as well as
neck length with increasing P. Solid curves indicate the first resonance and dashed curves are
the second resonance. Schematics showing the corresponding mode shapes, “mode I” and
“mode II”, of vibration of the HR assembly at first and second resonance. (b) Displacement
amplitude for air in the neck, u, and compliant wall,w, as a function of time when the excitation
SPL is 90 dB and 150 dB, at L=0.035 m and ξ=1.87.
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vanishes for small neck radius, as shown in Fig. 3(a). Thus, com-
pared to the 1DOF system, the 2DOF system enabled with introduc-
tion of one compliant wall may be more effective and adaptable for
noise attenuation. The reason that smaller neck radii exhibit one
resonance is that the stiffness from the air enclosed in the cavity

decreases substantially while the stiffness of the compliant wall
remains the same. This has the effect of separating the two modes
by a large margin and minimizing coupling to excite the second
mode that is predominantly composed of compliant wall vibration.
Furthermore, a valley between the two resonance peaks is evident

due to the anti-resonance. Anti-resonance occurs when the inertial
force generated by the compliant wall cancels the effects of external
force. Figure 3(a) also depicts that at neck opening radius a of
0.03 m, the 1DOF rigid HR system has a TF resonant peak near
75 Hz, and the compliant-walled HR have two resonant peaks at
28 and 115 Hz. Moreover, the amplitude of TF peak at the first reso-
nance frequency is more than that of 1DOF rigid HR because the
change in volume of air in the cavity of the compliant-walled HR
system is more than that of rigid HR. Similar to the rigid HR,
with increasing neck radius, the magnitude of the resonance peak
increases due to the increase in the air mass in the neck and a reduc-
tion in air flow resistance. Yet, unlike the rigid HR that the reso-
nance frequency increases constantly, in 2DOF HR system, the
first resonance frequency increases with increasing neck radius to
a= 0.02 m, and then decreases with increasing neck radius to a=
0.03 m. The reason is that in compliant-walled HR, increasing
neck radius has a dual effect. On one hand, it increases the air
spring stiffness which increases the Helmholtz resonant frequency.
On the other hand, increasing air spring stiffness improves the
deflection of the flexible wall, which reduces the resonant frequency
of the system. It should be noted that in the compliant wall HR, the
attenuation bandwidth of the compliant wall HR is largely dictated
by the resonance and anti-resonance frequencies. Thus, obtaining a
wider effective bandwidth of compliant wall HR which corresponds
to a broader attenuation curve compared to rigid HR is possible
when the compliant wall HR system parameters are chosen
properly.
Figure 3(b) shows the influence of neck lengths L of 0.035,

0.070, and 0.105 m on the TF amplitude frequency response for
both the conventional rigid and compliant-walled HRs. Similar to
the rigid HR where it is observed that the TF resonant peak
decreases with increasing neck length, both resonant peaks for the
coupled HR reduce due to the increased air flow resistance. More-
over, regardless of the introduction of wall compliance, the shorter
neck provides a wider band of attenuation. A similar trend was
found in the measured transmission loss for rigid HRs with neck
extensions [8]. Furthermore, a greater shift in the resonance fre-
quency is evident for the conventional rigid HR than for the
coupled HR considering the same increase in neck length.
Figure 3(c) compares the influence of cavity volumes (V1=

0.0153, 0.0305, 0.0458 m3) on the TF amplitude frequency
response for both the conventional rigid and compliant-walled
HRs. With increasing cavity volume, the magnitudes of the TF reso-
nant peaks and the resonance frequencies reduce for all cases con-
sidered due to decrease in stiffness of air in the cavity. Tripling the
cavity volume can reduce the resonance frequency in the 1DOF
system by almost 30 Hz, while in the 2DOF HR system less reduc-
tion, approximately by 15 Hz, in resonance frequency may be seen.
This may be expected because the change in acoustic stiffness of the
cavity in the coupled HR is less than that of the rigid HR.

5.3 Effects of Frequency Ratio and Mass Ratio. To achieve
a deeper insight on the interactions between acoustic and elastic
physics in the 2DOF HR system, the effects of frequency ratio
and mass ratio, exhibiting the coupling between HR and compliant
wall, on the TF amplitude are presented in Fig. 4. Frequency tuning
ratio of the resonator to the flexible plate is f, while the mass ratio of
the acoustic mass in the neck to the mass contribution of flexible
plate is μ. The color gradation varies from the solid hue for f=
2.0 (in Fig. 4(a)) or μ= 2.0 (in Fig. 4(b)) to light shading for f=
0.01 (in Fig. 4(a)) or μ= 0.01 (in Fig. 4(b)). To generate the
results of Fig. 4, the parameters for HR assembly are selected to
be a= 0.02 m, L= 0.035 m, V1= 0.0153 m3, μ= 0.3 (in
Fig. 4(a)), and f= 0.8 (in Fig. 4(b)) at SPL of 140 dB. As predicted,

Fig. 3 Predictions of TF amplitude for (a) neck opening radii (a=
0.01, 0.02, and 0.03 m), (b) neck lengths (L=0.035, 0.070, and
0.105 m), and (c) cavity volumes (V1=0.0153, 0.0305, 0.0458 m3)
at SPL of 140 dB. Compliant-walled HR is indicated by solid
curves, and conventional rigid HR are shown by the dashed
curves. Unless otherwise mentioned, we use a=0.02 m, L=
0.035 m, and V1=0.0153 m3.
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for large frequency ratio in Fig. 4(a) due to the interaction between
the HR and compliant wall, two sharp TF resonant peaks can be
noticed. Yet, for smaller frequency ratio f= 0.01, the two resonance
peaks coalesce and the coupled HR is similar to a rigid HR. This is
an evidence that the wall is not able to produce significant deflection
because of an undesirable increase in stiffness of complaint wall
compared to the stiffness of the resonator, so that the wall is insuf-
ficiently coupled with the air in the cavity. It is clear in Fig. 4(a) that
the resonance provided by the HR with compliant wall is more
broadband in TF amplitude than that of conventional rigid HR.
Also, it can be clearly seen that the amplitudes of the two resonance
peaks are not the same. With increasing the frequency ratio, regard-
less of mass ratio, the peak TF response of the first and second mode
increases while the second peak shifts more. This means that via
enhancing the deflection of the flexible wall, the amplitude of the
pressure inside cavity increases while the mass of the system is
unchanged which results in an increased capability for sound
absorption of HR. With increasing the frequency ratio, the reso-
nance frequency of both peaks reduces and the difference
between the two resonance frequencies decreases.
Figure 4(b) presents that at the mass ratio of μ= 0.01, the two TF

resonant peaks for the 2DOF system merge into one peak, exhibit-
ing that compliant wall does not cause significant changes in the
response of the conventional HR. In the 2DOF system, the ampli-
tude of first TF resonant peak is larger than that of conventional
HR, suggesting that performance of HR can be enhanced by cou-
pling with flexible wall in consequence to increased change in stiff-
ness of system. With the increase of the mass ratio, the first
resonance frequency decreases while the second resonance fre-
quency increases, leading to an increased frequency gap between
the two resonant peaks. This indicates the increased stiffness of
cavity and thus an enhanced deflection of the flexible wall which
is counteracted by the increase in air mass in the neck of the HR
system. Also, as the mass ratio increases, the peak TF response of
the first mode increases while the response of the second mode
reduces. This is due to both decrease in the mass and enhanced
deflection of the flexible wall. Accordingly, two comparable
peaks in TF with small gap in-between can be obtained at desired
frequencies through tuning the frequency ratio and a comparatively
low mass ratio, which are set by the proper choice of the HR
parameters as well as compliant wall material and geometrical
properties.

5.4 Influences of Thickness and Material of Compliant
Wall. Once a given material is chosen for the compliant wall, the
strategic selection of the wall thickness can enable one to tailor
the resonant modes of the compliant-walled HR. As a result, we
explore the frequency dependence of the TF as a function of wall
thickness in Fig. 5. The chosen parameters for HR are a= 0.02 m,
L= 0.035 m, V1= 0.0153 m3 and properties of aluminum wall are

mentioned in Table 2. In Fig. 5, the highest and lowest TF ampli-
tude are 1.1 and 0.85, respectively. The resonance frequency of a
rigid HR with the same physical dimensions is at 45 Hz at excitation
SPL of 140 dB. For the HR with compliant wall, the 0.1 mm thick
wall may be sufficiently rigid such that the wall material properties
and thickness may not have considerable effect on the
structural-acoustic modes in this low-frequency range of consider-
ation. With decreasing the thickness of wall, the coupling
between the wall and the HR cavity enhances and thus, a second
resonance peak emerges and the first resonance frequency
decreases. Using a 0.01 mm thick wall, the first resonance occurs
at 2 Hz, exhibiting a significant shift from the resonance frequency
of 45 Hz for rigid HR. Figure 5 also shows that with decreasing the
thickness of wall, the frequency gap between the two resonant peaks
first decreases and then increases. Accordingly, there is an optimal
thickness where the frequency gap between the two resonance fre-
quencies reaches a minimum, which is around 0.04 mm thickness of
the compliant wall. This trend is due to interaction between
(i) reduction in bending stiffness according to the cube of the wall
thickness, and thus natural frequency of compliant wall and
(ii) decreasing the mass of compliant wall. Decreasing the wall
thickness increases the peak TF response of the first mode while the
response of the second mode initially increases and then decreases
due to the decrease in the mass and stiffness of flexible wall.

Fig. 4 Predictions of TF amplitude frequency response of compliant-walled HR at various
(a) frequency ratios ( f=0.01, f=0.5, f=1.0, f=1.5, and f=2.0) and (b) mass ratios (μ= 0.01,
μ=0.5, μ=1.0, μ=1.5, μ=2.0) at excitation SPL of 140 dB

Fig. 5 Predictions of TF of a HRwith compliant wall for 1–100 Hz
and 0.01–0.1 mm wall thickness at excitation SPL of 140 dB. The
cavity volume is 0.0153 m3, the neck length is 0.035 m, and neck
radius is 0.02 m.
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The proper selection of wall material (i.e., Young’s modulus,
density, and Poisson’s ratio) may lead to greater increase in the
resulting acoustic energy absorption of the resonator. Thus, we
leverage the model to investigate the influences of change in mate-
rial of compliant wall having thickness of h= 30 μm and h=
100 μm on the TF, in Fig. 6. The materials considered are cork, sili-
cone, epoxy, carbon fiber reinforced composite (CFRP), aluminum,
and steel with the properties given in Table 2. In this selection, the
modulus E of materials spans a factor of 20,000 from 0.01 GPa to
more than 200 GPa; the density ρ spans a factor of 40 from less
than 200 to more than 8000 kg/m3. Cork has similar modulus as sili-
cone, but the density of cork is considerably less than silicone.
Thus, at the same thickness, the HR assembly with a compliant
cork wall has lower frequency ratio, fcork < fsilicone, and higher
mass ratio, µcork > µsilicone, than that of HR with silicone wall. As
a result, as can be seen in Fig. 6(a), at wall thickness of h=
30 μm, the resonance frequency of second TF resonant peak of
HR assembly with cork is much lower than that of HR assembly
with silicone wall. Also, due to their low modulus, for both materi-
als, the first TF resonant peak is seen at very low frequency. Sili-
cone, epoxy, and CFRP have roughly similar density, but the
modulus of silicone is lower than that of epoxy, and modulus of
epoxy is lower than that of CFRP. As a result, fCFRP < fepoxy < fsilicone
and µCFRP≈ µcork≈ µsilicone, leading to a greater TF resonant peak in
HR with silicone than that of epoxy wall, and a higher TF resonant
peak in HR with epoxy than that of CFRP wall. The resonance fre-
quencies of HR with silicone are lower than that of epoxy wall and
resonance frequency of HR with epoxy is lower than that of CFRP
wall. Moreover, Fig. 6(a) presents that although aluminum and steel
have high modulus and high density, at wall thickness of h= 30 μm,
these walls can notably affect the TF of HR assembly. Yet, among
the 100-µm-thick walls, only cork, silicone, and epoxy walls are
sufficiently compliant to influence the TF amplitude in this low-
frequency range, as presented in Fig. 6(b). Thus, low-frequency
sound attenuation can be obtained by judicious choice of compliant
material parameters for wall. While much attention is placed on the
potential beneficial nature of these materials as compliant wall,
attention will also be given to possible limitations that could
prevent the use of these materials or the plausibility of achieving
the predicted results in real world environments. For instance,
achieving a large displacement of a certain compliant wall material
at low frequency 1–10 Hz when excited at 140 dB, fabrication of
micron-thick wall, or assumption of material homogeneity in the
model may be limiting factors that need to be considered in
compliant-walled HR design.

6 Conclusions
This report investigates the nonlinear low-frequency response of

a HR with a compliant wall in the nonlinear acoustic regime. The

deflection of the compliant wall is exploited to couple with the
HR dynamic mass to generate two low-frequency resonances and
thus to enhance the sound attenuation capability of the HR. A
reduced order model is established to characterize the salient
acoustic-structure interaction mechanisms in the 2DOF system. A
modeling case study is experimentally validated and examined to
uncover how the lowest order resonant frequency of the 2DOF
HR system is lower than that of the conventional rigid wall HR,
including for increasingly nonlinear excitation SPLs. It is also
found that the compliant wall enhances the TF of the HR cavity
pressure to the external pressure and provides two low-frequency
resonances associated with the 2DOF modes, albeit in a nonlinear
regime. This research uncovers strategies of HR system design
that have a significant influence on the nonlinear acoustic behavior
of HR.
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